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Abstract

We conduct the first econometric analysis of leakage in the electricity sector from California’s cap-

and-trade program. The paper presents three sets of empirical results that support the hypothesis of

leakage. First, we measure the policy impact on baseload power plant operations in the Western Inter-

connection applying a differences-in-differences estimator to a novel dataset at the monthly level from

2009 to 2016. Second, we preprocess the data to improve balance between treated and control plants

by matching on hour-of-day specific variables, and explore treatment effect heterogeneity across day-

time and nighttime hours using daily measures of plant utilization. Third, we test for leakage from the

cap-and-trade program by examining the relationship between emission allowance prices and scheduled

power imports into California. Results suggest a policy-induced reduction in natural gas combined cycle

generation in California and an increase in coal-fired generation in the Western U.S., corresponding to a

leakage rate of about 70%.

1 Introduction

California has been at the forefront of U.S. environmental policies for years. The Global Warming Solutions

Act of 2006 (also known as Assembly Bill 32 or AB 32) set the state’s target to reduce greenhouse gas

(GHG) emissions to 1990 levels by 2020 [1]. In September 2016, California passed Senate Bill 32 (SB 32),

which limited emissions to 40% below 1990 levels by 2030 [2]. Further, Executive Order S-3-05 set a GHG

emission reduction target of 80% below 1990 levels by 2050 [3]. In order to achieve these ambitious goals, the
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state relies on a suite of complementary policies, including a multi-sector cap-and-trade program that covers

about 80% of the state’s emissions from the electricity sector, large industrial facilities, and fuel distribution

sector, and is expected to drive roughly 22% of emission reductions by 2020 [4].

A central issue in the implementation of cap-and-trade programs is represented by the choice of the

point of regulation. For example, the Regional Greenhouse Gas Initiative (RGGI), an emission trading

system for CO2 emissions from electricity generation in U.S. Northeastern and mid-Atlantic states, adopted

a production-based (or source-based) approach where the point of regulation is at the generator level. In

contrast, given its reliance on imports to satisfy electricity consumption,1 California opted for a first deliverer

approach, whereby entities that own electricity at the first point of delivery in the state represent the point of

regulation: in-state generators must monitor and report their emissions following a source-based paradigm,

while electricity importers are responsible for emissions associated with in-state sales.

The introduction of a border adjustment mechanism for the electricity sector was intended to mitigate

concerns of leakage, defined as the shift in production and associated emissions from the region where climate

regulations apply to surrounding unregulated jurisdictions [6, 7, 8]. However, energy modeling studies have

concluded that the possibility of reshuffling contracts may enable substantial leakage under the AB 32 cap-

and-trade system [6, 7, 9, 10, 11]. Under resource shuffling, electricity contracts are rearranged so that

production from low emission sources serving out-of-state load is directed to California, while production

from higher emission sources is assigned to serve out-of-state load [12]. This would result in apparent emission

reductions due to changes in the composition of imports to California, although emissions in exporting regions

are unchanged or even increase. It is worth noting that, in recent years, the decrease in GHG emissions from

the electric power sector in California has been attributed primarily to measured reductions in emissions

from imports [13]. This underscores the importance of assessing whether leakage has occurred in practice

and considering potential policy modifications to mitigate its impacts.

We contribute to the literature by conducting the first econometric analysis of leakage in the electricity

sector from California’s cap-and-trade program. While earlier studies were prospective (ex ante) and em-

ployed numerical models, our study is retrospective (ex post) and employs statistical analysis of historical

data. The paper presents three sets of empirical results. First, we measure the impact of California’s carbon

policy on baseload power plant operations in the Western Interconnection applying a differences-in-differences

estimator to a novel dataset at the monthly level from 2009 to 2016. After controlling for key determinants

of plant capacity factors like fuel costs, electric demand, nuclear and renewable generation, temperature and

1California imports about a third of its total electricity consumption from out of state [5].
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precipitation levels, the estimated average treatment effects suggest a policy-induced reduction in NGCC

generation by 14% in California and increase in coal-fired generation by about 4% in the Western U.S.,

corresponding to a leakage rate of about 70%. Results are robust to the choice of leaker and control groups,

clustering methods and sample definition. In our second set of empirical results, we preprocess the data to

improve balance between treated and control groups by matching plants on coarsened hour-of-day variables,

and carry out parametric inferences using daily measures of plant utilization. This approach changes the

estimand to a local average treatment effect for the plants that were matched, and allows us to explore

heterogeneity across daytime and nighttime periods. Results from the matched sub-samples are broadly

consistent with those from the full sample, and robust to the inclusion of matching variables and choice of

cut points. In our final set of analyses, we test for leakage from the policy by examining the relationship

between the AB 32 allowance price and scheduled power imports into the California Independent System

Operator (CAISO), which centrally dispatches generation and coordinates the movement of wholesale elec-

tricity in much of California and part of Nevada. Specifically, we estimate a model of daily scheduled power

flows into CAISO, and test for leakage based on the statistical significance of the AB 32 allowance price

as one of the explanatory variables. The analysis of daily scheduled flows across major CAISO interfaces

further supports the hypothesis of leakage.

The remainder of the paper is organized as follows. Section 2 reviews the literature on emission leakage

and Section 3 provides background on California’s cap-and-trade program. Section 4 describes the data,

while Section 5 outlines the research design and econometric approach. Section 6 presents the empirical

results, and Section 7 offers concluding remarks.

2 Literature review

The potential for emission leakage in the electricity sector under regional climate policies has been analyzed

using numerical models. A first strand of the literature employs simulation-based models of the electricity

sector. [7, 9, 14, 10] explore leakage in the context of California’s proposed cap-and-trade program for

GHG emissions (i.e., before regulations were finalized). [7] uses partial equilibrium analysis to determine

the extent of leakage potential under incomplete, market-based regulation of CO2 emissions in California’s

electricity sector. Results indicate that emission leakage is greater when emission rates per unit of production

are high, demand is more elastic, and the industry is more competitive. The theoretical framework is

used to investigate related welfare effects in the electricity sector under a range of assumptions regarding
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market competitiveness. [9] formulate a market equilibrium model to compare source-based, load-based

and first deliverer approaches for cap-and-trade regulation in California, and examine related economic

and emission implications on the electricity market. They find that leakage is substantial (85%)2 and

largely due to reshuffling: emission reductions due to changes in the composition of electricity imports to

California are illusory, because emissions in the rest of the Western Interconnection increase under regulation.

[14] and [10] examine the impacts of alternate cap-and-trade designs applying to Western U.S. states and

California, respectively, and conclude that a first deliverer approach in California is vulnerable to leakage

due to laundering and reshuffling of import resources. In contrast to the studies cited above, [11] consider

California’s actual cap-and-trade program. The authors simulate distributions of emission allowance prices

assuming that price containment mechanisms may be binding or market participants engage in withholding

strategies. With respect to RGGI, [15] develop a model of the Eastern U.S. and Canada to analyze the effects

of a CO2 price in RGGI on emissions, electricity prices, and generator entry and exit decisions, finding that

leakage represents a likely market outcome.

Computable general equilibrium (CGE) models have also been used to examine the impacts of regional

climate policies [16]. CGE models can account for several potential leakage channels, but are sensitive to

assumptions about the parameters. One such study is [17], that develops a multi-state CGE model of the U.S.

economy. In the context of RGGI, the authors estimate that, if the program’s cap was fully binding, power

imports to New York (a RGGI state) from Pennsylvania (a non-RGGI state) could result in emission leakage

rates of more than 50%. [18] develop a modified version of the GTAP-E model to assess the economic and

carbon emission effects of alternative trade policy measures aimed at reducing carbon leakage. [19] conduct

a general equilibrium assessment of leakage from sub-national climate policies, using California’s cap-and-

trade program as an example. When imported electricity is included in the cap and provisions to prevent

reshuffling are enforced, the estimated leakage rate is only 9%.

Empirical analyses of leakage are less common in the literature. [20], [21] and [22] examine leakage

in the context of the Kyoto Protocol. In particular, [22] develop a gravity model to calculate the carbon

content of bilateral trade flows for forty countries between 1995 and 2007, and find that binding commitments

under the Kyoto Protocol led to emission leakage to noncommitted countries. With respect to RGGI, [23]

analyze the relation between CO2 permit prices and transmission power flows on seven high-voltage interties

between New York and Pennsylvania between 2008 and 2010. Higher net flows from Pennsylvania to New

2This percentage (also referred to as “leakage rate”) is given by one minus the ratio of aggregate emission decrease in the
regulated and unregulated regions, relative to a baseline in which no emission cap applies, over emission decrease in the regulated
region, relative to the no cap scenario and including emissions associated with electricity imports.
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York associated with a higher RGGI allowance price would indicate leakage. The authors do not find a

significant impact of RGGI permit prices on PA-NY transmission flows, but prices may have been too low in

the early years of the program to affect leakage. [24] conduct two complementary analyses of RGGI-induced

leakage. First, they use plant-level data to assess operational impacts of the carbon policy. They estimate

that RGGI induced a reduction in coal-fired generation in the regulated region and an increase in cleaner

NGCC generation in the unregulated region, leading to an aggregate emission reduction across regions. Their

second analysis examines changes in electricity transmission flows, finding that power imports to New York

from outside the RGGI region increased substantially since the policy was implemented: this supports the

generation substitution pattern identified previously.

Finally, a growing body of research in economics assesses the potential for leakage risk across sectors

(e.g., [25]), and explores how environmental regulation affects trade flows and the location choice of firms in

the long run (“pollution haven” effect) [26, 27, 28, 29, 30, 31].

3 Policy background

California’s cap-and-trade program regulates GHG emissions from large industrial facilities, electricity gen-

erators and importers, and transportation fuel suppliers. Covered entities emit at least 25,000 metric tons

of CO2e per year and are responsible for about 80% of the state’s GHG emissions [32]. The first phase of

compliance for the program began on January 1, 2013. The 2013 emission cap was set at approximately 98%

of forecast 2012 emissions, with an annual decline of 2% in 2014 and 3% from 2015 through 2020. In July

2017, the scheme was extended through 2030 with bipartisan support: emission reductions in the carbon

market are expected to deliver about 40% of the state’s total mitigation efforts [32].

The California Air Resources Board (CARB) is responsible for implementing AB 32 and designed the cap-

and-trade system. CARB issues annual emission allowances equal to the cap, and each allowance represents

a permit to emit one ton of carbon dioxide equivalent. Entities must monitor and annually report their

emissions, and return an amount of allowances equivalent to their GHG emissions each year. Capped sources

that keep emissions below the allowance amount can sell excess permits on the market, while sources that

cannot cover total emissions may take measures to reduce pollution and/or buy allowances on the market.3

Emission allowances are distributed through a mix of free allocation and quarterly auctions, transitioning

over time to greater auctioning of allowances: in 2016, 46% of allowances were auctioned and 50% were

3Covered entities may also use carbon offsets (e.g., GHG emission reduction projects undertaken by entities not subject to
the carbon policy) to cover up to 8% of their emissions.
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given away for free [33].4 CARB allows banking and borrowing of allowances, and the risk of unexpected

price changes and excess volatility is mitigated through the use of a price collar; secondary market allowance

prices have generally hovered at or near the auction price floor from market launch to 2016 [34].

Two provisions in the current design of AB 32 cap-and-trade system are intended to mitigate concerns

about leakage. First, free emission allowances are allocated to energy-intensive, trade-exposed industries as

an incentive to keep production in California. Electric distribution utilities are granted free allowances to

ensure that their ratepayers do not experience sudden increases in electricity prices as a result of emission

costs, although the share of free permits declines over time [35]. In particular, investor-owned utilities (IOUs)

are required to auction their allowances and credit the resulting revenues to their electricity customers [33].

Further, electricity generators operating under long-term contracts are eligible to apply for free allowances

for emissions related to contracted power [36].

Second, the cap-and-trade program features a first deliverer approach, whereby both in-state electricity

generators and electric utilities that import power from out-of-state are subject to the carbon policy. In-

state generators must monitor and report their emissions following a source-based paradigm, while electricity

importers must acquire emission allowances (and possibly offsets) equal to measured or estimated emissions

of generation resources supplying their power imports. Since energy entering the grid flows over the path

of least resistance (rather than directly from an injection point to a withdrawal point), the CO2 intensity

of electricity imported in California from the rest of the Western Interconnection cannot be determined

unambiguously.5 To address the issue, CARB classifies imports as specified or unspecified source power.

Specified sources include generation resources owned by or under long-term contract to California’s load

serving entities, as well as generation resources owned by non-California entities that are approved and

registered by CARB [37]. First deliverers may claim facility-specific emission factors for power imports

from out-of-state generation resources that are owned or under long-term contract. Further, CARB has

developed the designation of Asset-Controlling Suppliers for out-of-state electric power entities that operate

interconnected generating facilities. Once approved and registered by CARB, Asset-Controlling Suppliers

are assigned a system emission factor for wholesale electricity procured from their systems and imported into

California. For example, specified source power from Bonneville Power Administration (BPA) and Powerex

(a subsidiary of BC Hydro) must be reported using CARB-approved emission factors reflecting the hydro-

4The remaining 4% were made available at predetermined prices to reduce price volatility.
5California is part of the Western Interconnection, a synchronous electric grid that encompasses all or parts of 14 Western

states in the U.S., the Canadian provinces of Alberta and British Columbia, and Northern Baja California in Mexico. Since
reliability within the area is overseen by the Western Electric Coordinating Council, this synchronous grid is commonly referred
to as WECC. Figure 1 presents the U.S. portion of WECC.
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dominant resource portfolio of these systems [38]. Specified sources mainly consist of coal, natural gas and

nuclear power from the Pacific Southwest, and of hydro and wind power from the Pacific Northwest [5].6

In contrast, unspecified source power (representing about 40% of total imports, as of 2016) corresponds

to wholesale market purchases from power plants that do not have a contract with a California utility and

have not gone through the CARB process to become specified. Since in this case the generation source is

unknown, unspecified sources are assigned a default emission factor of 0.428 metric ton CO2/MWh, which

was set by CARB based on the generation technology expected to be at the margin in WECC (i.e., a

fairly clean natural gas plant) [10]. According to the California Energy Commission, much of the Pacific

Northwest spot market purchases are served by surplus hydro and gas-fired plants, while Southwest spot

market purchases generally come from coal and natural gas combined cycles [5]. The presence of a default

emission factor creates an incentive for electricity importers to not report the emission content of out-of-state

higher-emitting generation resources, in order to attain the lower default emission factor (“laundering”). This

has been identified as one of the primary types of resource shuffling [39], defined by CARB as “any plan,

scheme, or artifice undertaken by a First Deliverer of Electricity to substitute electricity deliveries from

sources with relatively lower emissions for electricity deliveries from sources with relatively higher emissions

to reduce its emissions compliance obligation” (Cal. Code Regs., Title 17, Article 5, § 95802(a) [40]). As

discussed in Section 1, contract shuffling would lead to apparent emission reductions due to changes in the

composition of imports to California, although emissions in the exporting regions are unchanged or even

increase. As a result, contract shuffling creates potentially severe leakage risks for the electricity sector in

California. In response to these concerns, CARB released a guidance document listing a number of “safe

harbor” exceptions to the regulatory ban on resource shuffling (i.e., transactions deemed not to be resource

shuffling) (Cal. Code Regs., Title 17, Article 5, § 95852(b)(2) [40]). This approach has been controversial

because it is difficult to identify all potential violations ex ante [10]. Further, allowance prices hovering near

the auction floor have been interpreted as evidence that contract shuffling is taking place, enabling regulated

entities to avoid a significant part of their carbon liability and reducing demand for allowances [11, 34].

4 Data

We use a novel panel dataset built from publicly available sources including the U.S. Department of Energy’s

Energy Information Administration (EIA), the U.S. Environmental Protection Agency (EPA), the Federal

6According to the California Energy Commission, the Pacific Northwest includes Alberta, British Columbia, Idaho, Montana,
Oregon, South Dakota, Washington and Wyoming. The Pacific Southwest includes Arizona, Baja California, Colorado, Mexico,
Nevada, New Mexico, Texas and Utah [5].
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Energy Regulatory Commission (FERC) and the California Independent System Operator. The period of

our study spans January 2009 through December 2016, including four years before and four years after the

treatment date (January 2013, when compliance obligations began).

4.1 EIA data

U.S. electric generating facilities with more than one MW of capacity are required to complete an annual

survey to report plant characteristics. Form EIA-860 collects information on the status of existing plants

in the U.S., while EIA-923 gathers information on plant operations. Relying on these surveys, we assemble

a dataset for power plants within the U.S. portion of four NERC regions (WECC, MRO, SPP, TRE) from

2009 to 2016 (Figure 1). A plant consists of at least one, but typically several, generating units, which

may be added to or retired from service over its lifetime. Although energy output, operating capacity and

fuel input are available at the unit level, we aggregate this information for units of the same technology

within a plant because our analysis relies on capacity factors and heat rates. For natural gas combined

cycle plants, in particular, energy output is reported separately for the steam and combustion parts of the

plants, but both are needed to calculate capacity factors and heat rates accurately. The advantage of EIA

data is that its coverage is comprehensive, including not only large thermal plants, but also nuclear, hydro

and renewable facilities. Plant-level characteristics reported at the annual level include primary fuel type,

operating capacity, month and year when each unit was in service, type and number of emission abatement

controls, EIA regulatory status,7 NERC region and subregion, balancing authority and planning area.8 In

addition, the EIA provides monthly plant operating statistics like energy output (measured by megawatt-

hours or MWh of net electricity generation),9 consumption and heat content by fuel type, and cost of fuel

delivered to the plant. We rely on EIA Form 860 for primary fuel type and operating capacity [42], and EIA

Form 923 for other plant characteristics [43]. Plants with operating capacity below 25 MW are excluded for

7For the purpose of EIA’s data collection efforts, regulated entities include investor-owned electric utilities that are subject to
rate regulation, municipal utilities, federal and state power authorities, and rural electric cooperatives. Facilities that qualify as
cogenerators, small power producers under the Public Utility Regulatory Power Act (PURPA) and other nonutility generators
(including independent power producers) are non-regulated plants.

8Each power plant falls under the operational control of a balancing authority, which is responsible for dispatching generation
units and maintaining consumption-interchange-generation balance within a region of the electric grid [41]. Balancing authority
areas and electric utilities with a planning area annual peak demand greater than 200 MW must file FERC Form 714. Electric
utilities charged with carrying out resource planning and demand forecasts for a planning area (“planning authorities”) are
required to report actual hourly demand in their planning area in Part 3 of FERC Form 714. The definition of balancing
authority and planning authority is similar, and the footprint of most planning authorities in WECC coincides with that of
balancing authorities. WECC balancing authorities in the U.S. are presented in Figure 2. Summary statistics by balancing
authority and fuel type are provided in Tables A1 and A2 in the Appendix.

9Net generation excludes power consumption for plant operations.
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consistency with CEMS data (Section 4.2).10

Plant fuel costs are not publicly available for non-regulated plants and plants with nameplate capacity

below 50 MW. In these instances, we use state average costs of fossil fuels for electricity generation provided

by the EIA [45]. If state average coal costs are also not available, we impute these costs assuming the

same growth rate of Rocky Mountain Colorado Rail prices (Section 4.4). Fuel costs are used to construct

monthly ratios for assessing power plant competitiveness. For coal plants, the coal-to-gas cost ratio divides

plant-specific variable cost of generation by state average variable cost of natural gas for power generation.

Similarly, for natural gas plants the gas-to-coal ratio divides plant-specific variable cost of generation by

state average variable cost of coal for power generation. After January 2013, variable costs for California

include emission allowance prices (Section 4.4).

4.2 CEMS data

To complement monthly data from the EIA, we assemble a database of hourly gross electricity genera-

tion, heat input and CO2 emissions for NGCC and coal-fired plants from the EPA’s Continuous Emissions

Monitoring System (CEMS) [44]. CEMS represents the only publicly available information on high fre-

quency operating data for thermal power plants in the U.S., and has been widely used in empirical studies

[46, 47, 48, 49, 50, 51, 52]. We match units in CEMS to EIA generators using a 2015 crosswalk provided by

the EPA (personal communication), and aggregate unit level information from CEMS at the plant level by

EIA site code and technology type. This step allows us to assign operating capacity to each power plant for

which EPA data is available. Following [52], we apply a 5% reduction to gross generation from CEMS to

obtain an implied measure of net generation that can be compared to net generation from the EIA. Finally,

as noted above only thermal plants with capacity above 25 MW are required to report to CEMS; cogener-

ation, industrial and commercial facilities are also generally not in CEMS. These exceptions do not result

in a substantial loss of coverage for our analysis: net generation of NGCC (coal-fired) plants from CEMS

represents about 84% (79%) of EIA generation in WECC over the period of our study.

4.3 CAISO data

We collect hourly data on available transmission capacity and scheduled net power flows on twelve major

transmission interfaces connecting the California ISO to the rest of WECC from the ISO’s Open Access

1025 MW corresponds to the minimum size of generators subject to requirements for monitoring and reporting emissions
under EPA’s Continuous Emissions Monitoring System [44]. Plants with capacity below 25 MW generally use renewable energy
sources and represent less than 5% of generating capacity in our sample.
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Same-time Information System (OASIS) [53]. Grid interfaces are identified based on [54] and the analysis

of CAISO annual reports detailing the frequency of import congestion on each intertie [55]. We also obtain

hourly aggregate generation by technology, including wind and solar production, from CAISO [56]. It should

be noted that transmission capacity and scheduled net energy from imports/exports are only available from

April 2009 to October 2015, while hourly aggregate generation by technology is only available from April

2010.

4.4 FERC, NOAA and price data

We complement detailed information on the operations and status of electric power plants with data from

other sources. Electricity consumption (or load) comes from the Federal Energy Regulatory Commission

(FERC). FERC Form 714 provides hourly load information by planning area [57]. We aggregate load to the

monthly and daily level, and assign it to power plants based on their planning area. Monthly population-

weighted heating and cooling degree days, as well as measures of water scarcity (like the Standardized

Precipitation Index or SPI [58]) by state climate division are from the National Oceanic and Atmospheric

Administration’s (NOAA) National Centers for Environmental Information [59]. Finally, we obtain daily

natural gas prices at four locations in WECC (Sumas, PG&E Citygate, SoCal Border and El Paso San Juan

[60]) and weekly Rocky Mountain Colorado Rail coal prices (with a heat rate of 11,700 Btu/lb and a sulfur

content of 0.8 lb/MMBtu) from SNL Energy,11 and daily carbon futures prices for year vintage allowances

expiring in December of the same year, in $/ton, from California Carbon Dashboard [61].

5 Research Design

5.1 Empirical Framework

Based on the potential outcome framework that is commonly used in the treatment evaluation literature [62],

each observation has two potential outcomes Yit(di) depending on treatment status. Let di = 1 if observation

i is treated, and di = 0 if i is not treated. Potential outcomes for observation i at time t are denoted by Yit(1)

and Yit(0) for treatment and non treatment status, respectively. We are interested in estimating the average

treatment effect on the treated (ATT), defined as the average difference between treated and untreated (or

11There exists no public regional price for coal. S&P Global Market Intelligence’s physical market survey details spot prices
for coal traded for physical delivery in forward quarters. Weekly prices are “assessments” based on direct supplier-consumer
transaction data collected from utility buyers and sellers through a weekly survey.
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control) outcome, conditional on treatment:

α = E[Yit′(1)− Yit′(0)|di = 1] (1)

where α measures the average treatment effect, E is the expectation operator, and t′ represents any period

after treatment. Outcomes after treatment can be used to identify E[Yit′(1)|di = 1]. In contrast, [Yit′(0)|di =

1] represent counterfactual outcomes to be estimated based on the outcomes for control observations.

The objective of our study is to investigate the leakage effects of the AB 32 cap-and-trade program

in the electricity sector. The primary leakage mechanism consists in supplanting power generation in the

regulated region (California) by increased generation in the unregulated regions (“leakers”). Thus, αC is the

treatment effect in California and αL is the treatment effect in potential leaker region L outside California.

The choice of potential leakers and controls is a key point of our empirical framework. In principle, all plants

in the Western Interconnection may be leakers because contract shuffling could create knock-on effects. In

practice, however, some balancing authorities in WECC have transmission capabilities allowing plants in

their footprint direct access to California load. These plants are more likely to adjust their generation in

response to policy changes in California. Therefore, in the baseline specification we identify potential leakers

based on the CARB’s Greenhouse Gas Emission Inventory, which reports annual estimated CO2 emissions

from power plants supplying specified source power to California [63]. Specifically, we designate as leakers

WECC balancing authorities in the U.S. that dispatch power plants supplying specified source power to

California. We emphasize two points here. First, we do not intend to suggest that our approach identifies

the only leakers unequivocally. Rather, the approach identifies generation resources outside California that

are deemed likely to provide exports to California. Other methods for identifying potential leakers in the

Western Interconnection are possible and worth exploring for further empirical analyses; we consider alternate

leakers in one of the robustness checks, and return to this point in Section 7. Second, Western Canada and

the northern portion of Baja California in Mexico may also be leakers because they are part of WECC.

In particular, British Columbia is a net exporter of power to the Western U.S., and a large share of its

power export sales are directed to California [64]. However, since we do not observe Canadian and Mexican

monthly generation, we restrict the scope of our study to intranational leakage.

After identifying potential leakers, we group balancing authorities into regions of contiguous connected

electrical components, following the classification in [65]. As discussed in Section 5.1.1, we focus on two

baseload technology types (natural gas combined cycle and coal-fired plants) that are most likely affected
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by the carbon policy. Region definition differs slightly by technology, depending on the location of plants

supplying specified source power. For NGCC plants, the Northwest region includes plants in BPAT, PACE

and PACW, and the Southwest region includes plants within the CAISO footprint but located in Arizona

and Nevada, as well as plants in AZPS, HGMA, NEVP, SRP and WALC (Figure 3). For coal-fired plants,

the Northwest region includes plants in BPAT, LDWP in Utah, NWMT, PACE and PGE; the Eastern region

includes plants in PSCO and WACM; the Southwest region includes plants in AZPS, NEVP, PNM, SRP,

TEPC and WALC (Figure 4). In our baseline specification, the set of treated plants consists of plants of a

given technology type that are either in California or one of the leaker regions. For NGCC plants, the set

of controls consists of WECC plants that are not in California or one of the leaker regions; for coal-fired

plants, the number of controls in WECC outside of the leaker regions is limited, and thus we extend the set

of controls to include plants in MRO, SPP and TRE. Alternate definitions of the set of treated and control

groups are considered in the robustness checks.

5.1.1 Differences-in-differences regressions

Our first set of empirical results obtains estimates of the treatment effects of interest with the following

differences-in-differences (DID) model specification:

Yit = αCTREAT
C
it +

∑
L

αLTREAT
L
it + X

′

itβ + γi + γy + γsm + εit (2)

where i indexes a plant-technology, t indicates month, L denotes a leaker region, and s, y, m stand for state,

year, and month-of-year respectively. Our dependent variable Yit is the capacity factor of plant-technology i

in month t, defined as the ratio of net generation over operating capacity multiplied by total number of hours.

We focus on two baseload technology types that are most likely affected by the carbon policy (natural gas

combined cycle (NGCC) plants and coal-fired plants), and run separate regressions by technology type.12

TREATC
it is a dummy equal to 1 if plant i is in California and t is January 2013 or later; TREATL

it is

similarly defined for plants in leaker region L. Assuming treated and control facilities would have followed

parallel trajectories in the absence of the carbon policy (as discussed in Section 5.2), the treatment effects of

interest, αC and αL, measure the average effect of the cap-and-trade program on capacity factors of power

plants in California and each leaker region, respectively, conditional on observable covariates. It is worth

12Natural gas steam turbines represent a small fraction of generating capacity in the WECC region (Figure A1 in the
Appendix). Other technology types like natural gas combustion turbines and oil turbines that are used as peaker plants during
high load periods are unlikely to have responded to California’s carbon policy, given the modest level of permit prices in our
sample period.
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noting that California has limited coal generation capacity. Hence, leakage would result in lower natural

gas generation in state and higher coal and/or natural gas generation out of state. In terms of the model

in (2), in the presence of leakage we would expect negative and statistically significant treatment effects for

California plants, and positive and statistically significant treatment effects for plants in the leaker regions.

X
′

it represents a broad set of determinants of capacity factors. First, in the baseline specification we

include the natural log of electricity consumption in the plant’s planning area, and the log of nuclear and

renewable generation (including hydro) in the plant’s state. This functional form implies low responsiveness

of capacity factors when demand or non-thermal power generation is high, in line with [51, 6, 24]; however,

estimation results do not critically hinge on this assumption, and are robust to a linear specification. Second,

we include variables that may affect plant productivity, like temperature (measured by heating and cooling

degree days in the plant’s climate division) and precipitation (measured by the Standardized Precipitation

Index in the plant’s climate division). Third, we consider a measure of plant competitiveness, the fuel cost

ratio described in Section 4.1, including both linear and quadratic terms to account for potential nonlinear

responses to input prices [50]. It is worth noting that, besides the cap-and-trade program, AB 32 relies on

a suite of complementary policies to achieve emission reductions, such as renewable electricity policies and

energy efficiency standards; similar programs are also implemented in other WECC states. These policies

clearly affect capacity factors of baseload generation technologies (e.g., through the merit order effect of

renewables dispatched before thermal units). However, their impacts are accounted for through some of our

covariates (load and nonhydro renewable energy production), while the estimated treatment effects measure

changes that are specifically induced by California’s cap-and-trade program. Finally, we include individual

and time fixed effects in the regressions. Plant specific effects, γi, may be associated with time invariant

differences in plant characteristics, like ownership (private utilities or political subdivision) and vintage.

Year fixed effects, γy, capture differential changes in average utilization that are common to all plants in a

given year, while state by month-of-year fixed effects γsm allow us to account for seasonality within the vast

WECC footprint and control for differential changes that are common to all plants within a state in a given

month. The error term εit is assumed independent of the covariates and treatment indicators.

5.1.2 Matching and differences-in-differences

The regression approach described above has some potential drawbacks [66]. First, temporal aggregation

at the monthly level may bias results [67]; thus, using higher frequency measures of generation would be

advantageous. Another concern is that plants with similar monthly average capacity factors may be operated
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very differently. As a result, counterfactual outcomes may be estimated incorrectly. To illustrate, consider

two periods; a plant with zero net generation in period 1 and operated at 80% capacity factor in period 2

would have the same average capacity factor of a plant operated at 40% capacity factors in both periods. Yet,

the two plants would hold different positions in the dispatch order of their respective balancing authority,

and thus not represent a suitable pair of treated-control observations. More accurate estimates of the

counterfactual outcomes may be constructed based on control plants that had similar utilization and efficiency

levels to the treated units before policy implementation. The treatment effect of interest could then be

obtained estimating a DID model in which the impact of other policies potentially affecting capacity factors

(e.g., renewable electricity policies) are subsumed in the covariates. In order to mitigate potential bias,

we take two steps. First, we use hourly generation data to construct daily measures of plant utilization.

Increased generation from renewable energy sources affects the operations of fossil fuel units during the day.

Thus, we explore treatment effect heterogeneity across daytime and nighttime. We average capacity factors

across a twelve hour period (7am to 7pm) to form a daily “daytime” capacity factor for plants reporting

to the EPA’s Continuous Emissions Monitoring System, and average over the remaining hours to obtain a

daily “nighttime” capacity factor. Second, we preprocess the data to improve balance between treated and

control groups by matching on high frequency pre treatment variables. The basic idea of matching is to find

untreated units that are similar to the treated ones in terms of variables that influence the outcome of interest

(i.e., so called “matching variables”), except for treatment status. Counterfactual outcomes for treated plant

i are then inferred using a weighted average of the outcomes of units that are comparable to i, but receive a

different treatment. Control units whose observable characteristics are closer to those of plant i are weighed

more heavily in the construction of the counterfactual estimate. While earlier empirical work in energy and

environmental economics employed parametric and semi-parametric matching methods,13 we explore the use

of coarsened exact matching (CEM) to improve balance between treated and control observations [70, 71, 72].

CEM is a nonparametric method that bounds the maximum imbalance between treated and control groups

with respect to the full joint distribution of the covariates ex ante. Unlike model dependent methods, CEM

does not extrapolate counterfactual outcomes when there is limited overlap in the distributions of covariates

across treatment and control groups, because matched data are restricted to areas of common empirical

support. Recent applications of this matching method are presented in [73, 74, 75].

13In the context of Southern California’s RECLAIM program, [66] employ a semi-parametric DID matching estimator of the
ATT that compares differences between post and pre treatment NOx emissions across treated and control plants, and use a
regression-based adjustment to mitigate bias introduced by poor match quality [68, 69]. As a robustness check, the authors
implement a propensity score matching estimator, which relies on a parametric regression model to estimate the propensity
score. One disadvantage of this approach is that a misspecified matching model may produce greater imbalance in variables
that are omitted from the matching procedure.
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The objective of our matching procedure is to achieve statistically indistinguishable distributions between

treated and control plants across a set of exogenous covariates that are highly correlated with the outcomes of

interest (i.e., daily daytime and nighttime capacity factors). Hour-of-day specific capacity factors are clearly

correlated with time-of-day capacity factors; further, more efficient plants tend to be used more heavily [76].

Therefore, we choose 2009 and 2010 as pre treatment period,14 and use hour-of-day specific capacity factors

and heat rates (averaged over this two-year period) as matching variables. Next, we coarsen the average

hourly variables into discrete bins that identify strata corresponding to different levels of plant utilization and

efficiency.15 The following step is to perform exact matching on these discrete bins and discard observations

from bins that do not contain both treated and control observations. It should be noted that the matched

control sample varies by treated region and time of day, and CEM produces weights for each matched unit

in each stratum [71].16 Finally, we measure the impact of the cap-and-trade policy on plant operations by

estimating the following differences-in-differences models with weighted least squares:

Yit = αCTREAT
C
it + X

′

itβ + γi + γy + γsm + εit (3)

Yit = αLTREAT
L
it + X

′

itβ + γi + γy + γsm + εit (4)

where t indicates daytime or nighttime, and Yit is the capacity factor of plant-technology i reporting to

CEMS in period t. Daily electric load by planning area is obtained from FERC Form 714; other covariates

in X
′

it are invariant at the monthly level (as in Section 5.1.1), since we do not observe higher frequency data

for the entire WECC region.

5.1.3 Scheduled power flow regressions

In our final set of empirical results, we switch from analyzing plant operations to examining the relationship

between the AB 32 allowance price and scheduled power imports into CAISO. Building on [23], we estimate a

model of daily scheduled power flows into CAISO, and test for leakage based on the statistical significance of

the AB 32 allowance price as one of the explanatory variables. As detailed in Section 4, we identify the major

14We exclude 2011, a wet hydrological year in which NGCC plants ran at much lower capacity factors than usual [77], and
2012, the year before compliance obligations began. We also remove from the matching dataset outliers (i.e., plants for which
generation from CEMS is greater than generating capacity from EIA) and plants that were not operating over the entire period
of our study.

15A detailed discussion of matching hour sets and binning strategies is presented in Section 6.2.
16Matched units receive a weight of 1 if they belong to the treatment group, and mC

mT

ms
T

ms
C

if they belong to the control group,

where mC is the total number of control units, mT is the total number of treated units, and ms
C and ms

T are their counterparts
in stratum s. Weights normalize the variance in distribution of attribute bins across treatment and control observations.
Unmatched units receive a weight of 0.
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electricity grid interfaces into CAISO based on [54] and the analysis of annual CAISO reports detailing the

frequency of import congestion on each intertie [55]. Scheduled flows on major interties are aggregated into

two regions: the Northwest region including lines from the BPAT, PACE and PACW balancing authorities,

and the Southwest region with interties from the AZPS, SRP, TEPC and WALC balancing authorities.17 To

account for the highly interconnected nature of power flows in WECC and mitigate potential endogeneity

bias in our estimates, we model net scheduled energy flows from the Northwest and Southwest regions as a

system of equations, and estimate it using maximum likelihood:

ZNWt
= X

′

tβ + δNW CO2t + γd + γq + εt

ZSWt = X
′

tθ + δSW CO2t + ηd + ηq + ζt

(5)

where t indicates day, d denotes day-of-week, q indexes a quarter, ZNWt
refers to scheduled flows from the

Northwest region, and ZSWt
refers to scheduled flows from the Southwest region.

A key determinant of net scheduled flows is given by the electric demand in CAISO and exporting bal-

ancing authorities. Higher load in CAISO increases net imports, while higher load in Northwest or Southwest

balancing authorities is expected to reduce export availability from each region to California. Further, net

scheduled flows in each export region may be reduced by scheduled flows into CAISO from the other region;

as a result, we include net flows from the competing export region as a covariate in each equation. We also

control for daily nuclear, wind and solar generation in CAISO. These technology types are unlikely to have

responded to the carbon policy because they operate at near maximum capacity most of the time (nuclear),

or their output depends on resource availability (wind and solar). Higher renewable and nuclear output in

CAISO would reduce the need for imports. On the other hand, higher production from hydro and renewable

energy sources in the Northwest and Southwest regions is expected to increase electricity imported from

outside of California, displacing in-state natural gas-fired generation. Since daily aggregate production by

technology is not publicly available for WECC balancing authorities other than CAISO, we include monthly

generation from EIA-923; further, we only consider the most significant non-fossil energy source for each

region, i.e., hydro in the Northwest and solar in the Southwest. Fuel prices in California and other WECC

regions are also likely to affect electricity imports into CAISO. Since fuel prices at the plant level are only

available from EIA-923 at the monthly level, we use wholesale natural gas prices at four locations in WECC

(Sumas, PG&E Citygate, SoCal Border and El Paso San Juan) [60] to control for daily price dynamics in

17Northwest interties include Cascade, Pacific AC Intertie, Nevada-Oregon Border, COTPISO, Summit, IPP DC Adlanto,
Mona IPP DC, Mead, and El Dorado; Southwest interties include Palo Verde and IID-SCE [54].
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the Northwest, CAISO and Southwest regions. Higher PG&E Citygate prices in Northern California and

SoCal Border prices in Southern California are likely to make power imports more economically viable. In

contrast, higher natural gas prices at Sumas in the Northwest and El Paso San Juan in the Southwest are

expected to favor in-state electricity generation relative to power imports.18 As an alternate measure of fuel

prices, we use ratios of PG&E Citygate/Sumas prices and SoCal Border/El Paso San Juan, expecting that

higher fuel price ratios increase imports in CAISO. To account for seasonal effects, we include day-of-week

and quarter dummies in each regression.

Finally, the daily price of AB 32 CO2 allowances is equal to zero until the beginning of compliance obli-

gations on January 1, 2013. A positive and statistically significant coefficient associated with the CO2 price

in the Northwest equation, δNW , would suggest empirical evidence of emission leakage from the Northwest

region of WECC. Similarly, a positive and statistically significant δSW would support the hypothesis of

leakage from the Southwest region.

5.2 Identifying Assumptions

Our estimation strategy relies on several identifying assumptions. First, treatment is exogenous: participa-

tion in the cap-and-trade program does not depend on the outcomes (i.e., plant capacity factors). Second, in

order to interpret αC and αL as estimates of the effect of California’s cap-and-trade program on plant-level

capacity factors, an important identifying assumption is that treated and control plants would have followed

parallel trajectories, absent the AB 32 cap-and-trade program [78]. We assess the parallel trends assumption

by testing the equivalence of time trends between treatment and control groups before program implemen-

tation [79].19 Specifically, we test the significance of the interaction term between the time trend and the

treatment group: estimated parameters associated with group specific time trends that are not statistically

different from zero indicate that pre treatment trends are similar for treated and control groups, and are

consistent with a causal interpretation of the results in (2). We estimate the following equation:

Yit = αCtDtTREAT
C
i +

∑
L

αLtDtTREAT
L
i + X

′

itβ + γi + γy + γsm + εit (6)

18We only observe weekly Rocky Mountain Colorado Rail coal prices for the Western Interconnection (Section 4.4). Absent
regional variation, we do not control for coal prices in the scheduled power flow regressions.

19In [79], court decisions altering common law occur at different times providing multiple experiments (i.e., multiple treatment
periods); in our setting, the treatment period is instead unique and corresponds to January 1, 2013, when the California cap-
and-trade program began its compliance obligation.
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where Dt is a quarterly dummy equal to 1 after January 2013 and 0 otherwise, TREATC
i = 1 if plant i is

in California, TREATL
i = 1 if plant i is in one of the leaker regions, and αCt and αLt are the estimated

coefficients associated with group specific time trends. Other variables are defined as above. If the parallel

trends assumption is satisfied, αCt and αLt are not statistically different from zero before the implementation

of the cap-and-trade program. Not all the αCt can be identified as the TREATC
i dummies are perfectly

collinear in the presence of state effects. Hence, similarly to [24] we omit the first year for all groups in our

tests.

Matching relies on selection on observables (ignorability assumption) and common support (overlap

assumption). Based on the ignorability assumption, once we control for matching variables, treatment is

randomly assigned, experimental conditions are re-established, and biases in the DID estimator are removed

because capacity factors at treated and control plants would have followed parallel paths over the study

period. We run balancing tests to compare matching variable means in the treated and control groups

before and after matching. Finally, the overlap assumption requires that the support of the distribution of

covariates in the treated group overlaps the support of the distribution of these covariates in the control

group. Coarsened exact matching automatically restricts the matched data to areas of common support, as

discussed in Section 5.1.2: this helps avoid making inferences based on extrapolation, which are known to

be highly model dependent.

6 Results

6.1 Differences-in-differences regressions

Tables 1 and 2 present our differences-in-differences regression results from the analysis of capacity factors.

We run the baseline specification with monthly data in equation (2) for NGCC and coal plants separately,

and present estimation results in Column (1) of the two tables. Our dependent variable is the capacity factor

of plant-technology i in month t. The unit of observation in the analysis is a plant-month, and standard

errors are clustered at the plant level. As noted in Section 5.1, leaker regions and the set of controls differ

by technology type. For NGCC plants, treatment effects are estimated for California and two leaker regions

(Northwest and Southwest) including plants that supply specified source power to California. In Table 1,

the “California” line presents the treatment effect estimate for αC , while the “Northwest” and “Southwest”

lines present the estimated effects for αL in equation (2). The set of controls consists of all NGCC power

plants in WECC, but outside of California or any of the leaker regions. Treated and control regions are
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presented in Figure 3, and summary statistics by region are given in Table A3 in the Appendix. Figure 5(a)

reports the results of the parallel trend tests. Specifically, we plot the estimated αCt and αLt from equation

(6) with 95% confidence intervals: with one exception, pre treatment period coefficients are not statistically

different from zero for California and the leaker regions, indicating that treated and control regions have

similar pre treatment trends.

For coal-fired plants, we do not include a treatment effect for California. Generating capacity from coal

is limited, and capacity factors have declined steadily in the three quarters before the introduction of the

cap-and-trade system, resulting in a rejection of the parallel path assumption before treatment. However,

coal plants supplying specified source power to California are located throughout WECC. After grouping

them into three regions (Northwest, Southwest and Eastern) according to [65], the number of control plants

in WECC is limited (Table A4). As a result, in our baseline coal specification we extend the set of controls to

include coal plants in the MRO, SPP and TRE regions besides WECC facilities that are outside California

or any of the leaker regions. Treated and control regions are presented in Figure 4, and summary statistics

by region are given in Table A4. Figure 5(b) reports the results of the parallel trend tests, indicating that

treated and control regions exhibit similar pre treatment trends.

Estimated treatment effects in the baseline specification suggest that NGCC generators in California had

a statistically significant policy-induced reduction in capacity factors of about 14%. In contrast, California’s

cap-and-trade led to a 4% increase in coal capacity factors in the Northwest and Eastern leaker regions

(statistically significant at the 5% and 10% significance level, respectively). We find a small and insignificant

response for NGCC plants in the Northwest and Southwest regions, and coal plants in the Southwest regions.

Overall, this result suggests empirical evidence of leakage: the policy induced a reduction in NGCC generation

in California and an increase in coal-fired generation in WECC balancing authorities that dispatch plants

supplying specified source power to California.

We conduct a back of the envelope calculation to examine whether our estimated coefficients result in

realistic magnitudes of leakage. First, we find the estimated generation leakage by multiplying the treatment

effect (when statistically significant) by the average annual generation capacity in each region and number

of hours in a month. That is, we multiply the estimated treatment effect of 14.1% by the average NGCC

generation capacity in California between 2009 and 2016 (19,369 MW), and the estimated treatment effects

of 4.25% and 3.93% by the average coal generation capacity in the Northwest and Eastern leaker regions

(13,259 MW and 5,723 MW, respectively). Due to the cap-and-trade policy, NGCC generation in California

decreased by approximately 2 million MWh per month, while coal generation in the leaker regions increased
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by about 0.6 million MWh per month.20 In turn, this implies that emissions increased by about 8.5 million

tons per year in the Northwest and Eastern regions of WECC, and decreased by about 12 million tons

per year in California, corresponding to an aggregate decrease of about 3.6 million tons per year and an

estimated policy-induced leakage of about 70%.21 This estimate is within the range of predictions obtained

from simulation-based studies considering California’s cap-and-trade program, although direct comparisons

between ex ante and ex post analyses are difficult [24]. On the lower end of the spectrum, [19] find leakage

of 9% when provisions to prevent resource shuffling are enforced. [10] simulate the effects of a first deliverer

approach with default emission factor of 0.428 tons CO2/MWh applied to imports, assuming a 15% and a

25% reduction in California utility power sector emissions from 2007 levels. Compliance with the lower cap

yields no change in emissions, relative to the no cap scenario. Assuming a 25% reduction, the first deliverer

approach would lead instead to an emission decrease of 4.5 million tons in California and an increase of 1.6

million tons in the rest of WECC relative to a no cap scenario, i.e. an implied leakage of about 35%. Closer

to our estimate, under a first-deliverer approach [9] predict a leakage rate of about 85% (corresponding

to an emission decrease of 0.7 million tons in California and 0.1 million tons in the Western U.S.), while

[14] find that carbon regulation in California would result in leakage of about 89% (corresponding to an

emission decrease of 5.5 million tons in California and 0.6 million tons in the Western U.S.). Finally, a

recent econometric study of leakage in the context of the Regional Greenhouse Gas Initiative [24] estimates

a leakage rate of approximately 50% for the policy (corresponding to an emission decrease of 8.8 million tons

per year in RGGI and an aggregate decrease of 4.3 million tons per year).

Robustness checks. We conduct several robustness checks to assess the sensitivity of our estimates.

First, results are robust to alternate clustering (e.g., at the balancing authority or state level, to account for

the likely dependence in capacity factor innovations across plants in the same power control area/state, and

arbitrary time series correlation within the same power control area/state), and the inclusion of different

fixed effects (plant, year, and month-of-year; and plant, state-by-year, and month-of-year).

Second, we adjust standard errors to allow for correlation along two dimensions (plant and time). Stan-

dard errors clustered at the plant level assume that correlation of the residuals within the cluster may be

nonzero, but residuals across clusters are uncorrelated. This may lead to incorrect standard errors and t

statistics, if residual correlation exists both within a plant across time and across plants at a moment in time

20Between 2009-2012 and 2013-2016, monthly power generation from solar and wind in California increased, on average, by
about 1 million MWh and 0.6 million MWh per month, respectively.

21Our calculations are based on an average heat rate of 12,046 Btu/kWh and CO2 emission rate of 207.87 lb/MMBtu for coal
plants in the Northwest region, heat rate of 12,163 Btu/kWh and CO2 emission rate of 207.82 lb/MMBtu for coal plants in the
Eastern region, and heat rate of 8,645 Btu/kWh and CO2 emission rate of 118.88 lb/MMBtu for NGCC plants in California.
Average heat rates and CO2 emission rates over the period of our study (2009-2016) are from Tables A3 and A4.
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[80, 81]. In Column (2) of Tables 1 and 2, we allow for arbitrary correlation of the error terms at the plant

and month level, and find that estimation results are robust to double clustering.22

In Column (3) of Tables 1 and 2, we restrict our sample to facilities that were operating over the entire

period of our study to account for entry and attrition at the plant level.23 For NGCC plants, 10 facilities out

of 121 operating in WECC in 2009 were no longer in service in 2016 (about 2% of 2009 operating capacity),

and 14 plants out of 125 operating in 2016 were not active in 2009 (about 10% of 2016 operating capacity).

For coal-fired plants, 15 plants out of 55 operating in WECC in 2009 were no longer in service in 2016

(about 6% of 2009 operating capacity), and 3 plants out of 43 operating in 2016 were not active in 2009

(about 2% of 2016 operating capacity). Estimated treatment effects are in line with those from the full

sample, and suggest that capacity factors of NGCC generators in California decreased by about 13%, while

capacity factors of coal generators in the Northwest and Eastern leaker regions increased by about 6% and

5%, respectively. The estimated coal treatment effect in the Northwest region is statistically significant at

the 1% level (rather than 5%, as in the baseline regressions).

In Column (4) of Table 1, we estimate equation (2) for NGCC plants with a broader set of controls

including plants in SPP and TRE, in addition to the rest of WECC.24 Figure A2 in the Appendix shows

that the parallel trend assumption holds for treated and control groups before the introduction of the cap-and-

trade program. Estimated treatment effects confirm a statistically significant reduction in capacity factors

for NGCC plants in California, but indicate a smaller effect (about 11%) than in the baseline specification.

We also test the sensitivity of our estimates to alternate definitions of the leaker regions. Concerns have

been raised about resource shuffling in the context of the California ISO’s Energy Imbalance Market (EIM),

a real-time power market to meet short-term supply imbalances in the Western United States [83, 13], and

CAISO has been experimenting with approaches to mitigate leakage [84, 85]. We designate as leakers WECC

balancing authorities in the U.S. that are active or pending (as of 2018) participants of the Western EIM.

These entities include AZPS, IPCO, NEVP, PACE, PACW, PGE, PSEI, SCL and SRP, and are divided

into two leaker regions, as shown in Figure A3 in the Appendix. We control for the same variables of the

baseline specification, and cluster standard errors at the plant level. Results for the parallel trend tests

are given in Figure A4. Estimated treatment effects in column (5) of Table 1 and column (4) of Table 2

confirm a policy-induced reduction of about 12% in capacity factors for NGCC power plants in California.

The estimated increase in coal capacity factors for Northwest plants is lower than in the baseline regressions

22Two-way clustering relies on asymptotics in the smaller number of clusters (i.e., the dimension with fewer clusters), and is
thus likely to produce unbiased estimates when each dimension has many clusters [82].

23Entry and attrition at the unit level are limited, as plant capacity did not vary significantly over the period of our study.
24We exclude MRO from the set of controls because capacity factors are much lower than in the rest of WECC.
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(about 3%), and statistically significant at the 10% level.

6.2 Matching and differences-in-differences

Our second set of empirical results explores the use of coarsened exact matching methods to prune obser-

vations that have no close matches on pre treatment variables in both treated and control groups. We then

run a differences-in-differences model on matched plants only to measure policy impact using high frequency

measures of generation and load for a subset of power plants reporting to the EPA’s Continuous Emissions

Monitoring System.

Our baseline specification matches treated and control plants based on four pre treatment, hour-of-day

specific capacity factors in each period. We consider three sets of matching hours: in hour set 1, matching

is based on hours 7,10,13,16 (Daytime) and 19,22,1,4 (Nighttime); in hour set 2, matching is based on

hours 8,11,14,17 (Daytime) and 20,23,2,5 (Nighttime); in hour set 3, matching is based on hours 9,12,15,18

(Daytime) and 21,0,3,6 (Nighttime). We coarsen each matching variable according to manually defined cut

points that identify strata corresponding to different levels of plant utilization. In general, fewer strata yield

more matches, but result in more diverse observations within the same stratum. To balance this trade-off,

we define cut points based on the empirical distribution of capacity factors by technology type (0.3, 0.5, and

0.7 for NGCC plants, 0.6 and 0.8 for coal-fired plants).25 Balancing tests confirm that matching achieves

statistically indistinguishable distributions between treated and control plants. Tables 3 and 4 present the

t statistics of tests of identical means in the treated and control groups for hour set 2. Before matching,

there exist significant differences between the covariates, particularly in California and the Northwest and

Eastern regions in WECC; after matching, the null of identical means in both group is no longer rejected

for all variables.26 Further, it is worth noting that in each period matching helps to reduce bias not only

for specific hours used as matching variables, but across all hours, bringing us closer to a quasi-experimental

dataset.27

Tables 5 and 6 present the treatment effects from the differences-in-differences regressions estimated

using weighted least squares.28 Results from the matched sub-samples are broadly consistent with the ones

25Coal-fired plants (particularly in the Southwest region of WECC) tend to be more heavily utilized than NGCC plants,
motivating our choice of higher capacity factors as cut points.

26In the Southwest region, raw data does not show statistical difference across treated and controls, thus matching does not
yield substantial benefits.

27To illustrate, consider Table 3. Columns 2 to 7 present t statistics of a balancing test of identical means when matching is
based on hours 8,11,14,17, while columns 8 to 13 present balancing tests when matching is done on hours 20,23,2,5. In Columns
2-7, balance improves not only for matching covariates (i.e., hours 8,11,14,17), but for all hours, including those omitted from
the matching procedure.

28Estimated coefficients for other covariates in the DID regressions have the expected sign and statistical significance, and
are available from the authors upon request. Further, in Table 5 the presence of one additional outlier for hour set 1 leads to
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from the full sample. For California, the effect is smaller (in absolute value) compared to the OLS result,

suggesting a policy-induced reduction of NGCC capacity factors in California by about 7% only during

daytime hours. Leakage from coal plants in the U.S. Northwest region of WECC is confirmed across all

periods, while nighttime leakage for the Eastern and Southwest regions are more sensitive to the choice of

matching hours and statistically significant at the 10% level. A decrease in NGCC generation in California

during daytime hours and an increase in coal generation in the leaker regions over the entire day may be due

to heavy utilization of Western U.S. coal plants, which tend to ramp more slowly than NGCC plants [86]. It

should be noted that our matching procedure is based on quite small subsamples of plants reporting to CEMS,

which represent 81% of NGCC generation in California and 96%, 100%, and 62% of coal-fired generation in

the Northwest, Eastern and Southwest regions, respectively.29 Further, the estimated treatment effects are

only averaged over the subset of treated units for which good matches exist among available controls (i.e.,

constitute local ATTs [71]), and do not account for correlation across daytime/nighttime hours or treated

groups. Thus, we believe that the causal effects defined on the full sample are better suited for obtaining an

estimate of policy-induced leakage.

Robustness checks. Empirical findings are robust to the inclusion of matching variables and choice of

cut points. We present results for hour set 2. In our first robustness check (Table A5 in the Appendix), we

include hourly heat rates as matching variables and set cut points at the percentiles of the distribution of

matching variables. For NGCC, we use the 40th, 60th and 80th percentiles, while for coal we use the 20th,

40th, 60th and 80th percentiles. These cut points define four strata for NGCC capacity factors and heat

rates, and five strata for coal matching variables, respectively. We choose a different number of strata for

each technology type to balance the trade-off of matching described above, since five strata for NGCC yield

few matches. In our second robustness check (Table A6 in the Appendix), we match based on hour-of-day

specific capacity factors in each period, as in the baseline specification, but coarsen the matching variables

using the statistical-based binning algorithm that returns the lowest value for the L1 statistic, a measure of

imbalance with respect to the full joint distribution [72].30 Results are in line with those from the baseline

specification, but do not suggest leakage from the Southwest region in WECC.

fewer control plants (72), relative to hour sets 2 and 3 (73).
29These percentages represent region-specific average shares of CEMS generation over EIA generation in 2009-2016.
30The Scott and Freedman-Diaconis automatic binning algorithms perform well in our sample [87, 88] and result in more

strata, relative to coarsening by fixed cut points or percentiles. Note that there exists a trade-off between bin width and value
of the L1 statistic. Coarsening by user choice results in values of L1 close to zero and more overlap between the distribution
of covariates in the treated and control groups; automated coarsening yields narrower bin width that better approximates each
distribution, but results in higher values of L1 and less overlap between the two distrbutions.
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6.3 Scheduled power flow regressions

Our last set of empirical results examines changes in daily net power flows across major CAISO interfaces

after the introduction of California’s cap-and-trade program [23]. We estimate a model of scheduled power

flows into CAISO, including the AB 32 emission allowance price as one of the explanatory variables. As

discussed in Section 5.1.3, the main drivers of scheduled flows are electric demand in CAISO and exporting

balancing authorities, hydroelectric, nuclear and renewable generation in CAISO, fuel prices in California and

exporting regions, and electricity imports from the competing region. After controlling for these variables,

a positive and statistically significant coefficient associated with the allowance price (δNW or δSW ) would

support empirical evidence of leakage from the Northwest or Southwest region of WECC into CAISO.

Model (1) in Table 7 represents the system of equations with fuel prices as covariates, while model (2)

includes fuel price ratios. All covariates have the expected sign. Further, in both models the CO2 allowance

price is highly significant as an explanatory variable for Northwest flows, but does not have a statistically

significant effect on power flows from the Southwest. Therefore, results suggest that net scheduled flows into

California increased from the Northwest region of WECC in response to the carbon policy, further supporting

the hypothesis of leakage.

7 Discussion and conclusions

California has pledged to reduce its greenhouse gas emissions to 1990 levels by 2020, 40% below 1990 levels

by 2030, and 80% below 1990 levels by 2050. These ambitious goals are being accomplished through a

suite of complementary policies, including a multi-sector cap-and-trade program that covers about 80%

of the state’s emissions and applies to in-state electricity generation and imports. To mitigate leakage in

the electricity sector, California opted for a source-based regulation applied to in-state sources, with first

deliverer measures for imports into California. However, the possibility of reshuffling contracts may enable

substantial leakage under the AB 32 cap-and-trade system. Under resource shuffling, electricity contracts are

rearranged so that production from low emission sources serving out-of-state load is directed to California,

while production from higher emission sources is assigned to serve out-of-state load. This would result in

apparent emission reductions due to changes in the composition of imports to California, although emissions

in exporting regions are unchanged or even increase.

Simulation-based studies have concluded that resource shuffling represents a significant potential conduit

for emission leakage in the electricity sector under California’s cap-and-trade program [9, 14, 10, 11]. Our
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paper brings empirical evidence to bear on this issue, using a novel dataset from 2009 to 2016. We present

three sets of results that support the hypothesis of leakage. First, we analyze monthly operations of baseload

power plants in WECC applying a differences-in-differences estimator. Regression results point to a policy-

induced reduction in NGCC generation by about 14% in California and an increase in coal-fired generation

by about 4% in regions of the Western Interconnection that supply specified source power to California. In

turn, these estimated treatment effects imply a policy-reduced leakage of about 70%, which is within the

range of ex ante predictions and in line with recent econometric estimates for the Regional Greenhouse Gas

Initiative. Results are robust to the choice of leaker and control groups, clustering methods and sample

definition. In particular, direction and magnitude of the estimated treatment effects is confirmed when we

designate as leakers WECC balancing authorities in the U.S. that are active or pending participants of the

California ISO’s Energy Imbalance Market, a real-time power market in the Western U.S. Our second set of

empirical estimates combines differences-in-differences with matching methods to ensure common support

in the covariates across treated and control groups. We preprocess the data by matching units on coarsened

hourly variables and carry out parametric inferences using daily measures of plant utilization. This approach

changes the estimand to a local average treatment effect for the plants that were matched. Importantly,

results from the matched sub-samples are broadly consistent with those from the full sample, and robust to

the inclusion of matching variables and choice of cut points. In our final set of analyses, we test for leakage

from the policy by examining the relationship between the AB 32 allowance price and scheduled power

imports into CAISO. Specifically, we estimate a model of daily scheduled power flows into CAISO, and

test for leakage based on the statistical significance of the AB 32 allowance price as one of the explanatory

variables. The CO2 allowance price is highly significant as an explanatory variable for Northwest flows, but

does not have a statistically significant effect on power flows from the Southwest. This suggests that net

scheduled flows from the Northwest region of the Western Interconnection into California have increased

in response to the carbon policy, in line with the analysis of power plant operations with differences-in-

differences and matching methods.

While the consistency of results across statistical approaches supports the hypothesis of leakage, our

study is subject to limitations. For example, one caveat is that we do not observe power contracts between

California utilities and out-of-state power plants. Absent this information, we are unable to control, for

example, for the divestiture from long-term contracts with coal facilities [89]. Yet, if coal-fired production

was redirected to out-of-state electricity consumers, resource shuffling (and leakage) would have happened.

Another caveat relates to our approach for identifying potential leakers. Due to the specific features of
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electric power systems, identifying out-of-state generation resources that are deemed to provide exports

to California represents a challenge. For example, until recently the California ISO was testing a “two-

pass solution” of the Energy Imbalance Market algorithm to identify out-of-state resources dispatched to

California in response to the carbon price [12]. This two-stage solution has been subject to criticism because

it introduces discriminatory constraints applying in the second stage economic dispatch, and may lead market

participants to distort their offers relative to the true generation costs [84]. As noted in Section 5.1, alternate

approaches for identifying leakers in the Western Interconnection are possible and worth exploring for further

empirical analyses. Ongoing work considers this important issue.
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Figures and Tables

Figure 1: NERC regions in the United States
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Figure 2: WECC balancing authorities in the United States, 2016
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35



Figure 3: Treated and control regions in WECC, NGCC plants

Note: black dots represent power plants.

Figure 4: Treated and control regions in WECC, coal-fired plants

Note: black dots represent power plants.
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Figure 5: Estimated quarterly treatment effects - baseline
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Notes: vertical lines represent 95% confidence intervals. Controls include NGCC plants in the rest of WECC, and coal-fired
plants in the rest of WECC, MRO, SPP and TRE.
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Table 1: Differences-in-differences: Estimated effects of California’s cap-and-trade program on NGCC plant capacity factors in WECC

(1) (2) (3) (4) (5)

California −0.1414∗∗∗ −0.1414∗∗∗ −0.1338∗∗∗ −0.1036∗∗∗ −0.1222∗∗∗

Northwest −0.0483 −0.0483 −0.0432 −0.0266 −0.0315
Southwest −0.0321 −0.0321 −0.0280 −0.0138 0.0111

Electric Demand 0.0757 0.0757 0.0815 0.1170∗∗∗ 0.0605
Nuclear and Renewable Generation −0.2202∗∗∗ −0.2202∗∗∗ −0.2209∗∗∗ −0.1656∗∗∗ −0.2225∗∗∗

CDDs 0.0002∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗ 0.0003∗∗∗ 0.0003∗∗∗

HDDs 0.0001∗ 0.0001 0.0001∗ 0.00001 0.0001∗

SPI −0.0074∗∗∗ −0.0074∗∗ −0.0073∗∗∗ −0.0043∗∗∗ −0.0077∗∗∗

NG-to-Coal −0.0602∗∗∗ −0.0602∗∗∗ −0.0586∗∗∗ −0.0660∗∗∗ −0.0605∗∗∗

NG-to-Coal2 0.0022∗∗∗ 0.0022∗∗∗ 0.0021∗∗∗ 0.0026∗∗∗ 0.0022∗∗∗

Intercept 1.4686∗∗∗ 1.4686∗∗∗ 1.4280∗∗∗ 0.3470 1.5938∗∗∗

Plant FE Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes

State x Month-of-Year FE Yes Yes Yes Yes Yes
N 11,938 11,938 10,858 19,368 11,938
R2 0.6705 0.6705 0.6683 0.6636 0.6703

Controls Rest of WECC Rest of WECC Rest of WECC
Rest of WECC,

Rest of WECC
SPP, TRE

S.E. Clustering Plant Plant & Month Plant Plant Plant

Notes: In specifications (1)-(4), we designate as leakers WECC balancing authorities in the U.S. that dispatch power plants supplying specified source power

to California, and divide them into two regions, based on [65]. Northwest includes plants in BPAT, PACE and PACW, and Southwest includes non-California

plants in AZPS, AZ CAISO, NV CAISO, HGMA, NEVP, SRP and WALC. In specification (5), we designate as leakers WECC balancing authorities that

are active or pending participants of the California ISO’s Energy Imbalance Market: these include AZPS, IPCO, NEVP, PACE, PACW, PGE, PSEI, SCL

and SRP. LDWP and BANC are also pending participants of the Western EIM, but are not considered leakers as their footprint is entirely within California.
∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5% and 1% level, respectively. The unit of observation for these regressions is plant-month.
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Table 2: Differences-in-differences: Estimated effects of California’s cap-and-trade program on coal-fired plant capacity factors in WECC

(1) (2) (3) (4)

Northwest 0.0425∗∗ 0.0425∗∗ 0.0559∗∗∗ 0.0276∗

Eastern 0.0393∗ 0.0393∗ 0.0478∗ -
Southwest 0.0088 0.0088 0.0160 −0.0298

Electric Demand 0.0318 0.0318 0.0285 0.0367
Nuclear and Renewable Generation −0.0315∗∗ −0.0315∗∗ −0.0316∗∗ −0.0299∗∗

CDDs 0.0002∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗ 0.0002∗∗∗

HDDs 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗ 0.0001∗∗∗

SPI −0.0066∗∗∗ −0.0066∗∗∗ −0.0073∗∗∗ −0.0064∗∗∗

Coal-to-NG −0.2843∗∗∗ −0.2843∗∗∗ −0.2808∗∗∗ −0.2847∗∗∗

Coal-to-NG2 0.0878∗∗∗ 0.0878∗∗∗ 0.0889∗∗∗ 0.0896∗∗∗

Intercept 0.8888∗∗∗ 0.8888∗∗∗ 0.8773∗∗∗ 0.8752∗∗∗

Plant FE Yes Yes Yes Yes
Year FE Yes Yes Yes Yes

State x Month-of-Year FE Yes Yes Yes Yes
N 14,298 14,298 12,615 14,298
R2 0.6029 0.6029 0.5769 0.6022

Controls
Rest of WECC, Rest of WECC, Rest of WECC, Rest of WECC,

MRO, MRO, MRO, MRO,
SPP, TRE SPP, TRE SPP, TRE SPP, TRE

S.E. Clustering Plant Plant & Month Plant Plant

Notes: In specifications (1)-(3), we designate as leakers WECC balancing authorities in the U.S. that dispatch power plants supplying

specified source power to California, and divide them into three regions, based on [65]. Northwest includes plants in BPAT, UT LDWP,

NWMT, PACE and PGE. Eastern includes plants in PSCO and WACM. Southwest includes plants in AZPS, NEVP, PNM, SRP, TEPC,

and WALC. In specification (4), we designate as leakers WECC balancing authorities that are active or pending participants of the Cali-

fornia ISO’s Energy Imbalance Market: these include AZPS, IPCO, NEVP, PACE, PACW, PGE, PSEI, SCL and SRP. LDWP and BANC

are also pending participants of the Western EIM, but are not considered leakers as their footprint is entirely within California. ∗, ∗∗,

and ∗∗∗ indicate statistical significance at 10%, 5% and 1% level, respectively. The unit of observation for these regressions is plant-month.
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Table 3: Balancing tests, NGCC plants

Daytime Nighttime

California Northwest Southwest California Northwest Southwest

Before After Before After Before After Before After Before After Before After
matching matching matching matching matching matching matching matching matching matching matching matching

Hour 0 2.753∗∗∗ −0.473 2.088∗∗ −0.736 0.788 1.724 2.753∗∗∗ 0.077 2.088∗∗ −0.154 0.788 0.195
Hour 1 2.691∗∗∗ −0.571 2.240∗∗ −0.634 0.710 1.682 2.691∗∗∗ 0.168 2.240∗∗ −0.034 0.710 0.194
Hour 2 2.644∗∗∗ −0.628 2.293∗∗ −0.605 0.629 1.613 2.644∗∗∗ 0.189 2.293∗∗ −0.001 0.629 0.111
Hour 3 2.643∗∗∗ −0.627 2.299∗∗ −0.604 0.536 1.520 2.643∗∗∗ 0.164 2.299∗∗ −0.009 0.536 −0.011
Hour 4 2.752∗∗∗ −0.543 2.216∗∗ −0.690 0.351 1.340 2.752∗∗∗ 0.126 2.216∗∗ −0.155 0.351 −0.289
Hour 5 2.580∗∗ −0.711 2.134∗∗ −0.858 0.059 1.054 2.580∗∗ −0.077 2.134∗∗ −0.436 0.059 −0.550
Hour 6 2.486∗∗ −0.727 2.213∗∗ −0.889 −0.055 0.770 2.486∗∗ −0.146 2.213∗∗ −0.609 −0.055 −0.831
Hour 7 2.575∗∗ −0.560 2.543∗∗ −0.644 −0.134 0.524 2.575∗∗ −0.062 2.543∗∗ −0.365 −0.134 −0.971
Hour 8 2.489∗∗ −0.545 2.682∗∗∗ −0.522 −0.278 0.351 2.489∗∗ −0.107 2.682∗∗∗ −0.165 −0.278 −1.209
Hour 9 2.249∗∗ −0.599 2.562∗∗ −0.539 −0.406 0.208 2.249∗∗ −0.282 2.562∗∗ −0.185 −0.406 −1.439
Hour 10 2.044∗∗ −0.666 2.417∗∗ −0.593 −0.401 0.177 2.044∗∗ −0.418 2.417∗∗ −0.267 −0.401 −1.470
Hour 11 1.884∗ −0.767 2.333∗∗ −0.644 −0.319 0.152 1.884∗ −0.548 2.333∗∗ −0.332 −0.319 −1.377
Hour 12 1.799∗ −0.820 2.256∗∗ −0.692 −0.247 0.144 1.799∗ −0.615 2.256∗∗ −0.389 −0.247 −1.294
Hour 13 1.786∗ −0.821 2.241∗∗ −0.694 −0.171 0.166 1.786∗ −0.606 2.241∗∗ −0.409 −0.171 −1.195
Hour 14 1.764∗ −0.833 2.266∗∗ −0.670 −0.089 0.252 1.764∗ −0.620 2.266∗∗ −0.395 −0.089 −1.107
Hour 15 1.742∗ −0.850 2.289∗∗ −0.649 −0.040 0.308 1.742∗ −0.637 2.289∗∗ −0.373 −0.040 −1.053
Hour 16 1.666∗ −0.920 2.268∗∗ −0.666 −0.015 0.342 1.666∗ −0.722 2.268∗∗ −0.378 −0.015 −1.008
Hour 17 1.687∗ −0.899 2.232∗∗ −0.691 0.034 0.398 1.687∗ −0.717 2.232∗∗ −0.396 0.034 −0.936
Hour 18 1.726∗ −0.856 2.169∗∗ −0.728 0.082 0.441 1.726∗ −0.761 2.169∗∗ −0.483 0.082 −0.936
Hour 19 1.837∗ −0.770 2.131∗∗ −0.764 0.164 0.501 1.837∗ −0.669 2.131∗∗ −0.530 0.164 −0.865
Hour 20 1.943∗ −0.735 2.205∗∗ −0.727 0.292 0.591 1.943∗ −0.735 2.205∗∗ −0.727 0.292 0.591
Hour 21 2.289∗∗ −0.515 2.271∗∗ −0.702 0.619 0.962 2.289∗∗ −0.332 2.271∗∗ −0.336 0.619 −0.335
Hour 22 2.739∗∗∗ −0.231 2.303∗∗ −0.663 0.842 1.430 2.739∗∗∗ −0.097 2.303∗∗ −0.115 0.842 0.041
Hour 23 2.929∗∗∗ −0.219 2.040∗∗ −0.805 0.897 1.724 2.929∗∗∗ 0.071 2.040∗∗ −0.221 0.897 0.234

Notes: the table provides t statistics of a two-sided t test of mean comparisons between treated and control groups. ∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5% and 1%

level, respectively.
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Table 4: Balancing tests, Coal-fired plants

Daytime Nighttime

Northwest Eastern Southwest Northwest Eastern Southwest

Before After Before After Before After Before After Before After Before After
matching matching matching matching matching matching matching matching matching matching matching matching

Hour 0 3.801∗∗∗ 2.260∗∗ 2.702∗∗∗ 1.364 1.277 1.141 3.801∗∗∗ 0.788 2.702∗∗∗ 0.530 1.277 0.170
Hour 1 3.942∗∗∗ 2.406∗∗ 2.906∗∗∗ 1.585 1.368 1.263 3.942∗∗∗ 1.037 2.906∗∗∗ 0.654 1.368 0.261
Hour 2 4.002∗∗∗ 2.471∗∗ 2.962∗∗∗ 1.653 1.368 1.264 4.002∗∗∗ 1.165 2.962∗∗∗ 0.683 1.368 0.249
Hour 3 3.933∗∗∗ 2.388∗∗ 2.953∗∗∗ 1.651 1.309 1.195 3.933∗∗∗ 1.031 2.953∗∗∗ 0.668 1.309 0.177
Hour 4 3.617∗∗∗ 2.022∗∗ 2.787∗∗∗ 1.506 1.197 1.067 3.617∗∗∗ 0.545 2.787∗∗∗ 0.565 1.197 0.062
Hour 5 3.215∗∗∗ 1.561 2.464∗∗ 1.210 1.028 0.853 3.215∗∗∗ 0.089 2.464∗∗ 0.414 1.028 −0.081
Hour 6 2.716∗∗∗ 0.871 2.006∗∗ 0.772 0.658 0.296 2.716∗∗∗ −0.390 2.006∗∗ 0.221 0.658 −0.544
Hour 7 2.445∗∗ 0.463 1.763∗ 0.553 0.566 0.134 2.445∗∗ −0.544 1.763∗ 0.158 0.566 −0.671
Hour 8 2.289∗∗ 0.229 1.600 0.397 0.601 0.162 2.289∗∗ −0.635 1.600 0.091 0.601 −0.625
Hour 9 2.188∗∗ 0.093 1.499 0.306 0.670 0.257 2.188∗∗ −0.683 1.499 0.054 0.670 −0.523
Hour 10 2.154∗∗ 0.046 1.442 0.251 0.779 0.445 2.154∗∗ −0.685 1.442 0.025 0.779 −0.334
Hour 11 2.138∗∗ 0.018 1.401 0.200 0.849 0.565 2.138∗∗ −0.722 1.401 −0.014 0.849 −0.230
Hour 12 2.119∗∗ −0.023 1.384 0.166 0.873 0.601 2.119∗∗ −0.779 1.384 −0.028 0.873 −0.197
Hour 13 2.142∗∗ 0.017 1.404 0.186 0.937 0.713 2.142∗∗ −0.777 1.404 −0.022 0.937 −0.090
Hour 14 2.206∗∗ 0.131 1.449 0.234 1.006 0.836 2.206∗∗ −0.716 1.449 −0.005 1.006 0.015
Hour 15 2.270∗∗ 0.236 1.495 0.282 1.049 0.906 2.270∗∗ −0.643 1.495 0.011 1.049 0.078
Hour 16 2.276∗∗ 0.245 1.520 0.309 1.099 0.992 2.276∗∗ −0.634 1.520 0.023 1.099 0.164
Hour 17 2.211∗∗ 0.145 1.491 0.293 1.091 0.989 2.211∗∗ −0.660 1.491 0.019 1.091 0.168
Hour 18 2.144∗∗ 0.049 1.423 0.229 1.064 0.951 2.144∗∗ −0.721 1.423 −0.020 1.064 0.126
Hour 19 2.141∗∗ 0.042 1.440 0.248 1.024 0.871 2.141∗∗ −0.735 1.440 0.004 1.024 0.049
Hour 20 2.332∗∗ 0.360 1.583 0.385 1.093 0.983 2.332∗∗ −0.544 1.583 0.074 1.093 0.142
Hour 21 2.674∗∗ 0.913 1.803 0.569 1.077 0.920 2.674∗∗ −0.257 1.803 0.132 1.077 0.025
Hour 22 3.121∗∗∗ 1.496 2.123∗∗ 0.820 1.164 1.021 3.121∗∗∗ 0.131 2.123∗∗ 0.244 1.164 0.086
Hour 23 3.526∗∗∗ 1.963 2.395∗∗ 1.037 1.210 1.053 3.526∗∗∗ 0.519 2.395∗∗ 0.351 1.210 0.103

Notes: the table provides t statistics of a two-sided t test of mean comparisons between treated and control groups. ∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5% and 1%

level, respectively.
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Table 5: Matching and Differences-in-differences: Estimated effects of California’s cap-and-trade program
on NGCC plant capacity factors in WECC

Daytime Nighttime

California Northwest Southwest California Northwest Southwest

Hour set 1
Before matching

Control plants 72 72 72 72 72 72
Treated plants 37 11 19 37 11 19

After matching
Control plants 68 57 69 58 51 67
Treated plants 31 9 18 29 9 17

Estimated treatment effect after matching
−0.0627∗∗ −0.0265 −0.0786 −0.0135 −0.0161 0.0218

N 190,632 129,214 168,884 166,544 117,164 162,938
R2 0.4278 0.3565 0.4276 0.4669 0.3952 0.3993

Hour set 2
Before matching

Control plants 73 73 73 73 73 73
Treated plants 37 11 19 37 11 19

After matching
Control plants 65 59 70 66 57 60
Treated plants 37 11 18 28 9 16

Estimated treatment effect after matching
−0.0791∗∗∗ −0.042 −0.0747 −0.0006 0.0215 0.0301

N 196,491 136,428 170,752 180,466 128,451 146,810
R2 0.5454 0.5585 0.4246 0.4384 0.5635 0.3579

Hour set 3
Before matching

Control plants 73 73 73 73 73 73
Treated plants 37 11 19 37 11 19

After matching
Control plants 62 62 69 70 57 65
Treated plants 36 11 17 30 9 17

Estimated treatment effect after matching
−0.0776∗∗ −0.0387 −0.0403 −0.0247 −0.0236 −0.0003

N 188,554 142,455 166,740 192,562 128,917 158,757
R2 0.5505 0.5664 0.4465 0.5395 0.5542 0.4640

Notes: matching is on hourly capacity factors. Hour set 1 matches on hours 7,10,13,16 (Day) and 19,22,1,4 (Night).

Hour set 2 matches on hours 8,11,14,17 (Day) and 20,23,2,5 (Night). Hour set 3 matches on hours 9,12,15,18 (Day)

and 21,0,3,6 (Night). We coarsen each matching variable according to cutpoints 0.3, 0.5 and 0.7, which identify four

strata corresponding to different levels of plant utilization. DID regressions include plant FE, year FE and state by

month-year FE. Standard errors are clustered at the plant level.
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Table 6: Matching and Differences-in-differences: Estimated effects of California’s cap-and-trade program
on coal-fired plant capacity factors in WECC

Daytime Nighttime

Northwest Eastern Southwest Northwest Eastern Southwest

Hour set 1
Before matching

Control plants 88 88 88 88 88 88
Treated plants 13 14 9 13 14 9

After matching
Control plants 63 76 65 35 62 55
Treated plants 13 12 9 12 13 9

Estimated treatment effect after matching
0.0383∗∗ 0.0281 0.0256 0.0611∗ 0.0498∗ 0.0494∗

N 141,225 157,597 137,699 85,500 133,511 117,618
R2 0.2919 0.3011 0.2682 0.3569 0.4226 0.3275

Hour set 2
Before matching

Control plants 88 88 88 88 88 88
Treated plants 13 14 9 13 14 9

After matching
Control plants 66 82 68 42 69 48
Treated plants 13 13 9 12 14 9

Estimated treatment effect after matching
0.0376∗ 0.0312 0.0259 0.0814∗∗∗ 0.0489∗ 0.0493∗

N 146,874 171,179 143,348 99,869 148,961 104,014
R2 0.2913 0.3088 0.2731 0.3611 0.4105 0.3368

Hour set 3
Before matching

Control plants 88 88 88 88 88 88
Treated plants 13 14 9 13 14 9

After matching
Control plants 68 83 68 43 79 72
Treated plants 12 13 8 13 14 9

Estimated treatment effect after matching
0.0415∗∗ 0.0221 0.038 0.0719∗∗∗ 0.0335 0.0446

N 149,289 173,447 141,980 103,544 167,337 143,309
R2 0.2916 0.3078 0.2611 0.3495 0.4066 0.3503

Notes: matching is on hourly plant capacity factors. Hour set 1 matches on hours 7,10,13,16 (Day) and

19,22,1,4 (Night). Hour set 2 matches on hours 8,11,14,17 (Day) and 20,23,2,5 (Night). Hour set 3 matches

on hours 9,12,15,18 (Day) and 21,0,3,6 (Night). We coarsen matching variables according to cutpoints 0.6

and 0.8, which identify three strata corresponding to different levels of plant utilization. DID regressions

include plant FE, year FE and state by month-year FE. Standard errors are clustered at the plant level.
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Table 7: Scheduled power flow regressions

(1) (2)

Northwest Southwest Northwest Southwest
Flows Flows Flows Flows

Electric Demand CAISO 0.1114∗∗∗ 0.0619∗∗∗ 0.1122∗∗∗ 0.0644∗∗∗

Electric Demand Northwest −0.3048∗∗∗ −0.3357∗∗∗

Electric Demand Southwest −0.0303∗∗∗ −0.0286∗∗

Northwest Flows −0.1738∗∗∗ −0.1932∗∗∗

Southwest Flows −0.1987 −0.1522
Nuclear Generation CAISO −0.0479 −0.0474∗ −0.0392 −0.0461∗

Wind Generation CAISO −0.0754∗∗∗ −0.0861∗∗∗ −0.0687∗∗∗ −0.0884∗∗∗

Solar Generation CAISO −0.0022 0.0435 0.0028 0.0287
Hydro Generation Northwest 0.0071∗∗∗ 0.0073∗∗∗

Solar Generation Southwest 0.1978∗∗∗ 0.2052∗∗∗

CO2 Price 3.3390∗∗∗ −0.3633 3.4188∗∗∗ −0.3122
PG&E Citygate NG Price 2.4457

Sumas NG Price −4.6487∗∗∗

SoCal Border NG Price 11.8540∗∗∗

El Paso San Juan NG Price −10.1424∗∗∗

NG-to-NG North 0.6332
NG-to-NG South 14.0579

Intercept 91.1052∗∗∗ 44.8026∗∗∗ 85.1667∗∗∗ 39.0537∗∗∗

Day-of-week dummy Yes No Yes No
Quarter dummy Yes Yes Yes Yes

N 2,017 2,017
R2 0.8570 0.8521

Log-likelihood -82,522.57 -77,238.14
AIC 165,195.1 154,622.3
BIC 165,615.8 155,031.8
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Appendix

Figure A1: Generation mix by technology in NERC regions and WECC sub-regions, 2016
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Figure A2: Estimated quarterly NGCC treatment effects - broader control group
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Notes: vertical lines represent 95% CIs. Controls include plants in the rest of WECC, SPP and TRE.
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Figure A3: Treated and control regions in WECC, NGCC and coal-fired plants - EIM leakers

Note: black dots represent power plants.
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Figure A4: Estimated quarterly treatment effects - EIM leakers
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(a) NGCC plants

−
.4

−
.2

0
.2

.4

E
s
ti
m

a
te

d
 C

o
e

ff
ic

ie
n

t

5 9 13 17 21 25 29

Quarters

Northwest

−
.4

−
.2

0
.2

.4

E
s
ti
m

a
te

d
 C

o
e

ff
ic

ie
n

t

5 9 13 17 21 25 29

Quarters

Southwest

(b) Coal-fired plants

Notes: vertical lines represent 95% confidence intervals. Controls include NGCC plants in the rest of WECC, and coal steam
plants in the rest of WECC, SPP and TRE.
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Table A1: Summary statistics by major WECC balancing authority (BA), NGCC plants

Pre ETS Post ETS

BA Number Operating Capacity Heat rate CO2 emission Number Operating Capacity Heat rate CO2 emission
of plants capacity factor rate of plants capacity factor rate

(MW) (%) (Btu/kWh) (lb/MMBtu) (MW) (%) (Btu/kWh) (lb/MMBtu)

BANC 7 171 0.44 8,124 120.13 7 178 0.55 7,747 118.61

CISO 56 288 0.58 9,009 118.85 57 316 0.49 8,625 118.79

IID 1 154 0.38 7,203 118.90 1 259 0.43 8,112 118.86

LDWP 5 353 0.32 7,497 118.86 6 356 0.31 8,210 117.64

TIDC 1 269 0.60 7,881 118.86 1 269 0.60 7,829 118.86

AVA 2 290 0.49 7,264 118.85 2 294 0.61 6,908 118.86

BPAT 8 441 0.38 6,315 118.86 7 457 0.49 6,737 118.84

IPCO 1 331 0.25 6,713 118.86 1 312 0.57 6,973 118.86

PACE 3 421 0.44 7,660 118.86 3 581 0.42 7,671 118.86

PACW 2 414 0.66 8,816 118.86 1 486 0.54 7,743 118.86

PGE 3 370 0.46 9,292 118.83 4 386 0.46 8,106 118.86

PSEI 5 207 0.37 8,537 118.91 5 215 0.40 9,092 118.99

PSCO 9 280 0.23 8,692 118.86 10 302 0.25 7,704 118.87

WACM 1 497 0.35 8,041 118.86 2 341 0.34 7,779 118.86

AZPS 5 1,074 0.27 7,602 118.77 5 1,074 0.33 7,736 118.79

EPE 1 445 0.36 10,003 118.85 1 522 0.38 9,319 118.85

HGMA 1 1,128 0.17 5,503 118.86 1 1,106 0.20 5,701 118.86

NEVP 12 474 0.52 8,047 118.88 12 484 0.56 7,823 118.89

PNM 3 306 0.18 9,528 118.86 3 307 0.23 8,415 118.86

SRP 3 966 0.41 7,787 118.86 3 964 0.37 7,686 118.87

WALC 4 218 0.49 9,043 118.80 4 240 0.42 7,029 118.89

Notes: pre ETS refers to January 2009-December 2012, post ETS to January 2013-December 2016. Emission rates are only available for a subset of plants

from CEMS.
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Table A2: Summary statistics by major WECC balancing authority (BA), Coal-fired plants

Pre ETS Post ETS

BA Number Operating Capacity Heat rate CO2 emission Number Operating Capacity Heat rate CO2 emission
of plants capacity factor rate of plants capacity factor rate

(MW) (%) (Btu/kWh) (lb/MMBtu) (MW) (%) (Btu/kWh) (lb/MMBtu)

CISO 6 52 0.78 17,598 - 4 57 0.48 19,133 -

LDWP 1 1,800 0.78 9,728 205.20 1 1,800 0.70 9,497 205.20

BPAT 1 1,358 0.52 8,666 205.62 1 1,340 0.50 9,218 209.76

NWMT 5 493 0.74 12,483 208.75 5 525 0.71 12,776 208.58

PACE 12 630 0.81 11,997 207.73 12 621 0.78 13,343 207.93

PGE 1 585 0.65 8,763 209.57 1 585 0.55 8,259 209.11

PSCO 10 382 0.66 13,825 206.52 8 502 0.70 12,081 206.59

WACM 9 273 0.81 11,679 208.61 8 279 0.76 11,011 208.97

AZPS 3 1,083 0.67 14,573 205.21 2 1,321 0.63 10,315 205.20

NEVP 3 439 0.54 11,165 209.30 3 389 0.48 11,390 209.49

PNM 2 950 0.74 10,687 209.74 2 966 0.66 10,919 209.69

SRP 2 1,510 0.84 10,327 209.76 2 1,506 0.77 10,471 209.76

TEPC 1 1,609 0.73 10,325 209.66 1 1,621 0.72 10,304 209.56

WALC 1 350 0.65 10,944 196.55 1 350 0.72 10,890 203.62

Notes: pre ETS refers to January 2009-December 2012, post ETS to January 2013-December 2016. Emission rates are only available for a subset of plants

from CEMS.
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Table A3: Summary statistics by region, NGCC plants

Pre ETS Post ETS

Sub-region Number Operating Capacity Heat rate CO2 emission Number Operating Capacity Heat rate CO2 emission
of plants capacity factor rate of plants capacity factor rate

(MW) (%) (Btu/kWh) (lb/MMBtu) (MW) (%) (Btu/kWh) (lb/MMBtu)

California 68 278 0.54 8,779 119.09 70 304 0.49 8,511 118.66

(293) (0.31) (2,819) (1.96) (290) (0.32) (3,115) (1.45)

Northwest 13 433 0.43 6,922 118.86 11 494 0.48 7,084 118.85

(178) (0.31) (3,320) (0.05) (258) (0.28) (2,078) (0.07)

Southwest 27 625 0.44 7,959 118.83 27 633 0.44 7,600 118.85

(501) (0.30) (2,814) (0.73) (496) (0.30) (2,429) (1.18)

Rest of WECC 25 296 0.31 8,731 118.86 28 307 0.36 8,077 118.88

(190) (0.29) (4,809) (0.85) (186) (0.29) (4,001) (1.59)

MRO, SPP, TRE 98 555 0.38 8,555 117.73 100 559 0.39 8,575 117.69

(350) (0.26) (3,334) (11.75) (367) (0.26) (3,286) (11.45)

Notes: standard deviations listed below means. Pre ETS refers to January 2009-December 2012, and post ETS to January 2013-December 2016. Leaker regions

are defined as in Section 4. Emission rates are only available for a subset of plants from CEMS.
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Table A4: Summary statistics by region, Coal-fired plants

Pre ETS Post ETS

Sub-region Number Operating Capacity Heat rate CO2 emission Number Operating Capacity Heat rate CO2 emission
of plants capacity factor rate of plants capacity factor rate

(MW) (%) (Btu/kWh) (lb/MMBtu) (MW) (%) (Btu/kWh) (lb/MMBtu)

California 6 52 0.78 17,598 - 4 56 0.48 19,133 206.44

(26) (0.26) (11,998) (-) (25) (0.31) (18,623) (11.76)

Northwest 20 691 0.76 11,638 207.74 20 695 0.73 12,454 208.00

(695) (0.23) (5,090) (4.54) (700) (0.24) (7,517) (5.68)

Eastern 19 332 0.73 12,830 207.70 16 379 0.73 11,495 207.93

(389) (0.20) (5,591) (6.88) (418) (0.22) (4,259) (6.70)

Southwest 12 957 0.68 11,700 207.55 11 992 0.64 10,780 208.35

(732) (0.20) (3,743) (8.09) (689) (0.21) (1,484) (3.44)

Rest of WECC 2 1,414 0.81 10,287 209.76 2 1,057 0.79 10,362 209.76

(550) (0.14) (255) (0.05) (656) (0.17) (317) (0.06)

MRO, SPP, TRE 119 591 0.60 12,447 209.76 115 638 0.56 12,367 207.23

(578) (0.26) (5,332) (12.93) (583) (0.26) (5,725) (25.19)

Notes: standard deviations listed below means. Pre ETS refers to January 2009-December 2012, and post ETS to January 2013-December 2016. Leaker regions

are defined as in Section 4. Emission rates are only available for a subset of plants from CEMS.
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Table A5: Matching and Differences-in-differences: Estimated effects with percentile binning

Daytime Nighttime

NGCC
California Northwest Southwest California Northwest Southwest

Before matching
Control plants 73 73 73 73 73 73
Treated plants 37 11 19 37 11 19

After matching
Control plants 66 49 58 57 27 51
Treated plants 32 7 15 27 7 18

Estimated treatment effect after matching
−0.0727∗∗ −0.0154 −0.0276 −0.0107 −0.0054 0.0011

N 188,737 108,498 140,886 160,699 66,415 132,658
R2 0.4779 0.4669 0.4983 0.5585 0.4529 0.5247

Coal steam
Northwest Eastern Southwest Northwest Eastern Southwest

Before matching
Control plants 88 88 88 88 88 88
Treated plants 13 14 9 13 14 9

After matching
Control plants 44 48 32 13 16 21
Treated plants 10 12 6 6 9 8

Estimated treatment effect after matching
0.0456∗∗ 0.0209 −0.0386 0.0851∗∗ 0.1055∗∗∗ −0.0005

N 95,396 107,151 68,265 33,932 44,955 51,610
R2 0.3684 0.3262 0.3001 0.3434 0.4022 0.3875

Notes: matching is on hourly plant capacity factors and heat rates for hours 8,11,14,17 (Day) and 20,23,2,5

(Night). We coarsen matching variables according to cutpoints defined by the 40th, 60th and 80th percentiles

for NGCC, and 20th, 40th, 60th and 80th percentiles for coal steam. DiD regressions include plant FE, year FE

and state by month-year FE. Standard errors are clustered at the plant level.
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Table A6: Matching and Differences-in-differences: Estimated effects with algorithm binning

Daytime Nighttime

NGCC
California Northwest Southwest California Northwest Southwest

Before matching
Control plants 73 73 73 73 73 73
Treated plants 37 11 19 37 11 19

L1 0.43 0.52 0.47 0.52 0.75 0.40

After matching
Control plants 57 39 52 46 18 46
Treated plants 28 8 15 27 8 17

L1 0.10 0.03 0.31 0.17 0.27 0.25
Algorithm Scott Scott Scott Scott Scott Scott

Estimated treatment effect after matching
−0.0754∗ −0.0533 −0.0042 0.0013 −0.0122 0.0189

N 163,513 93,656 128,978 139,130 51,803 120,913
R2 0.4350 0.3721 0.4458 0.4779 0.3935 0.4648

Coal steam
Northwest Eastern Southwest Northwest Eastern Southwest

Before matching
Control plants 88 88 88 88 88 88
Treated plants 13 14 9 13 14 9

L1 0.50 0.59 0.70 0.72 0.74 0.77

After matching
Control plants 52 44 26 25 23 20
Treated plants 12 13 7 13 12 8

L1 0.35 0.04 0.03 0.40 0.08 0.23
Algorithm FD FD FD Scott FD FD

Estimated treatment effect after matching
0.0379∗ 0.0229 0.0362 0.0633∗∗ 0.0508∗ 0.0502

N 119,770 106,751 57,783 71,559 68,202 49,466
R2 0.3226 0.3025 0.2772 0.3539 0.3413 0.3641

Notes: matching is on hourly plant capacity factors for hours 8,11,14,17 (Day) and 20,23,2,5 (Night). We

coarsen matching variables according to cutpoints defined by the Scott rule and Freedman-Diaconis (FD)

rule. DiD regressions include plant FE, year FE and state by month-year FE. Standard errors are clustered

at the plant level.
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