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Abstract

We compare the effects of California’s AB 32 cap-and-trade program on leakage in the electricity

sector using two methods: a simulation-based partial equilibrium model that accounts for details of

policy implementation and is parameterized using market data; and an econometric model applying a

quasi-experimental design with matching and a robust inference method that does not require parallel

trends to hold exactly. Based on the estimated shifts in electricity generation, we infer CO2 emission

leakage predictions in 2013 and 2016. The comparison allows us to identify critical assumptions driving

the simulation results, and to benchmark the empirical results in a complex policy setting where threats

to identification undermine attempts at statistical inference. Over the study period, we find significant

leakage potential ex ante and empirical evidence that is consistent with some resource shuffling ex post.

Limiting the ability of electricity importers to claim the default emission factor may reduce leakage risks.
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1 Introduction

California has been at the forefront of U.S. environmental policies for years. The Global Warming Solutions

Act of 2006 (also known as Assembly Bill 32 or AB 32) set the state’s target to reduce greenhouse gas (GHG)

emissions to 1990 levels by 2020. In September 2016, California passed Senate Bill 32 (SB 32), which limited

emissions to 40% below 1990 levels by 2030. Further, Executive Order S-3-05 set a GHG emission reduction

target of 80% below 1990 levels by 2050. In order to achieve these ambitious goals, the state relies on a suite

of policies, including a multi-sector cap-and-trade program that covers about 85% of the state’s emissions

from large industrial facilities, electricity generators and importers, and transportation fuel suppliers.

A central issue in the implementation of cap-and-trade programs is represented by the choice of the

point of regulation. For example, the Regional Greenhouse Gas Initiative (RGGI), an emission trading

system for CO2 emissions from electricity generation in U.S. Northeastern and mid-Atlantic states, adopted a

source-based approach where the point of regulation is at the generator level. Given its reliance on imports to

satisfy electricity consumption,1 California opted instead for a first deliverer approach, whereby entities that

own electricity at the first point of delivery in the state represent the point of regulation: in-state generators

must monitor and report their emissions following a source-based paradigm, while electricity importers are

responsible for emissions associated with in-state sales.

The introduction of a border adjustment mechanism for the electricity sector was intended to mitigate

concerns of leakage, defined as the shift in production and associated emissions from the region where climate

regulations apply to surrounding unregulated jurisdictions (Stavins et al., 2010). However, simulation-based

studies quantifying the impacts of the prospective cap-and-trade scheme concluded that resource shuffling may

enable substantial leakage (Bushnell, Peterman and Wolfram, 2008; Fowlie, 2009; Chen et al., 2011; Bushnell

et al., 2014). Contract shuffling represents a prime example. Under contract shuffling, electricity contracts

are rearranged so that production from low emission sources serving out-of-state consumption (or load) is

directed to California, while production from higher emission sources is assigned to serve out-of-state load

(Burtraw et al., 2018). This would result in apparent emission reductions due to changes in the composition of

imports to California, although emissions in exporting regions are unchanged or even increase. In recent years,

the decrease in GHG emissions from the electric power sector in California has been attributed primarily to

measured reductions in emissions from imports (California Air Resources Board, 2020b). This underscores

the importance of assessing whether leakage has occurred and considering potential policy modifications to

1In 2016, California imported about a third of its total electricity consumption from out of state (California Energy
Commission, 2017).
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mitigate its impacts.

In this paper, we seek to identify CO2 emission leakage in the electricity sector from California’s AB

32 cap-and-trade program in the first four years of policy implementation. We estimate shifts in electricity

generation at baseload power plants in the Western Interconnection2 based on two models: a simulation-based

partial equilibrium model of the electricity sector that includes salient features of the observed cap-and-trade

program and is parameterized using market data in 2013-2016; and an econometric model applying a quasi-

experimental design with matching and a robust inference method that does not require the parallel trends

assumption to hold exactly. Based on the estimated shifts in electricity generation, we infer CO2 emission

leakage predictions in 2013 and 2016. We then compare the ex ante expected impacts of the policy to the ex

post realized impacts. This allows us to identify critical assumptions driving the simulation results, and to

benchmark the empirical results in a complex setting where threats to identification (i.e., the suite of changes

that affected California’s electricity market over the period of our study, and challenges associated with the

construction of credible counterfactual outcomes) undermine attempts at statistical inference. Earlier studies

compared ex ante estimates of the effect of regional environmental policies with ex post empirical results

(Carlson et al., 2000; Ellerman et al., 2000; Carbone et al., 2020). To our knowledge, ours is the first attempt

to benchmark emission leakage predictions based on estimates from a quasi-experimental econometric model

against the results of a partial equilibrium model designed to study the effects of a cap-and-trade program.

The remainder of the paper is organized as follows. Section 2 reviews the literature on emission leakage.

Section 3 provides an overview of California’s cap-and-trade program and complementary emission reduction

measures under AB 32. Section 4 presents the econometric model specification, data and results. Section 5

describes the simulation model and results. Section 6 compares the econometric and simulation results, and

Section 7 provides concluding remarks.

2 Literature review

The potential for emission leakage in the electricity sector under regional climate policies has been analyzed

using numerical models. A first strand of the literature includes simulation-based partial equilibrium models

of the electricity sector. For example, Fowlie (2009), Chen et al. (2011), Bushnell and Chen (2012) and

Bushnell et al. (2014) explore leakage in the context of California’s prospective cap-and-trade program for

2California is part of the Western Interconnection, a synchronous electric grid that encompasses all or parts of 14 Western
states in the U.S., the Canadian provinces of Alberta and British Columbia, and Northern Baja California in Mexico. Since
reliability within the area is overseen by the Western Electric Coordinating Council, this synchronous grid is commonly referred
to as WECC. Figure 1 presents the U.S. part of WECC.
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GHG emissions (i.e., before regulations were finalized). Fowlie (2009) presents an analytical model to develop

intuition about how industry features affect emission leakage and social welfare in an incompletely regulated

and imperfectly competitive industry. Based on the theoretical framework, she develops a numerical model to

simulate CO2 emissions and other equilibrium outcomes in California’s electricity sector under three carbon

policy scenarios and alternative assumptions about firm conduct. Results suggest that a cap-and-trade

program that only applies to in-state electricity producers would achieve about a third of emission reductions

obtained under complete regulation at a higher cost per ton. Chen et al. (2011) formulate a market equilibrium

model to compare source-based, load-based and first deliverer approaches for cap-and-trade regulation in

California, and examine economic and emission implications on the electricity market. Under the first deliverer

approach that was ultimately pursued in California, total emissions in the Western Interconnection decrease

much less than regulated emissions, implying a leakage rate of 85%. Simulation results also indicate that

significant reshuffling takes place under this scenario: while the emissions of electricity imports to California

decrease due to changes in their composition, the emissions in the rest of the Western Interconnection

actually increase under regulation. In a similar vein, Bushnell and Chen (2012) and Bushnell et al. (2014)

simulate the impacts of CO2 caps that only apply to California or cover all states in the Western U.S. under

alternate assumptions, and conclude that a first deliverer approach in California is vulnerable to leakage

due to laundering and reshuffling of import resources. Finally, Xu and Hobbs (2021) examine the potential

cost and emission impacts of alternate border carbon adjustment (BCA) schemes under California’s AB

32 cap-and-trade system using the Johns Hopkins Stochastic Multistage Integrated Network Expansion

(JHSMINE) model. They find that dynamically setting a facility-neutral deemed rate based on marginal

units outside of California would provide efficiency gains, relative to facility-based schemes like the one that

is currently implemented.

The impacts of regional climate policies have also been studied with computable general equilibrium

models (Carbone and Rivers, 2017). While the partial equilibrium models discussed above focus on short-run

operations, general equilibrium models are useful to illustrate the impacts of carbon pricing policies on other

sectors of the economy, and may consider the effects on long-run capital decisions (Shawhan et al., 2014). In

the context of California’s cap-and-trade program, Caron et al. (2015) find that the policy would result in

only a small amount of emission leakage (9%), when imported electricity is included in the cap and provisions

to prevent reshuffling are enforced. Without such measures, the authors estimate that 45% of emission

reductions would be offset by leakage, in line with the range of predictions obtained by general equilibrium

models for RGGI (Shawhan et al., 2014; Sue Wing and Kolodziej, 2009).
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Empirical analyses of leakage are less common in the literature. For example, Aichele and Felbermayr

(2013a), Aichele and Felbermayr (2013b) and Aichele and Felbermayr (2015) examine leakage in the context

of the Kyoto Protocol. With respect to RGGI, Kindle et al. (2011) analyze the relation between CO2 permit

prices and transmission power flows on seven high-voltage interties between New York and Pennsylvania

between 2008 and 2010. Higher net flows from Pennsylvania to New York associated with a higher RGGI

allowance price would indicate leakage. The authors do not find a significant impact of RGGI permit prices

on PA-NY transmission flows, but prices may have been too low to affect leakage in the early years of the

program. Fell and Maniloff (2018) use a differences-in-differences model to estimate how RGGI affected the

operations of power plants in the regulated region and nearby states, and examine changes in electricity

transmission flows into the RGGI region after policy implementation. They find that the cap-and-trade

program led to a reduction in coal-fired generation in the regulated region and an increase in cleaner NGCC

generation in the unregulated region, resulting in lower total emissions across regions. The implied leakage

rate of approximately 50% is within the range of ex post leakage predictions from subsequent empirical

analyses (Zhou and Huang, 2021). Chan and Morrow (2019) also investigate leakage from RGGI, but their

analysis focuses on SO2 emissions and associated damages, instead of CO2 emissions.

Finally, a growing body of research in economics assesses the potential for leakage risk across sectors

(Fowlie and Reguant, 2018), and explores how environmental regulation affects trade flows and the location

choice of firms in the long run (Levinson and Taylor, 2008; Kahn and Mansur, 2013; Aldy and Pizer, 2015;

Fowlie et al., 2016; Panhans et al., 2017; Saussay and Sato, 2018).

Our paper is most closely related to Xu and Hobbs (2021) and Fell and Maniloff (2018), but differs from

these earlier contributions to the literature in several important ways. The version of JHSMINE in this

paper contributes to the literature because it enables more direct comparisons with the econometric results

than those allowed by previous simulation models, which may make assumptions that do not align with the

details of actual policy implementation or use different data for parameterization. In particular, we revise

the model formulation in Xu and Hobbs (2021) to accommodate the observed cap-and-trade regime, and

parameterize the model using actual market data in 2013-2016. Relative to Fell and Maniloff (2018), we

strengthen the identification strategy using coarsened exact matching, adopt robust methods to conduct

statistical inference under potential violations of parallel trends, and benchmark leakage predictions based

on the empirical estimates against simulation-based results. However, we are unable to estimate a model

of inter-regional electricity transmission due to the lack of historical data on hourly power flows between

balancing authorities in WECC over the period of our analysis.
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3 Policy background

California adopted legislation limiting GHGs by passing AB 32, which established a statewide target of

reducing GHG emissions to their 1990 levels (431 million metric tons of CO2e (California Air Resources

Board, 2014)) by 2020. To achieve the expected emission reductions to meet the 2020 limit (79 million

metric tons of CO2e), the California Air Resources Board (CARB) outlined a mix of recommended actions

combining direct regulations, market-based approaches and incentives in the initial Scoping Plan (California

Air Resources Board, 2008) and First Update (California Air Resources Board, 2014). A key element of

CARB’s emission reduction strategy was the development of a cap-and-trade program to provide a firm cap

on the sectors responsible for the majority of California’s GHG emissions (i.e., transportation, electricity and

industrial sectors). Within the capped sectors, emission reductions would be accomplished through price

incentives created by allowance prices, as well as direct regulations. CARB also recommended reduction

measures for the uncapped sectors (e.g., agriculture, recycling and waste). The rationale for this combination

of approaches was that complementary measures are needed to overcome market barriers that would persist,

if the cap-and-trade system were the only policy employed to implement AB 32 (California Air Resources

Board, 2008). The next sections provide an overview of the cap-and-trade-program and complementary

measures aimed at reducing emissions from the energy sector.

3.1 Cap-and-trade program overview

California’s cap-and-trade program regulates GHG emissions from large industrial facilities, electricity

generators and importers, and transportation fuel suppliers. Covered entities emit at least 25,000 metric

tons of CO2e per year and are responsible for about 85% of the state’s 2015 GHG emissions (California Air

Resources Board, 2010, 2013). The first phase of compliance for the program began on January 1, 2013. The

2013 emission cap was set at approximately 98% of forecast 2012 emissions, with an annual decline of 2%

in 2014 and 3% from 2015 through 2020. Based on CARB projections, the program was expected to drive

about 23% of emission reductions needed to reach 1990 levels (California Air Resources Board, 2013). In July

2017, the scheme was extended through 2030 with bipartisan support.

CARB issues annual emission allowances equal to the cap, and each allowance represents a permit to emit

one ton of carbon dioxide equivalent. Entities must monitor and annually report their emissions, and return

an amount of allowances equivalent to their GHG emissions each year. Capped sources that keep emissions

below the allowance amount can sell excess permits on the market, while sources that cannot cover total
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emissions may take measures to reduce pollution and/or buy allowances on the market.3 Emission allowances

are distributed to covered entities through a mix of free allocation and quarterly auctions, with a declining

share of free permits over time (California Air Resources Board, 2022a): in 2016, the last year in our period

of study, 50% of allowances were given away for free, and 46% were auctioned (Legislative Analyst’s Office,

2017).4 California adopts an output-based benchmarking allocation approach for most industrial sectors,

whereby the allocation of allowances is set at 90% of average emissions, based on benchmarks that reward

efficient facilities, and updated annually according the production at each facility. Allowances are allocated to

electric distribution utilities (EDUs) based on historical emissions, current generation mix, sales, and efforts

at reducing emissions since the passage of AB 32 (Alcorn, 2013). Investor-owned utilities (IOUs) must consign

their allowances to auction, while publicly owned utilities (POUs) may put their allowances up for auction or

use them to meet compliance obligations. The revenue from these auctions must be used to provide rebates

or bill relief to utility customers (Legislative Analyst’s Office, 2017). CARB allows banking and borrowing of

allowances, and the risk of unexpected price changes and excess volatility is mitigated through a price collar;

secondary market allowance prices have generally hovered at or near the auction price floor from market

launch to 2016 (Cullenward and Coghlan, 2016).

Under California’s approach to regulate the electricity sector, the first entity that delivers load to the

California grid has a compliance obligation. When electricity generation occurs within the state, generators

must submit compliance instruments (allowances and offset credits) for the associated emissions. When

electricity generation occurs out of state, the compliance obligation falls instead on the electricity importers,

who must submit compliance instruments to cover the emissions generated for each MWh of imported

electricity. Since energy entering the grid flows over the path of least resistance (rather than directly from an

injection point to a withdrawal point), the CO2 intensity of electricity imported in California from the rest of

the Western Interconnection cannot generally be determined unambiguously.5 To address the issue, CARB

classifies imports as specified or unspecified source power.

Specified sources include generation resources owned by or under long-term contract to California’s load

serving entities, as well as generation resources owned by non-California entities that are approved and

registered by CARB (California Air Resources Board, 2022c). First deliverers may claim facility-specific

emission factors for power imports from out-of-state generation resources that are owned or under long-term

3Covered entities may also use carbon offsets (e.g., GHG emission reductions from projects outside the scope of the
cap-and-trade regulation) to cover up to 8% of their emissions.

4The remaining 4% were made available at predetermined prices to reduce price volatility.
5The e-Tag functionality has been used to track proof of energy delivery within the Western Interconnection, but is complex

to implement (WECC Staff, 2019).
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contract. Further, CARB has developed the designation of Asset-Controlling Suppliers for out-of-state electric

power entities that operate interconnected generating facilities. Once approved and registered by CARB,

Asset-Controlling Suppliers are assigned a system emission factor for wholesale electricity procured from

their systems and imported into California. For example, specified source power from Bonneville Power

Administration (BPA) and Powerex (a subsidiary of BC Hydro) must be reported using CARB-approved

emission factors reflecting the hydro-dominant resource portfolio of these systems (California Air Resources

Board, 2022b). Specified sources mainly consist of coal, natural gas and nuclear power from the Southwest,

and of hydro and wind power from the Northwest (California Energy Commission, 2017).6

In contrast, unspecified source power corresponds to wholesale market purchases from power plants that

do not have a contract with a California utility and have not gone through the CARB process to become

specified. Between 2013 and 2016, unspecified power represented about 26% of total imports, on average

(California Air Resources Board, 2020a). Since in this case the generation source is unknown, unspecified

sources are assigned a default emission factor of 0.428 metric ton CO2/MWh, which was set by CARB based

on the generation technology expected to be at the margin in WECC (Bushnell et al., 2014). Much of the

Northwest spot market purchases are served by surplus hydro and gas-fired plants, while Southwest spot

market purchases generally come from coal and natural gas combined cycles (California Energy Commission,

2017). The presence of a default emission factor creates an incentive for electricity importers to not report

the emission content of out-of-state higher-emitting generation resources, in order to attain the lower default

emission factor (“laundering”). This has been identified as one of the primary types of resource shuffling

(Alcorn, 2013), defined by CARB as “any plan, scheme, or artifice undertaken by a First Deliverer of Electricity

to substitute electricity deliveries from sources with relatively lower emissions for electricity deliveries from

sources with relatively higher emissions to reduce its emissions compliance obligation” (Cal. Code Regs.,

Title 17, Article 5, § 95802(a)). As discussed in Section 1, resource shuffling would lead to apparent emission

reductions due to changes in the composition of imports to California, although emissions in the exporting

regions are unchanged or even increase. As a result, it creates potentially severe leakage risks for the electricity

sector in California. In response to these concerns, CARB released a guidance document listing a number

of “safe harbor” exceptions to the regulatory ban on resource shuffling (i.e., transactions deemed not to be

resource shuffling) (Cal. Code Regs., Title 17, Article 5, § 95852(b)(2)). This approach has been controversial

because it is difficult to identify all potential violations ex ante (Bushnell et al., 2014). Further, allowance

6According to the Commission’s definition, the Northwest region includes Alberta, British Columbia, Idaho, Montana,
Oregon, South Dakota, Washington and Wyoming. The Southwest region includes Arizona, Baja California, Colorado, Mexico,
Nevada, New Mexico, Texas and Utah (California Energy Commission, 2017).
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prices hovering near the auction floor have been interpreted as evidence that contract shuffling is taking

place, enabling regulated entities to avoid a significant part of their carbon liability and reducing demand for

allowances (Borenstein et al., 2014; Cullenward and Coghlan, 2016).

3.2 Overview of AB 32 complementary measures in the energy sector

In addition to creating a cap-and-trade program, the initial Scoping Plan and its Update set forth a

comprehensive list of recommended actions for improving energy efficiency, expanding the use of renewable

energy resources and cleaner transportation, and reducing waste (California Air Resources Board, 2008,

2014). This section highlights significant measures to help achieve the state’s 2020 target and support GHG

emission reductions in the energy sector. However, measures that are designed to directly address GHG

reductions in other sectors, which are not discussed here, may also have impacts on the energy sector (e.g.,

electrification in the transportation sector increases electricity demand).

A key measure to support the high-level objectives for the energy sector is California’s renewable portfolio

standard (RPS). Originally enacted in 2002, the RPS set a goal of achieving a statewide renewable energy

mix of 20% by 2010. In 2011, Senate Bill 2 created one of the most aggressive renewable energy goals in the

United States, requiring California’s electric utilities and retail sellers to serve 33% of customer needs with

clean renewable energy by 2020, with intermediate requirements of 20% by 2013 and 25% by 2016. The RPS,

combined with programs like the California Solar Initiative and federal tax credits, spurred significant growth

in utility-scale projects and customer installations over the period of our study (Bushnell and Novan, 2018).

CARB estimated that achieving a 33% renewable mix by 2020 would avoid about 11 million metric tons of

CO2e (California Air Resources Board, 2013), and counted the avoided emissions towards the reductions

needed to achieve the 2020 target established by AB 32.

Energy efficiency recommendations set new targets for statewide annual energy demand reductions of

32,000 GWh and 800 million therms. Strategies include, among others, more stringent building and appliance

efficiency standards, and utility energy efficiency programs in the residential and non-residential sectors.

Based on CARB projections, energy efficiency measures would drive approximately 12 million metric tons of

CO2e of emission reductions by 2020 (California Air Resources Board, 2013). The Scoping Plan also requires

increased use of combined heat and power units by setting a goal for 4,000 MW of new installed capacity by

2020, enough to displace about 30,000 GWh of demand from other power generation sources. Finally, the

Plan establishes incentive programs to promote the installation of 200,000 solar water heaters and 3,000 MW

of new rooftop solar capacity (Million Solar Roofs initiative) by 2017.
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4 Econometric model

We econometrically estimate shifts in electricity generation in the Western Interconnection after the

introduction of California’s cap-and-trade program using a differences-in-differences framework with matching.

Based on these estimates and their confidence intervals, we infer CO2 emission leakage predictions in 2013

and 2016. This section describes our empirical strategy and results.

4.1 Treated and control designation

The primary leakage mechanism would consist in replacing power generation in the regulated region (California)

with generation in the unregulated regions (“leakers” in the Western Interconnection). Since contract shuffling

and policy-induced changes in the dispatch order reallocate production among California plants and all

out-of-state plants in WECC, every plant in the Western Interconnection may be a potential leaker. WECC’s

footprint includes the Canadian provinces of Alberta and British Columbia, the northern portion of Baja

California, Mexico, and all or portions of 14 Western U.S. states. Since data availability is limited for the two

Canadian provinces and Northern Baja California, we exclude them from our analysis, and only consider

leakers in the U.S. part of the Western Interconnection. Thus, the treated set consists of NGCC and coal-fired

plants in the U.S. part of the Western Interconnection (California or leakers), while the control set consists of

plants of the same technology type in five NERC regions in the Eastern and Texas Interconnections (FRCC,

MRO-US, SERC, SPP and TRE) (Figure 1).7

Power plants fall under the operational control of a balancing authority (BA), which is responsible for

dispatching generation units and maintaining consumption-interchange-generation balance within a region of

the electric grid (National Electric Reliability Council, 2022); WECC balancing authorities in the U.S. are

presented in Figure 2. Following the classification in WECC’s production cost model (WECC Staff, 2015),

leaker balancing authorities are divided into three regions of contiguous connected electrical components.

The Northwest (NW) region includes AVA, BPAT, NEVP, PACE, PACW, PGE and PSEI, as well as Utah

plants in the LDWP footprint and Nevada plants in the CAISO footprint. Loosely speaking, this region

corresponds to the Pacific Northwest, Nevada and Utah. The Southwest (SW) include AZPS, HGMA, SRP,

TEPC, WALC, and plants within the CAISO footprint but located in Arizona. Loosely speaking, this region

corresponds to Arizona. The Rest of WECC (RoW) includes all other balancing authorities in WECC, i.e.

EPE, IPCO, NWMT, PNM, PSCO, WAUW, and WACM. Table 1 presents summary statistics for NGCC

7We do not include power plants in RFC and NPCC as controls because these NERC regions largely overlap with the
footprint of RGGI, the cap-and-trade program for CO2 emissions from power generation in the Northeastern and mid-Atlantic
United States.
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treated and control plants, while Table 2 presents statistics for coal-fired treated and control plants. Since

the period of our study was characterized by significant fuel mix changes in the California market, we also

report summary statistics for nuclear, hydro and renewable generation in Table A1 of the Appendix.

4.2 Matching

The simplest estimates of the treatment effects of interest can be obtained using an unconditional differences-

in-differences (DID) estimator that measures the effect of California’s cap-and-trade program on average plant

utilization. This approach has some drawbacks. First, constructing counterfactual outcomes using observations

on plants from another interconnection poses a challenge, because these plants may have inherently different

characteristics from the treated plants. Further, plants with similar average utilization over a period of time

may be operated very differently.8 Constructing counterfactual estimates based on control plants that have

similar average utilization over blocks of hours to the treated units allows us to identify pairs that, before

policy implementation, held a similar position in the dispatch order of their respective balancing authority.

The treatment effect of interest could then be obtained estimating a DID model in which the impact of other

changes and shocks affecting plant utilization is captured by the covariates.

In order to mitigate potential bias in the unconditional DID estimates, we improve balance between

treated and control groups by matching on pre treatment hourly variables. The basic idea of matching is to

find untreated units that are similar to the treated ones in terms of variables that influence the outcome

of interest (i.e., so called “matching variables”), except for treatment status. When a matching estimator

(like a nearest neighbor estimator or a propensity score-based estimator) is applied, counterfactual outcomes

for treated plant j are then inferred using a weighted average of the outcomes of units that are comparable

to j, but receive a different treatment. Control units whose observable characteristics are closer to those of

plant j are weighed more heavily in the construction of the counterfactual estimate. While earlier empirical

work in energy and environmental economics relied on parametric and semi-parametric matching methods,9

we explore the use of coarsened exact matching (CEM) (Blackwell et al., 2009; Iacus et al., 2011, 2012)

to improve balance between treated and control observations before applying a differences-in-differences

8To illustrate, consider two periods (1 and 2) and two plants (A in WECC and B in one of the control regions). Suppose
that plant A does not produce electricity in period 1 and is operated at 80% of its capacity in period 2, while plant B is operated
at 40% of its capacity in both periods. The two plants have the same average utilization, but serve a different role in their
respective grid. As a result, A and B do not represent a suitable pair of treated-control observations.

9In the context of Southern California’s RECLAIM program, Fowlie et al. (2012) use a semi-parametric DID matching
estimator of the ATT that compares differences between post and pre treatment NOx emissions across treated and control
plants, and a regression-based adjustment to mitigate bias introduced by poor match quality (Heckman et al., 1997, 1998). As a
robustness check, the authors implement a propensity score matching estimator, which relies on a parametric regression model
to estimate the propensity score. One disadvantage of this approach is that a misspecified matching model may produce greater
imbalance in variables that are omitted from the matching procedure.
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estimator. The first step of the CEM procedure is to identify observable variables to match members of

the treatment and control populations. Each matching variable is coarsened to a discrete number of bins

using a binning strategy, and each combination of bins across matching variables represents a stratum (or

archetype). Based on their values for the matching variables, units in the sample are assigned to one stratum,

which is used to exactly match members of the two populations. Only units with the same stratum are

matched.10 To correct for the imbalance between the number of treated and control units in each stratum,

matched control units receive a weight that normalizes the stratum to the distribution within the treatment

group (Iacus et al., 2008). Unlike approximate matching methods (e.g., based on the propensity score),

CEM bounds the maximum imbalance between treated and control groups by choosing the coarsening ex

ante: as the bins for the matching variables become narrower, the bound on the maximum imbalance on the

moments of the variables gets tighter. Further, unlike model dependent methods, CEM does not extrapolate

counterfactual outcomes when there is limited overlap in the distributions of covariates across treatment

and control groups, because matched data are restricted to areas of common empirical support. Recent

applications of this matching method are presented in Simcoe and Toffel (2014), Guignet et al. (2018) and Ek

and Miliute-Plepiene (2018).

The objective of our matching procedure is to achieve statistically indistinguishable means between treated

and control plants across a set of exogenous covariates that are highly correlated with the outcomes of interest

(i.e., daily, hourly or time-of-day measures of plant utilization). We use average capacity factors over four

blocks of hours within the day, averaged over 2009-2010, as matching variables.11 Our matching strategy

proceeds as follows. First, we choose 2009 and 2010 as pre treatment period, since 2011 was a wet hydrological

year in which NGCC plants ran at much lower capacity factors than usual (Nyberg, 2018), and 2012 was the

year before compliance obligations began.12 For each power plant, we average hourly capacity factors over

four blocks of hours (morning, afternoon, evening, and night).13 Next, for each combination of technology

type (coal-fired and NGCC) and region (treated and controls), we create a histogram of capacity factors by

10To illustrate, consider two matching variables. The first variable is divided into 3 bins (A, B, and C), while the second
variable is divided into 2 bins (D and E). The resulting strata are AD, BD, CD, AE, BE and CE. Control units in any stratum
are matched to treated units in the same stratum.

11Capacity factors are a percentage measure of plant utilization over a period of time and represent the dependent variable of
our DID model, as discussed in Section 4.3. Historic capacity factors over blocks of hours in 2009-2010 are expected to be a good
predictor of capacity utilization in the following years: hence, we choose them as matching variables. We also experiment with
matching on other observable factors that could be correlated with plant utilization, such as heat rate (a measure of efficiency)
and age. Since including these factors as additional matching variables reduces the control sample size without substantially
improving the quality of our matches, we do not take this approach.

12We also remove from the matching dataset outliers (i.e., plants for which generation from CEMS is greater than generating
capacity from EIA) and plants that were operating for less than 3 years over the period of our study.

13Following NREL’s classification (National Renewable Energy Laboratory, 2019), the morning block is from 6am to 1pm,
the afternoon block is from 1pm to 5pm, the evening block is from 5pm to 10pm, and the night block is from 10pm to 6am.
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block of hours (averaged over 2009-2010) with 10 bins of equal width. The empirical distributions of capacity

factors by technology type, treated/control region and block of hours are presented in Figure 3.14 We then

define four matching bins corresponding to different levels of plant utilization in each block: matching bin 1

(low utilization) includes the first three histogram bins in the lower tail of the distribution; matching bin 2

(medium-low utilization) includes histogram bins 4 and 5; matching bin 3 (medium-high utilization) includes

histogram bins 6 and 7; matching bin 4 (high utilization) includes the last three histogram bins in the upper

tail of the distribution. In order to improve the quality of our matches, we create smaller matching bins in

the middle of the distribution. Further, we coarsen each matching variable according to cut points given by

the upper and lower limits of the matching bins for the treated plants. The final step is to perform exact

matching on these bins and discard observations from bins that do not contain both treated and control

observations.15

4.3 Differences-in-differences

After pruning observations that have no close matches on pre treatment variables in both treated and control

groups, we econometrically estimate changes in power plant utilization in the Western Interconnection using

the following DID model specification:

Yjt = αCTREAT
C
jt +

∑
L

αLTREAT
L
jt + X

′

jtβ + γj + γy + γdw + γsm + εjt (1)

where j indexes a plant-technology, t indicates a period, L denotes a leaker region, and y, dw and sm stand

for year, day-of-week and state by month-of-year respectively. We focus on two baseload technology types

that are most likely affected by the policies (natural gas combined cycle or NGCC plants and coal-fired

plants), and run separate regressions by technology.16 The dependent variable Yjt is the capacity factor of

plant-technology j in period t (day or hour), defined as the ratio of net generation over operating capacity

multiplied by total number of hours in the period.17

14Figure A1 in the Appendix presents additional detail by WECC region.
15We experiment with an alternate two-step strategy that matches by annual average capacity factors on blocks of hours first,

and then by seasonal average capacity factors on those blocks. We also test robustness to an alternate binning strategy with five
matching bins, where matching bin 1 includes the first two histogram bins in the lower tail of the distribution; matching bin 2
includes histogram bins 3 and 4; and so on. Both strategies yield results that are similar to those in the baseline, and thus we do
not present them in the paper.

16Natural gas steam turbines represent a small fraction of generating capacity in the WECC region. Other technology types
like natural gas combustion turbines and oil turbines that are used as peaker plants during high load periods are unlikely to
have responded to California’s carbon policy, given the modest level of permit prices over the period of our study.

17Capacity factors provide a measure of capacity utilization that is independent of plant size. Based on the estimated shifts
in capacity utilization, we infer CO2 emission leakage effects. An alternate (and more direct) approach consists in estimating a
model with net generation or emissions at the plant as dependent variable, and capacity as an additional covariate to control for
plant size. During the period of our study, there is no significant variation in installed capacity, which is thus correlated with
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The treatment of interest is the introduction of California’s cap-and-trade program on January 1, 2013.

Subject to the identification assumptions in Section 4.5.2, the estimated treatment effects αC and αL measure

the average effect of the cap-and-trade program on capacity factors of matched facilities in California and

the leaker regions, conditional on the covariates. TREATC
jt is a treatment dummy equal to 1 if plant j

is in California and t is January 2013 or later; TREATL
jt is similarly defined for plants in leaker region

L. The construction of a credible counterfactual against which to measure the effects of the cap-and-trade

program is difficult because a suite of coincident changes affected California’s electricity market over the study

period. For example, the increase in solar generation brought about by the aggressive renewable portfolio

standard significantly impacted California’s wholesale electricity market outcomes (Bushnell and Novan,

2018). Other complementary measures in the Scoping Plan under AB 32 also affected utilization of baseload

power plants in the Western Interconnection. We control for the impacts of these coincident changes through

a broad set of determinants of capacity factors in X
′

jt, as discussed below.

Hydro, nuclear and renewable generation affect capacity utilization at NGCC and coal-fired plants, and

are available at the monthly level over the period of our study. Since BAs are responsible for dispatching

generation units and maintaining consumption-interchange-generation balance within a region of the electric

grid, we might conceivably control for non-fossil generation within the plant’s BA. Instead, we consider

in-state (not in-BA) non-fossil generation for two reasons. First, renewable portfolio standards are defined at

the state level, and state policies may impact nuclear power use and capacity. Second, our dataset includes

many small BAs (e.g., GRMA and HGMA), as well as large BAs spanning several states (e.g., MISO and

SPP): when BAs are too small, hydro, nuclear and renewable generation is sparse, and does not allow for the

use of cubic splines; when BAs are too large, in-BA nuclear and renewable generation conflate the effects of

various policies at the state level. We model in-state hydro, nuclear and renewable generation using cubic

splines, with coefficients that may vary by NERC interconnection and time of day.

We also control for non-fossil substitutes of a plant at two additional geographic scales. First, we calculate

monthly shares for hydro-nuclear generation and renewable generation outside the plant’s BA, but in the

same region.18 These shares take a non-zero value for all plants in the Eastern and Western Interconnections,

and a value of zero for plants in the Texas Interconnection, which largely overlaps with the ERCOT BA. We

plant fixed effects, raising concerns of collinearity. For this reason, we estimate DID models with capacity factor (rather than net
generation or emissions) as dependent variable.

18Since nuclear generation at the BA level is sparse, we merge nuclear and hydro generation into one series. With regard to
regional classification, for treated units in the Western Interconnection, BAs fall into one of four regions (California and three
leaker regions), as discussed in Section 4.1. For control units in the Eastern Interconnection, we follow the regional classification
in U.S. Energy Information Administration (2022d).
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model the shares using linear functions, with coefficients that do not vary across markets.19

Second, we focus on the indirect effects of non-fossil generation in the North and South regions on capacity

utilization at NGCC plants in California, and calculate monthly shares of hydro-nuclear and renewable

generation in each of the two regions. These shares take a non-zero value for all plants in California, and a

value of zero for plants in the leaker or control regions. We model the shares using linear functions. Other

indirect effects in WECC are not considered for two reasons: California imports a substantial share of its

electricity consumption from out of state (but does not often export electricity), and the net interchange

between other regions in WECC is not significant in the period of our analysis. In line with the strategy

adopted for WECC, we do not consider cross-regional effects in the Eastern Interconnection. Lastly, cross-

regional effects are not present in the Texas Interconnection, which largely overlaps with ERCOT. Table 3

describes our control strategy for hydro, nuclear and renewable generation in each model specification.

Electricity consumption in the plant’s planning area is modeled with a logarithmic functional form implying

low responsiveness of capacity factors when electricity consumption is high (Bushnell, Mansur and Saravia,

2008; Davis and Hausman, 2016). We control for power imports into CAISO and imports from Canada

into MRO-US and WECC. Specifically, imports into CAISO have a positive value for plants in California,

and are equal to zero otherwise. Imports from Alberta and British Columbia are assigned to plants in the

NW and RoW regions of WECC, while imports from Manitoba and Saskatchewan are assigned to plants

in MRO-US; imports from Canada take a value of zero for all other plants in the dataset. We also account

for factors that may affect plant productivity, like temperature (measured by heating and cooling degree

days in the plant’s climate division) and precipitation (measured by the Standardized Precipitation Index in

the plant’s climate division). In order to assess plant competitiveness, we calculate monthly fuel cost ratios.

For coal plants, the coal-to-gas cost ratio divides plant-specific variable cost of generation by state average

variable cost of natural gas for power generation. Similarly, for natural gas plants the gas-to-coal ratio divides

plant-specific variable cost of generation by state average variable cost of coal for power generation. We

include the fuel cost ratios with both linear and quadratic terms to account for potential nonlinear responses

to input prices (Cullen and Mansur, 2017). Further, we consider local economic activity and different recovery

rates from the Great Recession through percent changes in state monthly seasonally-adjusted employment

levels in energy intensive sectors (mining and logging, manufacturing, and construction). Finally, we include

19Cubic splines with invariant coefficients by region yield similar results. Creating splines varying by interconnection presents
some challenges in the coal regression: specifically, splines cannot be created for shares of solar-wind-other renewable generation
in the Eastern Interconnection because more than half of the observations have a share equal to 0. A hybrid approach based on
a combination of cubic splines and a linear function for solar-wind-other renewable generation in the Eastern Interconnection
yields estimates that are in line with the baseline, but parallel trends for this specification are not as robust.
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individual, regional and time fixed effects in the regressions. Plant specific effects, γj , may be associated with

time invariant differences in plant characteristics, like ownership (private utilities or political subdivision)

and vintage. γy and γdw capture differential changes in average utilization that are common to all plants in a

given year or day of the week. State by month-of-year fixed effects γsm account for seasonality (which is

important when plants are part of a vast interconnection like WECC) and control for differential changes that

are common to all plants within a state in a given month. Finally, the error term εjt is assumed independent

of the covariates and treatment indicators.

4.4 Data

The econometric model uses a novel panel dataset built from publicly available sources including the U.S.

Department of Energy’s Energy Information Administration (EIA), the U.S. Environmental Protection

Agency (EPA), the Federal Energy Regulatory Commission (FERC) and the California Independent System

Operator (CAISO). The period of our study spans January 2009 through December 2016, including four

years before and four years after the treatment date (January 1, 2013).

4.4.1 EIA data

U.S. electric generating facilities with more than one MW of capacity are required to complete an annual

survey to report plant characteristics. Form EIA-860 collects information on the status of existing plants in

the U.S., while EIA-923 gathers information on plant operations. Relying on these surveys, we assemble a

dataset for power plants within the U.S. portion of six NERC regions (FRCC, MRO-US, SERC, SPP, TRE

and WECC) from 2009 to 2016 (Figure 1). A plant consists of at least one, but typically several, generating

units, which may be added to or retired from service over its lifetime. Although energy output, operating

capacity and fuel input are available at the unit level, we aggregate units of the same technology to plants

to provide an accurate representation of capacity factors and heat rates for combined cycle plants.20 The

advantage of EIA data is that its coverage is comprehensive, including not only large thermal plants, but also

nuclear, hydro and renewable facilities. Plant-level characteristics reported at the annual level include primary

fuel type, operating capacity, month and year when each unit was in service, NERC region and subregion,

20In combined cycle plants, gas is burned in a combustion turbine that generates electricity, and the waste heat from the
turbine is captured and used to create steam that runs a second generator (the steam turbine) to produce additional electricity.
The EIA reports energy output, operating capacity and fuel input for the combustion turbine part (denoted as CT) and the steam
part (denoted as CA) separately but, in general, the CT of a NGCC plant cannot operate independently from its CA. Calculating
capacity factors and heat rates for individual units that report separate output does not provide an accurate representation
of plant utilization and efficiency, since the CT and CA parts of a NGCC plant cannot operate independently. Therefore, we
aggregate energy output, operating capacity and fuel input for CT and CA units within the same combined cycle plant, and
calculate plant-level capacity factors and heat rates. For consistency, we use plant-level data for the other technology types.
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balancing authority and planning area. In addition, the EIA provides monthly plant operating statistics like

energy output (measured by megawatt-hours or MWh of net electricity generation),21 consumption and heat

content by fuel type, and cost of fuel delivered to the plant. We rely on Form EIA-860 for primary fuel type

and operating capacity (U.S. Energy Information Administration, 2022b), and Form EIA-923 for other plant

characteristics (U.S. Energy Information Administration, 2022c). We exclude plants with operating capacity

below 25 MW.22

Plant fuel costs are used to calculate monthly ratios to assess competitiveness (Section 4.3). Fuel costs are

not publicly available for non-regulated plants and plants with nameplate capacity below 50 MW. In these

instances, we use state average costs of fossil fuels for electricity generation provided by the U.S. Energy

Information Administration (2022a). If state average costs are also not available, we impute the fuel costs

assuming the same growth rate of Rocky Mountain Colorado Rail coal prices (with a heat rate of 11,700

Btu/lb and a sulfur content of 0.8 lb/MMBtu) and NW Opal WY natural gas prices from SNL Energy.

4.4.2 CEMS data

We assemble a database of hourly gross electricity generation, heat input and CO2 emissions for NGCC and

coal-fired plants from the EPA’s Continuous Emissions Monitoring System (U.S. Environmental Protection

Agency, 2022). CEMS represents the only publicly available information on high frequency operating data

for thermal power plants in the U.S., and has been widely used in empirical studies (Joskow and Kahn, 2002;

Mansur, 2007; Puller, 2007; Graff Zivin et al., 2014; Kotchen and Mansur, 2014; Davis and Hausman, 2016;

Cullen and Mansur, 2017). We match units in CEMS to EIA generators using a 2015 crosswalk provided by

the EPA (personal communication), and aggregate unit-level information from CEMS at the plant level by

EIA site code and technology type. This step allows us to assign operating capacity to each power plant for

which EPA data is available. We convert CEMS gross generation to net generation using technology-specific

parasitic loss factors from the U.S. Environmental Protection Agency (2020). Finally, as noted above only

thermal plants with capacity above 25 MW are required to report to CEMS; cogeneration, industrial and

commercial facilities are also generally not in CEMS. These exceptions do not result in a substantial loss

of coverage for our analysis: net generation of NGCC (coal-fired) plants from CEMS represents about 86%

(97%) of EIA generation in WECC over the period of our study.

21Net generation excludes power consumption for plant operations.
2225 MW corresponds to the minimum size of generators subject to requirements for monitoring and reporting emissions

under the EPA’s Continuous Emissions Monitoring System (U.S. Environmental Protection Agency, 2022). Plants with capacity
below 25 MW generally use renewable energy sources and represent less than 5% of generating capacity in our sample.
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4.4.3 Other data

We complement information on the operations and status of electric power plants with data from other

sources. We collect hourly scheduled net power imports into the California ISO on twelve transmission

interfaces connecting the state’s electrical grid to the rest of WECC, which are identified based on the

analysis of annual reports on the frequency of import congestion on each intertie (U.S. Department of Energy,

2014; California Independent System Operator, 2022a). Data are available from April 2009 to October 2015

from the Open Access Same-time Information System (California Independent System Operator, 2022c). In

addition, hourly total power imports into the California grid are available from April 2010 to December 2016

from the California Independent System Operator (2022b). We merge these sources to create a time series of

daily power imports into the California grid from April 1, 2009 to December 31, 2016. We also collect monthly

net imports of power from Alberta, British Columbia, Manitoba and Saskatchewan by U.S. destination

(National Energy Board of Canada, 2022), and aggregate them to the interconnection level (MRO-US and

WECC). Hourly power flows between balancing authorities in WECC and the other interconnections are not

publicly available over the period of our analysis.

Electricity consumption comes from the Federal Energy Regulatory Commission (FERC). FERC Form

714 provides hourly load information by planning area (Federal Energy Regulatory Commission, 2022). We

aggregate load to the monthly and daily level, and assign it to power plants based on their planning area.

Monthly population-weighted heating and cooling degree days, as well as measures of water scarcity by

state climate division are from the National Oceanic and Atmospheric Administration (2022). The monthly

seasonally-adjusted employment level in the mining and logging, construction and manufacturing sectors by

state is from the Bureau of Labor Statistics (2022). Finally, we obtain daily carbon futures prices for year

vintage allowances expiring in December of the same year, in $/ton, from the California Carbon Dashboard

(Climate Policy Initiative, 2022).

4.5 Results

4.5.1 Shifts in electricity generation

Table 4 shows the estimates based on equation (1), using daily capacity factors from CEMS as dependent

variable (i.e., t in equation (1) corresponds to one day). For specification (1), covariates include the natural

log of electricity consumption in the plant’s planning area; temperature and precipitation variables; cubic

splines with three knots for each of the state-level hydro, nuclear and renewable generation variables; linear
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and quadratic terms for the fuel cost ratio; change in state employment levels in energy intensive sectors;

power imports from Canada; and power imports into CAISO. Covariates are at the monthly level, except

electric load by planning area and power imports into CAISO, which are available at the daily level. Robust

standard errors are clustered at the plant level.

Leakage would result in lower natural gas generation in California and higher coal and/or natural gas

generation in the rest of WECC. Therefore, in the presence of leakage we would expect a negative and

statistically significant αC , and positive and statistically significant αD and αI for the leaker regions. Provided

that the DID identification assumptions hold, our empirical results suggest that daily capacity factors for

matched NGCC plants in California decreased by 5.8% in response to the introduction of the cap-and-trade

program, relative to similar control facilities. In contrast, capacity factors for matched coal-fired plants

increased by 4.7% in the Pacific Northwest, Nevada and Utah, and by 4.4% in Central and Eastern WECC.

Other estimates are not statistically significant.

Specifications (2)-(4) represent robustness checks. The dependent and independent variables are measured

at the same frequency noted above. In (2), we let spline coefficients vary by NERC interconnection. Relative

to (1), daily capacity factors for matched NGCC plants in California decrease less and at a lower level of

statistical significance; in addition, we find evidence of increased NGCC generation in the Pacific Northwest,

Nevada and Utah, albeit only at a 10% significance level. In (3), we evaluate robustness to more conservative

clustering. Specifically, we consider clustering by balancing authority as a compromise between widening the

scope of clustering to be more in line with the level of treatment (which is assigned at the interconnection

level), and having a sufficient number of clusters for inference. Lastly, in (4) we present results based on

an alternate matching set. As in (1), we use pre treatment average capacity factors over four hour blocks

during the day as matching variables. However, we coarsen the matching variables based on an alternate set

of cut points (0.3, 0.5 and 0.7 for NGCC plants, 0.6 and 0.8 for coal-fired plants), which are based on visual

inspection of the empirical distribution of the 2009-2010 average capacity factors by hour.23 Results from

specifications (3) and (4) are consistent with those in (1).

In Table 5, we explore potential treatment heterogeneity between day and night using hourly measures of

plant utilization based on the CEMS data (i.e., t in equation (1) corresponds to one hour). Electric load by

planning area also has hourly frequency, while all other covariates are measured at the same frequency noted

above. The treatment effects in equation (1) are interacted with a time-of-day indicator (equal to 1 between

7am and 7pm) to yield separate estimates for day and night. Specification (5) is similar to (1), but uses

23Coal-fired plants (particularly in the Southwest region of WECC) tend to be more heavily utilized than NGCC plants,
motivating our choice of higher capacity factors as cut points for this technology type.
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hourly (rather than daily) capacity factors as dependent variable. Results suggest a statistically significant

reduction of NGCC capacity factors in California by 8.9% during daylight hours, relative to matched control

facilities. In contrast, relative increases in capacity utilization at Western coal plants (outside California)

occur throughout the day (i.e., during both daylight and evening hours), and are higher in the evening

hours.24 We also estimate separate effects for every hour of the day by interacting each treatment indicator

with 24 hourly indicators. Results are presented in Figure 4, and suggest a statistically significant reduction

in NGCC capacity factors in California between 8am and 8pm. Increases in capacity utilization at Western

coal plants are statistically significant during all hours of the day in the NW. Further, relative increases

in capacity utilization in the NW and RoW regions happen in the evening hours. Note that changes in

utilization rates do not tend to occur around the same hour, but are concentrated during daylight hours

for California and in the evening hours for the leakers. These patterns urge caution in lending a causal

interpretation to the empirical estimates, which may be biased due to confounding factors.

Specifications (6)-(8) are robustness checks that control for nuclear and renewable generation more flexibly,

as described in Table 3.25 The dependent and independent variables are measured at the same frequency as in

(5). The comparison of results from (5) and (6)-(8) yields two insights. First, the reduction of NGCC capacity

factors in California during the day remains statistically significant but decreases in absolute value (i.e.,

the treatment effect gets closer to zero) in the more flexible specifications. Thus, (5) tends to overestimate

the reduction in NGCC plant utilization from the cap-and-trade program during daylight hours, due to the

symmetric structure imposed on the relationship between NGCC capacity factors and non-fossil generation.

Second, statistically significant coal treatment effects in the leaker regions generally increase in magnitude, as

we control for non-fossil generation more flexibly. Robustness checks also suggest a statistically significant

increase in utilization of NGCC plants in the NW and coal-fired plants in the SW, albeit only at a 10% level.

Thus, (5) tends to slightly underestimate the policy-induced increase in plant utilization outside California.

Overall, the bias in the estimates from the coal regressions appears to be smaller than that associated with

the estimates from the NGCC regressions.

As a last robustness check, Figure A3 in the Appendix shows the changes in plant utilization rates across

hours of the day, relative to matched counterparts, based on specification (6). Here, bias from solar is

24To address concerns that imports may be “bad controls” in this setting because they are themselves outcomes of the
cap-and-trade policy, we removed imports as a control variable to test robustness. Results are in line with those in Table
5, suggesting that controlling for CAISO imports is not biasing the results. This is consistent with imports not increasing
significantly as a result of the cap-and-trade policy, though their composition may have changed, and in line with the findings of
Davis and Hausman (2016).

25Specification (8) can only be run for NGCC because the number of observations in the coal database is not sufficient to
create nuclear splines that vary by interconnection.
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expected to be less of a concern, because we allow for more flexible estimation of in-state non-fossil generation

and add controls for non-fossil generation in the neighbouring regions. However, the estimated patterns look

similar to those in Figure 4.

4.5.2 Evaluating the identification assumptions

Several assumptions must hold for our empirical estimates to provide an unbiased measure of the effect of

California’s cap-and-trade program on baseload power plant operations in the Western Interconnection. We

examine the plausibility of each assumption in turn.

Unconfoundedness. Our empirical strategy assumes that, conditional on observable plant characteristics,

the distribution of the outcome is the same among treated and control plants. If this holds, biases in the

unconditional differences-in-differences estimates are removed. As noted above, we match on capacity factors

over four blocks of hours within the day, averaged over 2009-2010. Table 6 presents the t-statistics of tests of

identical means of capacity factors (by hour and block of hours) in the treated and control groups, based on

the matching procedure described in Section 4.2. Tables A2 and A3 in the Appendix show balance results for

two additional plant characteristics: heat rate (a measure of efficiency) and age. The balancing tests confirm

that matching achieves statistically indistinguishable means between treated plants in WECC and control

plants. Before matching, there are significant differences between plant characteristics, particularly with

respect to plant efficiency; after matching, the null of identical means in both groups is no longer rejected for

any of the variables. This suggests that our matching procedure removes much of the potential bias.

Parallel trends. A second key assumption is that utilization of matched treated and control plants

would follow parallel trajectories over time, in the absence of the treatment (Angrist and Pischke, 2009).

Constructing counterfactual outcomes using observations on plants from another interconnection poses a

challenge, because these plants do not “share the same economic environment” (Heckman et al., 1997) as the

WECC plants; in particular, California’s electricity market was transformed at a rapid pace over the period of

our study. The parallel trends assumption cannot be directly tested, but we assess its plausibility in several

ways. Figure A2 in the Appendix shows the capacity factor trajectories of matched treated and control plants

by technology type between 2009 and 2016.26 We conduct two tests to examine whether treated and control

plants follow systematically different trends in the outcome variable before treatment. A common approach

in the literature is to test the equivalence of time trends between treated and control groups prior to the

intervention (Autor, 2003; Kearney and Levine, 2015; Fell and Maniloff, 2018; Jaeger et al., 2020). We use

26Note that these trajectories are unconditional, and the inclusion of covariates in the DID model serves to adjust for
observable differences between treated and control groups in these plots.

20



the following regression:

Yjt =
∑
qd
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jtβ + γj + γy + γdw + γt + εjt (2)

where Bq is a seasonal dummy equal to 1 if t lies in season q and 0 otherwise, DC
j = 1 if plant j is in

California, DL
j = 1 if plant j is in one of the leaker regions in WECC, T d

t is a time-of-day indicator to

yield separate estimates for day and night (where index d is equal to 1 if t is between 7am and 7pm, and

0 otherwise), and αqd
C and αqd

L are the seasonal effects (or event study coefficients) estimated for specific

times of the day.27 Other variables are defined as in specification (5). Pre treatment seasonal effects that are

statistically significantly different from zero would support the assumption of parallel trends between treated

and control groups prior to the intervention. Figures 5 and 6 present the event study coefficients by treated

region, technology type and time of day. While in most cases the pre treatment effects are not individually

statistically different from zero, these coefficients are imprecisely estimated. Therefore, the test results do not

provide conclusive evidence to rule out the possibility of statistically significant pre treatment effects.

Next, we conduct a parallel trends test that compares the treatment effects in the baseline to the treatment

effects in a specification that includes group-specific trends (Kearney and Levine, 2016; Kahn-Lang and

Lang, 2020). If adding a trend changes the interpretation of the coefficients of interest, trend differences

between treated and control groups prior to the intervention cannot be ruled out. We introduce linear

and quadratic trends for each of the treatment group in hourly specification (5). If a treatment effect is

statistically significant, we examine how the introduction of a trend affects its sign and significance, and

present the results in Table 7. Adding a trend does not change the sign and significance of the estimated

treatment effects for coal-fired plants in NW. The change in utilization rates at RoW coal-fired plants in

the evening hours also remains positive and statistically significant when group-specific trends are included.

However, the estimated effects for NGCC in California and Coal in RoW during daylight hours are not robust

to the inclusion of trends, raising concerns about the causal interpretation of our results. Based on the

evidence from the two parallel trends tests, we cannot rule out that treated and control groups were trending

differentially before 2013.

To address this challenge, we adopt the robust inference method proposed by Rambachan and Roth

(2022a) to test sensitivity of statistically significant average treatment effects to violations of parallel trends.28

27We use seasonal dummies to account for cyclical factors that may affect plant utilization. In line with National Renewable
Energy Laboratory (2011), seasons are defined as follows: Summer = June, July, and August; Fall = September and October;
Winter = November, December, January, and February; Spring = March, April, and May.

28In a similar vein, Ang (2021) and Rose (2021) use this method to conduct robust inference on statistically significant
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Their approach builds on the intuition that, even if pre trends are not parallel, the difference in trends

observed before treatment is informative about post treatment differences that would have occurred absent

treatment. The researcher chooses the extent to which the counterfactual difference in trends post treatment

deviates from the extrapolation of the pre-existing difference in trends by specifying a parameter M, which

may be informed by context-specific knowledge: the bigger M is, the larger the deviation from the pre-existing

difference in trends. Given a value of M, we can construct a robust confidence interval for the treatment effect.

Further, we can examine robustness of the estimated treatment effect under varying assumptions on potential

violations of parallel trends. For example, we can examine what deviation from the pre-existing difference in

trends is needed to render a treatment effect statistically insignificant. Tighter bounds on the confidence

intervals may be obtained by imposing sign and monotonicity restrictions that draw on context-specific

knowledge.

Using equation (2), we estimate seasonal treatment effects for all regions and baseload technology types

in WECC. Next, we construct robust confidence intervals for the seasonal treatment effects that do not pass

the test in Table 7 (i.e., CA NGCC Day and RoW Coal Day), using the R code HonestDiD (Rambachan and

Roth, 2022b). To illustrate, Figure 7 presents sensitivity analyses for these event study coefficients in the first

period after treatment (Jan and Feb 2013). We compare the OLS confidence intervals (in blue) to the 95%

confidence intervals from Rambachan and Roth’s method (in red), under varying restrictions and for different

values of M. Each panel represents a specific set of restrictions on the sign of the bias of the post period

event study coefficients (which are appropriate in cases with simultaneous policy changes) and monotonicity

of the underlying difference in trends. For example, our treatment effects for California may overestimate

the reduction in NGCC plant utilization from the cap-and-trade program, due to potential confounders that

would have a coincident negative effect on capacity factors (e.g., complementary measures under AB 32).

Therefore, in panel (b) we impose that the bias of California’s event study coefficients after treatment is

negative. On the other hand, the net effect of the confounders on NGCC capacity factors may also be positive

(e.g., if the SONGS replacement strategy empirically identified by Davis and Hausman (2016) continued after

the introduction of the cap-and-trade policy, and gas utilization in California to meet the lost generation

from SONGS increased more than it decreased due to the effect of complementary measures under AB 32).

Although this seems less likely, in light of the discussion in Section 4.5.1, we test the robustness of our results

by considering positive bias in panel (c). Lastly, it is reasonable to assume that the downward sloping pre

trend in California’s NGCC utilization in Figure 5 would have continued in the absence of the cap-and-trade

average treatment effects.
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program, due to the effect of other policies promoting renewable investment and generation in 2013-2016.

This motivates our restriction of a monotone decreasing trend for California. Following Rambachan and Roth

(2022a)’s recommendation, we use fixed length confidence intervals (FLCIs) when no restrictions are imposed,

and conditional FLCIs under sign and monotonicity restrictions.

Turning to the results presented in each panel, a value of M equal to zero corresponds to a linear

extrapolation of the pre-existing trend to the post treatment period; higher values of M reflect group-specific

deviations from the pre existing trends that are calibrated on empirical estimates, and are driven by the

evolution of factors that affect NGCC plant utilization in California (solar generation) and coal-fired plant

utilization in the leaker regions (natural gas prices and thus coal-to-gas ratios) beyond the climate legislation.

We benchmark M following Rambachan and Roth (2022a). First, we run a regression of capacity factor on

standardized nuclear and renewable covariates and other determinants in X
′

jt for each region and technology

type. We find that a 1 standard deviation increase in solar generation corresponds to a 0.010 decrease in

NGCC generation in California over the period of our study. Further, a 1 standard deviation increase in the

coal-to-gas ratio corresponds to a 0.0763 (0.02361) decrease in NW (RoW) coal capacity factors. Next, we

use these estimates to benchmark the value of M in each region. For California, a value of M equal to 0.0003

(0.001) {0.004} corresponds to changes in the differential slope of solar generation of about one fortieth (one

tenth) {one third} of a standard deviation. For the RoW region, a value of M equal to 0.0006 (0.002) would

correspond with allowing for changes in the differential slope of the coal-to-gas ratio of about one fortieth

(one tenth) of a standard deviation. We also construct robust confidence intervals for an intermediate value

of 0.0013.

The estimated treatment effect for California in January-February 2013 is negative, and the OLS confidence

intervals rule out zero. When we assume a linear extrapolation of the pre-existing trend to the post treatment

period (M=0), our conclusions are similar, but confidence intervals are tighter. As M grows larger, confidence

intervals become less informative, as expected. However, the estimated confidence intervals exclude zero for

all values of M, indicating that, given plausible non-linear deviations from the pre-existing differences in

trends, we cannot rule out a statistically significant treatment effect of the policy in the first period after

treatment. In the RoW, the OLS estimate is slightly negative but the confidence interval includes zero.

When we allow for linear violations of parallel trends, we cannot rule out a statistically significant increase in

coal-fired capacity factors in the first period after treatment.

Robust confidence intervals for all treatment effects under varying restrictions and for different values

of M are presented in Figures A4-A5 in the Appendix. For M = 0, we find that 9 seasonal daily effects in
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California (out of 17 post treatment effects) are statistically significant under no restrictions; 16 seasonal

effects are statistically significant under monotonicity and negative bias; and 10 seasonal effects are statistically

significant under monotonicity and positive bias. Further, 8 seasonal daily effects are statistically significant

in RoW, and 7 of these are in the first part of the post treatment period (Jan-Feb 2013 till Summer 2014).

Stability of unit treatment values. The empirical framework assumes that plant-level capacity

utilization depends on the treatment status of the corresponding plant, but is independent of the treatment

status of other plants. This is the stable unit treatment value assumption. By designating control plants

outside of WECC, we assume that the policy does not affect facilities in other NERC regions This is plausible,

because the Western, Eastern and Texas Interconnections operate largely independently from each other

and power transfers between them are limited. As a result, spillovers and market equilibrium effects on the

designated control plants in the Eastern and Texas Interconnection are unlikely. Although not testable in

principle, we believe that the SUTVA holds in our study.

Treatment exogeneity and overlap. Two additional assumptions that are required for identification

are treatment exogeneity and overlap. In our setting, treatment is exogenous because participation in the

cap-and-trade program does not depend on the outcomes. The overlap assumption requires the support of the

distribution of covariates in the treated group to overlap the support of the distribution of these covariates in

the control group. Coarsened exact matching automatically restricts the matched data to areas of common

support, as discussed in Section 4.2: this helps avoid making inferences based on extrapolation, which are

known to be highly model dependent. Thus, we believe that the overlap condition is satisfied in our study.

4.5.3 Leakage estimates

Based on seasonal effects estimated for specific times of the day and their confidence intervals, we infer CO2

emission leakage predictions in 2013 and 2016. Our focus on these two years is intended to enable more direct

comparisons with the simulation results. The leakage rates in Table 8 consider seasonal effects for regions and

technology types that are statistically significant for at least one time of the day, based on specification (5)

(i.e., CA NGCC, NW Coal and RoW Coal).29 Further, these rates are based on robust confidence intervals

that allow for linear violations of parallel trends (M=0) for CA NGCC Day and RoW Coal Day, and OLS

confidence intervals for CA NGCC Night, NW Coal Day and Night, and RoW Coal Night. We assume

negative bias and monotonicity restrictions for CA NGCC Day, and no restrictions for RoW Coal Day. To

calculate the leakage rates implied by the econometric model, we proceed as follows.

29Leakage bounds based on seasonal impacts for all regions and baseload technology types (NGCC and Coal) are too wide to
be informative, and thus we do not present them in the paper.
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First, we identify seasons and times of day with contemporaneous changes in capacity factors in California

and the leaker regions in the expected direction (negative for California, and positive for at least one of the

leaker regions). Only these seasons/periods are included in the leakage calculation based on our empirical

estimates. In contrast, if a season/time-of-day does not exhibit contemporaneous changes in capacity factors,

or if the estimated changes are not in the expected direction (i.e., positive changes in California’s capacity

factors, or negative changes in California’s capacity factors coupled with zero or negative changes in capacity

factors for all leaker regions), we do not consider it in the leakage calculation. We use the lower (upper)

bound of the 95% confidence interval for the estimated seasonal effects to calculate a lower (upper) bound for

the generation, emissions and leakage rates associated with the econometric estimates.

Next, we find the estimated generation leakage by multiplying the seasonal treatment effects by the total

generation capacity of matched plants by region, year and technology, and the number of hours in that season.

Based on these generation leakage estimates, we calculate the change in local CO2 emissions in California

(E1) and WECC-NonCA emissions (E4), based on region-, year- and technology-specific heat rates and CO2

emission rates. The resulting change in WECC emissions (E5 = E1 +E4) is between −10.49 and 15.26 million

metric tons in 2013, and between −15.60 and 11.35 million metric tons in 2016.

As noted above, emissions subject to the cap-and-trade regulation include not only in-state emissions,

but also emissions associated with power imports into California. As a result, the change in regulated

emissions includes the change in local emissions in California (E1), as well as the change in emissions

associated with power imports into California, relative to a counterfactual (E2). Since the change in import

emissions E2 cannot be obtained from the econometric estimates, we proceed as follows. First, denote as

I1 the “Total Covered Emissions” for electricity importers reported by CARB in its annual GHG emission

inventories (California Air Resources Board, 2022d). These emissions (36.20 million metric tons CO2e in

2013 and 21.02 million metric tons CO2e in 2016) form the basis to determine compliance obligations in the

cap-and-trade program. Next, we construct the year-specific counterfactual import emissions I2 assuming the

same percentage change between counterfactual emissions and emissions under the carbon cap predicted by

JHSMINE. The difference between I1 and I2 yields the estimated emission reduction E2 on Table 8.30

Finally, we calculate the implied leakage rates. A common metric used in the literature (e.g., Bushnell

et al. (2014); Caron et al. (2015); Fell and Maniloff (2018)) is the physical leakage rate, which reflects the

share of local emission reductions that is offset by emission increases in the rest of the system. In our setting,

30To illustrate, in 2013 JHSMINE predicts import emissions of 51.25 million metric tons for the no cap scenario and 39.41
million metric tons for the carbon cap scenario. This implies that no cap emissions would be 30% higher than emissions under
the cap. Hence, the counterfactual import emissions for the empirical analysis are 47.07 (= 36.20 × 1.30) million metric tons
CO2e, and the estimated import emission reduction is 10.87 (= 36.20 − 47.07) million metric tons CO2e in 2013.
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this would be defined as 100%× (−E4/E1). Given California’s first deliverer approach, we adopt an alternate

leakage metric that considers the difference between the decrease in regulated emissions and the decrease in

system-wide emissions in WECC. In line with Chen et al. (2011) and Xu and Hobbs (2021), we define leakage

as 100% − E5/E3 = (1 − E5/E3) × 100%. A positive leakage rate indicates a mismatch between WECC

emissions and California’s regulated emissions. In particular, if the leakage rate is positive but below 100%,

regulated emissions decrease, but total emissions in WECC fall by a lower amount; if the leakage rate exceeds

100%, regulated emissions fall, but WECC emissions actually increase. Given robust confidence intervals

that allow for linear violations of parallel trends, the leakage rates implied by our econometric estimates are

between 40.8% and 217.9% in 2013, and between 17.4% and 177.4% in 2016. The lower bounds of these

intervals are within the range of earlier empirical estimates: for example, in the context of RGGI, Fell and

Maniloff (2018) find an electricity-sector specific leakage of about 50%, while the leakage interval predicted

by Zhou and Huang (2021) is 43%-85%. However, direct comparisons are difficult due to the use of different

metrics that are less relevant in our setting: for instance, both studies cited above calculate a physical leakage

rate.

5 Simulation model

We use a partial equilibrium model of the electricity sector (JHSMINE) to simulate shifts in electricity

generation in the Western Interconnection in response to the introduction of California’s cap-and-trade

program. Based on these estimates, we infer CO2 emission leakage predictions in 2013 and 2016. This section

presents an overview of the model, describes the scenarios and sources of data used for JHSMINE, and

discusses the simulation results. The model formulation is presented in Section A of the Appendix.

5.1 Overview

The Johns Hopkins Stochastic Multistage Integrated Network Expansion model is a long-term transmission-

generation-storage expansion planning model of the electricity sector based on scenario-based stochastic

programming. The model was applied to the Western Electricity Coordinating Council using a reduced

network based on the WECC 2026 Common Case (WECC Staff, 2016) to provide insights into the transmission

planning process (Hobbs et al., 2016; Xu and Hobbs, 2019) and efficiency of border carbon adjustment schemes

in the Western U.S. (Xu and Hobbs, 2021). The reduced network consists of 361 buses, 712 transmission

lines, and 1,504 existing aggregate generators of various technology types, including coal steam plants and
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combined cycles. Key modeling assumptions include perfectly inelastic demand, perfect competition, and

perfect foresight of market participants.

The version of JHSMINE in this paper builds on the one in Xu and Hobbs (2021), but differs from

it in several important ways. While Xu and Hobbs (2021) consider a capacity expansion planning model,

we run a production cost model that simulates hourly commitment and dispatch decisions under alternate

carbon pricing scenarios, taking generation capacity as given. Further, in order to generate plausible leakage

predictions, we introduce features that enhance realism in the model formulation. First, we approximate power

flows on the transmission network by a direct current (DC) load flow (Gabriel et al., 2013). The resulting

DC OPF uses a linearized approximation of the alternating current (AC) power flow equations (Schweppe

et al., 1988), and allows for a more accurate representation of power flows than the transshipment model in

earlier formulations, which ignores Kirchhoff’s Voltage Law. Second, we include relaxed (non-integer) unit

commitment variables in the model. Third, with respect to power imports into California, the original model

can only simulate a scenario in which all imports are considered specified power and assigned facility-specific

emission factors (100% specified), or a scenario in which all imports are considered unspecified and assigned

the default emission factor of 0.428 metric ton CO2/MWh (0% specified). The observed regime in California

is a hybrid of the two, where source specification was not possible for about 26% of electricity imports, on

average between 2013 and 2016 (California Air Resources Board, 2020a). To make simulation results more

directly comparable with the empirical estimates, we revise the formulation of JHSMINE by unbundling the

non-electrical attributes of power generation (emissions and renewable energy credits, or RECs). Xu and

Hobbs (2021) model these attributes with one variable, cpf , representing the emissions and RECs associated

with a contract (in MW) sold by a generator to a load serving entity. In contrast, we allow for emissions and

RECs to be traded through separate contracts. This change allows us to model a regime where (a) electricity

producers can enter bilateral contracts where power is specified, or sell unspecified power to a pool, and

(b) load serving entities can buy specified power through bilateral contracts, or unspecified power from the

pool. To obtain the emissions of power imports to California, energy contracts between the California LSE

and out-of-state generation companies are assigned an emission rate. When imports are considered specified

power, the emission rate is plant-specific. When imports are considered unspecified power, the emission rate

is set equal to the default emission factor of 0.428 metric ton CO2/MWh.
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5.2 Scenarios

We consider two scenarios: (a) a benchmark scenario with no regulation of GHG emissions (“No cap”); (b) a

scenario where California generators and the California LSE are subject to a first deliverer cap-and-trade

program (“Carbon cap”). The carbon price is assumed and set equal to average historical values over the

period of our study, rather than determined endogenously in the model. In both scenarios, specified electricity

imports to California are assigned facility-specific emission factors, while unspecified imports are assigned the

default emission factor of 0.428 metric ton CO2/MWh. Further, both scenarios include RPSs and assume the

same share and composition of specified imports into California.

5.3 Data

To ensure comparability of the data used for the econometric model and the simulation model, we modify

the JHSMINE dataset in Xu and Hobbs (2021) making use of the installed generation capacity, average fuel

costs and load from the econometric model dataset. In addition, we parameterize the shares of California

imports by fossil fuel generation type based on historical data from CARB, in order to ensure that the level

and composition of power imports into California in JHSMINE are comparable to historical values.

As noted in Section 5.1, JHSMINE’s test system is a network reduction of the Western Interconnection

that consists of 1,504 existing aggregate generators. There is no one-to-one correspondence between aggregate

generators in JHSMINE and power plants in the empirical analysis. However, unit-level data is the basis for

modeling the aggregate generators. Thus, we replace the existing generation capacity in JHSMINE (based

on WECC’s 2026 Common Case database) with unit-level operating capacity from Form EIA-860 in 2013

and 2016 (U.S. Energy Information Administration, 2022b). Average fuel costs by state, technology type

and month-year are from the econometric model database, while CO2 emission rates by fuel type are from

the U.S. Energy Information Administration (2022e).31 Minimum up/down times for coal plants, NGCCs

and combustion turbines are drawn from Herrero et al. (2018). JHSMINE assumes that all transmission

reinforcements in the WECC 2026 Common Case have been brought online. We are unable to replicate

the network topology in 2013-2016 because the reduction algorithm (Shi et al., 2012) does not provide a

one-to-one correspondence between the aggregated branches and the original transmission lines. Consequently,

removing the lines added between 2013 to 2026 would not be possible without recreating the transmission

network database. However, the use of the 2026 network topology does not significantly affect our results,

31The CO2 emission rates from the EIA are 117 lb/MMBtu for natural gas and 205.70 lb/MMBtu for bituminous coal. These
values are closely aligned to the average emission rates from the econometric model dataset (118.05 lb/MMBtu for natural gas in
California, 208.37 lb/MMBtu for coal in NW WECC, and 208.74 lb/MMBtu for coal in RoW WECC).
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because reinforcements on high-voltage transmission lines only add 88.5 GW, expanding capacity to 4,040.9

GW.32

Electricity consumption in JHSMINE is from WECC’s long term planning tool (LTPT) (Xu and Hobbs,

2021). To ensure comparability with the demand levels in our econometric analysis, we replace load from

the LTPT with hourly consumption by planning area from FERC Form 714 (Federal Energy Regulatory

Commission, 2022). Next, we identify forty-eight representative days per year to run the model in 2013 and

2016, and select at least six representative days for each season of the year (as defined in Section 4.5.2).

Table A4 in the Appendix summarizes the assumed state-level RPS requirements for 2013 and 2016,

which are drawn from the DSIRE database (DSIRE, 2022).33 Load serving entities in states with an RPS are

subject to an alternative compliance penalty of 100 $/MWh if they fall short of renewable energy credits. The

shares of specified imports over total power imports in California (SSIy), as well as the shares of imports by

fossil fuel generation type (SSIf,y), are calculated based on historical data from the California Air Resources

Board (2020a); these shares are presented in Table A5 in the Appendix. Finally, the carbon price is set equal

to average historical values in California ($ 13.53/metric ton CO2e in 2013, and $12.84/metric ton CO2e in

2016).

5.4 Results

5.4.1 Shifts in electricity generation

Table 9 presents the predicted impact of California’s cap-and-trade program on capacity factors in WECC. We

run JHSMINE for forty-eight representative days in 2013 and 2016, under a no cap and a carbon cap scenario.

As noted above, WECC Regions and seasons are defined as in the econometric model. The introduction of

the carbon policy mainly affects utilization at NGCC and coal-fired plants in WECC, supporting our choice

to focus on these technology types in the empirical analysis. Comparing counterfactual (no cap) scenarios

across years, generation shifts are due to lower natural gas prices and higher RPS requirements in 2016.

For example, lower natural gas prices in 2016 determine an increase in NGCC generation in all WECC

regions, and solar capacity factors are higher in regions with a more stringent RPS requirement in 2016 (e.g.,

California, Arizona and New Mexico). Comparing counterfactual and policy scenarios for the same year, the

introduction of the carbon policy yields minor generation shifts in 2013: capacity utilization decreases by

about 0.7% at California NGCC plants, and the highest increase outside California is in the NW region (+1%).

32The list of line additions is available on the Release Notes for WECC 2026 Common Case, Version 1.5, p.23.
33When a state sets RPS targets for multiple types of utilities, we apply the target for investor-owned utilities to all utilities

in that state. This is unlikely to significantly affect our results since the target mostly impacts long-term investment.
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Note that natural gas prices are relatively high in 2013: as a result, coal-fired plants are heavily utilized, and

power imports into California in the carbon cap scenario are sourced at NGCC plants elsewhere in WECC.

Generation shifts are more evident in 2016, when coal and carbon prices are at comparable levels but natural

gas prices are lower, relative to 2013. The counterfactual scenario in 2016 is thus characterized by lower

generation at coal-fired plants, leaving more room for leakage from this technology type after the introduction

of a carbon price. This yields a large policy-induced decrease in NGCC capacity factors in California (9.6%),

a combined increase in capacity utilization by 3.8% at Western coal plants outside California (mainly in the

NW region), and by 12.8% at Western NGCC plants outside California (mainly in the SW region).

JHSMINE is well suited to identifying average changes in hourly capacity utilization that are solely due

to the effects of the cap-and-trade policy, ceteris paribus. Thus, we calculate average changes in capacity

factors between the two simulated scenarios (carbon cap - no cap) at hours 0-23 for each WECC region and

technology type (Figures 8 and 9). In 2013, California’s NGCC capacity factors decrease between 8am and

7pm due to the cap-and-trade policy. Note that bias from solar is not a concern in these results, because

solar generation is the same under both scenarios. Lower capacity factors in California are mainly offset by

coincident changes in utilization rates at NGCC units in the NW and RoW leaker regions. Moreover, in the

evening hours NGCC capacity factors at California’s gas plants decrease slightly while coal capacity utilization

in the NW and RoW increases, albeit by a smaller magnitude than predicted by the econometric model.

In 2016, the average reduction of in-state capacity utilization predicted by JHSMINE is more substantial,

particularly between 2pm and 7pm. This is offset by coincident positive changes in utilization rates at NGCC

plants in the rest of WECC, mainly in the SW and RoW. Coal capacity factors also increase throughout the

day in NW, and in the early morning hours in SW and RoW.

5.4.2 Leakage estimates

Table 10 presents the distribution of emissions among WECC regions, as well as the implied leakage rates (as

defined in Section 4.5.3) in 2013 and 2016. We emphasize two important differences, relative to the results

in Table 8. First, when calculating leakage based on empirical estimates, we use seasonal average impacts

estimated for specific times of the day. As noted above, we consider seasons and times of day that exhibit

contemporaneous changes in capacity factors in the expected direction, regardless of statistical significance.

Further, we consider seasonal effects for regions and technology types that are statistically significant for at

least one time of the day in specification (5) (i.e., CA NGCC, NW Coal and RoW Coal). In contrast, the

results in Table 10 are based on daily averages for all technology types and WECC regions. Second, for a
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given technology type and region, the econometric model only accounts for changes in emissions associated

with the subset of treated units for which good matches exist among available controls, while JHSMINE

considers all aggregate generators.

We find that local emissions in California (E1) decrease by only 1.10 million metric tons in 2013, but by

6.58 million metric tons in 2016. Given the estimated changes in import emissions relative to the no cap

scenario (11.83 million metric tons CO2e in 2013 and 13.88 million metric tons CO2e in 2016), regulated

emissions in California decrease in both 2013 and 2016 (by 12.94 and 20.46 million metric tons, respectively),

but total emissions in WECC fall by much less (in 2013) or slightly increase (in 2016) due to higher unregulated

emissions out-of-state. In particular, JHSMINE suggests that most policy-induced change in out-of-state

generation and emissions takes place in the NW and SW regions of WECC. Plants in the RoW only adjust their

output slightly in response to California’s cap-and-trade program, leading to small emission increases. This

contrasts with our empirical estimates, which suggest that coal-fired generation increased in the Northwest

and RoW regions, while other treatment effects are not statistically significant. The leakage rates implied by

JHSMINE are 94.3% in 2013 and 110% in 2016, in line with the predictions from earlier simulation-based

partial equilibrium models that use the same leakage metric (Chen et al., 2011; Xu and Hobbs, 2021).

6 Comparison of results

JHSMINE is well suited to isolating the effects of California’s cap-and-trade program on power plant operations

in WECC, but yields ex ante predictions based on assumed firm behavior under perfectly inelastic demand,

perfect competition, and perfect foresight of market participants. Although we parameterize the model using

historical data, it is not surprising that its predictions may differ greatly from seasonal changes in plant

utilization that are observed in the data. For example, a comparison of estimated and simulated coal-fired

capacity factors in NW in Spring 2016 shows that JHSMINE does not predict a drop in coal utilization due to

record low natural gas prices in the U.S. (U.S. Energy Information Administration, 2020), which is captured

by a negative and statistically significant seasonal effect. In contrast, the econometric model measures the ex

post realized effects of the policy, but the empirical estimates may be imprecise due to threats to identification

in this policy setting and inaccurate representation of transmission network constraints.

In this section, we compare the ex ante expected impacts of the policy with its ex post realized impacts,

starting with the effects on electricity generation shifts. With regard to the predicted source of leakage in

WECC, JHSMINE suggests that the policy-induced reduction in capacity factors at California NGCC plants
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was offset by higher NGCC capacity utilization in the NW and SW regions of WECC, as well as coal capacity

utilization in the NW; in contrast, the econometric model suggests increases in capacity utilization at coal

plants in the NW and RoW. What factors may explain these differences? In the simulation model, the shares

of specified imports into California by fossil fuel generation type are parameterized based on historical values,

but the composition of unspecified imports is unknown. Thus, the findings of the econometric model may be

consistent with higher levels of imports of out-of-state coal generation as unspecified power (relative to the ex

ante predictions), and an incentive for electricity importers to not report the emission content of out-of-state

higher-emitting generation resources in order to attain the lower default emission rate for GHG compliance

obligations (“laundering”).

With regard to heterogeneity between day and night, the changes in plant utilization rates across hours

of the day based on the simulation model (Figures 8 and 9) are generally consistent with the expected

substitution patterns at regulated and leaker units (i.e., decreases/increases in utilization rates that tend

to occur at the same hour, given limited energy storage capacity over the study period). In contrast, the

changes based on the econometric model (Figure 4) suggest that capacity factor reductions at California’s

gas plants mainly occur in the middle of the day, while coal capacity factor increases outside California are

concentrated in the evening hours. Direct comparisons between these sets of results are difficult because the

changes based on the econometric model are relative to matched controls, while the changes based on the

simulation model are relative to the benchmark scenario with no regulation of GHG emissions. Further, the

empirical model yields average effects throughout the post treatment period (2013-2016), while JHSMINE

yields results for specific years (2013 and 2016). Bearing these caveats in mind, the changes based on the

econometric model are likely to be confounded by the effects of coincident policies and market developments,

such as increased solar generation brought about by California’s renewable portfolio standard. However, the

diurnal patterns observed in Figure 4 are not solely driven by NGCC being crowded out by solar generation,

because the changes based on the simulation model (where bias from solar and other confounding factors is

not a concern) also suggest a policy-induced reduction in utilization at California’s gas plants during daylight

hours.

Lastly, we compare the impacts of the policy on emissions and leakage. The results in Tables 8 and

10 differ for the reasons discussed in Section 5.4.2. To enable more direct comparisons, we calculate the

leakage rates implied by JHSMINE when considering only emission changes associated with NGCC plants

in California and coal-fired plants in the NW and RoW leaker regions. Table 11 presents the results, and

shows robustness of confidence intervals from the econometric model to removing bias and monotonicity
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restrictions, under linear (M = 0) violations of parallel trends. The CO2 emission leakage rates predicted

by JHSMINE are 95.5% in 2013 and 83.3% in 2016. Note that the aforementioned adjustment does not

significantly affect the 2013 rate, relative to Table 10, but yields lower leakage in 2016, because it does not

consider higher emissions in the Southwest region of WECC. Turning to the confidence intervals implied by

our empirical estimates, the lower bound estimates from the econometric model are in the 40.8%-42% range

in 2013 and 17.4%-23.1% range in 2016. Ex post rates below ex ante rates are consistent with contracts

not being shuffled as easily as predicted by the simulation model, which does not account for transaction

costs that would discourage these rearrangements. This result is also in line with previous findings in the

literature: for example, in the context of RGGI, Chen (2009) predicts relative leakage rates of 90%-100%,

while empirical estimates from Zhou and Huang (2021) are in the 43%-85% range. On the other hand, the

upper bound estimates from the econometric model are around 200%. This level is outside the range of

predictions from simulation-based partial equilibrium models in the literature that use the same leakage

metric, but is not entirely unrealistic: similar rates would be observed if the reduction in NGCC generation

in California was offset by an increase in coal-fired generation outside California of the same magnitude, and

there was no change in emissions associated with power imports.34

7 Concluding remarks

In this paper, we seek to identify CO2 emission leakage in the electricity sector from California’s AB 32

cap-and-trade program in the first four years of policy implementation. We estimate shifts in electricity

generation at baseload power plants in the Western Interconnection based on two models: a simulation-based

partial equilibrium model of the electricity sector (JHSMINE) that includes salient features of the observed

cap-and-trade program and is parameterized using market data in 2013-2016; and an econometric model

applying a quasi-experimental design with coarsened exact matching and a robust inference method that

does not require the parallel trends assumption to hold exactly. Based on the estimated shifts in electricity

generation, we infer CO2 emission leakage predictions in 2013 and 2016. We then compare the ex ante

expected impacts of the policy to the ex post realized impacts. This allows us to identify critical assumptions

driving the simulation results, and to benchmark the empirical results in a complex setting where threats

to identification (i.e., the suite of changes that affected California’s electricity market over the period of

our study, and challenges associated with the construction of credible counterfactual outcomes) undermine

34Coal combustion emits almost twice as much carbon dioxide per unit of energy as does the combustion of natural gas.
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attempts at statistical inference.

Both models predict reduced utilization at California’s gas plants, but insights differ with respect to the

predicted source of leakage at Western plants outside California. JHSMINE suggests relative increases in the

utilization of gas plants in the NW and SW regions of WECC and, to a more limited extent, of coal plants in

the NW; in contrast, the econometric model finds that capacity utilization mostly increases at coal plants in

the NW and RoW regions over this study period. As discussed in the paper, the effects of coincident policy

changes and market developments likely confound our empirical estimates. However, the composition of

unspecified imports is not parameterized based on historical data in the simulation model. Thus, the ex post

findings may be consistent with higher levels of imports of out-of-state coal generation as unspecified power

(relative to the ex ante predictions), and an incentive for electricity importers to not report the emission

content of out-of-state higher-emitting generation resources in order to attain the lower default emission rate

for GHG compliance obligations (“laundering”). Thus, limiting the ability of electricity importers to claim

the default emission factor may reduce leakage risks.

With regard to policy impacts on emissions, JHSMINE finds a significant potential for leakage in WECC,

with predicted rates of 95.5% in 2013 and 83.3% in 2016. Predictions based on the econometric model suggest

some empirical evidence of leakage, with rates implied by the lower bound of robust confidence intervals of

about 40% in 2013 and 20% in 2016. Ex post rates below ex ante rates are consistent with contracts not

being shuffled as easily as predicted by the simulation model, which does not account for transaction costs

that would discourage these rearrangements.

Our study shows that simulation models and econometric models can play complementary roles in the

evaluation of carbon policy impacts. To support comparisons between simulation results and empirical

estimates, future research in this area could enhance representation of network effects in empirical analyses

and simulate power market outcomes under relaxed assumptions on the degree of market competition, demand

elasticity and foresight of market participants.
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Figures

Figure 1: NERC regions in the United States, 2016
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Figure 2: WECC balancing authorities in the United States, 2016

Note: Black dots represent coal-fired power plants, blue diamonds represent NGCC plants.
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Figure 3: Empirical distribution of 2009-10 average capacity factors by technology, region and block of hour

(a) NGCC

Note: Histograms for the control plants are constrained to include capacity factors below 0.797, 0.810, 0.823, and 0.758
corresponding to the highest capacity factor of WECC plants (i.e., the upper limit of the last matching bin for the treated
plants) in the morning, afternoon, evening and night period, respectively.
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(b) Coal

Note: Histograms for the control plants are constrained to include capacity factors above 0.495, 0.502, 0.495, and 0.437
corresponding to the lowest capacity factor of WECC plants (i.e., the lower limit of the first matching bin for the treated plants)
in the morning, afternoon, evening and night period, respectively.
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Figure 4: Treatment heterogeneity by hour of day based on specification (5)

(a) NGCC

-.1
5

-.1
-.0

5
0

.0
5

.1
Es

tim
at

ed
 C

oe
ffi

ci
en

t

0 3 6 9 12 15 18 21 23
Hour of Day

CA

-.1
5

-.1
-.0

5
0

.0
5

.1
Es

tim
at

ed
 C

oe
ffi

ci
en

t

0 3 6 9 12 15 18 21 23
Hour of Day

Leakers NW
-.1

5
-.1

-.0
5

0
.0

5
.1

Es
tim

at
ed

 C
oe

ffi
ci

en
t

0 3 6 9 12 15 18 21 23
Hour of Day

Leakers SW

-.1
5

-.1
-.0

5
0

.0
5

.1
Es

tim
at

ed
 C

oe
ffi

ci
en

t

0 3 6 9 12 15 18 21 23
Hour of Day

Leakers RoW
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Figure 5: Parallel trend tests between treated and control regions - Day

(a) NGCC
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(b) Coal
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Note: The vertical line indicates the start date of the cap-and-trade program. In the CA Day plot, Winter 2009 is dropped due
to lack of import data until April 1, 2009. The reference period (Fall 2012 for NGCC and Winter 2011-12 for Coal) is represented
by a black dot at zero and no confidence interval, and corresponds to the reference period of choice for robust inference using
Rambachan and Roth (2022a)’s approach.
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Figure 6: Parallel trend tests between treated and control regions - Night

(a) NGCC
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(b) Coal
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Note: The vertical line indicates the start date of the cap-and-trade program. In the CA Night plot, Winter 2009 is dropped due
to lack of import data until April 1, 2009. The reference period (Fall 2012 for NGCC and Winter 2011-12 for Coal) is represented
by a black dot at zero and no confidence interval, and corresponds to the reference period of choice for robust inference using
Rambachan and Roth (2022a)’s approach.
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Figure 7: Sensitivity analysis for the event study coefficients in Jan-Feb 2013

California NGCC (Day)

(a) No restrictions (b) Monotonicity and negative bias (c) Monotonicity and positive bias

RoW Coal (Day)

(a) No restrictions

Note: In each panel, “OLS” refers to the 95% confidence intervals for Jan-Feb 2013 treatmed effect estimated using OLS. “FLCI” (“Conditional FLCI”) indicates the
95% fixed length confidence interval (conditional fixed length confidence interval) using the Rambachan and Roth (2022a) robust inference method. Stars indicate
intervals that do not cross zero.
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Figure 8: Change in average capacity factors by region, tech type and hour of day based on 2013 simulation
results

(a) NGCC

(b) Coal
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Figure 9: Change in average capacity factors by region, tech type and hour of day based on 2016 simulation
results

(a) NGCC

(b) Coal
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Tables

Table 1: Summary statistics for NGCC plants

Pre ETS Post ETS

Region Number Nameplate Capacity Heat CO2 emission Age Number Nameplate Capacity Heat CO2 emission Age
of plants capacity factor rate rate of plants Capacity factor rate rate

(MW) (%) (Btu/kWh) (lb/MMBtu) (years) (MW) (%) (Btu/kWh) (lb/MMBtu) (years)

WECC

CA 67 309 0.54 9,028 118.14 10.67 69 332 0.49 8,913 117.98 11.88
(334) (0.31) (2,246) (1.45) (11.30) (329) (0.31) (2,356) (2.37) (7.87)

NW 34 456 0.46 8,259 118.41 8.34 34 479 0.50 7,967 118.51 11.98
(280) (0.32) (2,667) (1.41) (4.46) (308) (0.30) (1,246) (0.73) (4.77)

RoW 15 361 0.23 9,924 118.23 11.30 15 371 0.28 9,373 118.38 11.76
(260) (0.20) (4,178) (1.06) (8.33) (253) (0.25) (3,732) (0.81) (5.99)

SW 13 875 0.36 8,176 118.44 7.65 13 905 0.34 8,138 118.50 11.69
(673) (0.26) (1,276) (0.75) (1.77) (665) (0.25) (1,777) (0.78) (1.78)

Controls

FRCC 31 835 0.49 8,139 118.78 16.27 31 911 0.52 7,915 118.84 18.96
(877) (0.21) (1,637) (1.07) (12.55) (964) (0.24) (1,621) (1.02) (12.70)

MRO-US 17 381 0.13 9,054 118.55 12.70 17 361 0.21 9,186 118.54 16.11
(217) (0.15) (3,426) (1.15) (13.98) (216) (0.20) (3,717) (1.03) (14.58)

SERC 58 670 0.46 8,777 118.91 9.53 58 671 0.51 8,723 118.88 13.22
(476) (0.28) (3,198) (11.23) (5.15) (473) (0.27) (3,082) (9.65) (5.94)

SPP 21 598 0.38 8,256 118.54 19.15 21 597 0.37 8,306 118.56 23.14
(388) (0.26) (1,424) (0.71) (16.96) (385) (0.26) (1,596) (0.68) (16.95)

TRE 58 652 0.44 9,147 118.39 11.60 58 656 0.45 9,090 118.04 15.09
(381) (0.24) (2,721) (1.29) (8.88) (387) (0.24) (2,772) (4.14) (9.21)

Note: Summary statistics are based on monthly data from the U.S. Energy Information Administration. Pre ETS refers to January 2009-December 2012 and post ETS to

January 2013-December 2016. Standard deviations are reported in parentheses.
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Table 2: Summary statistics for coal-fired plants

Pre ETS Post ETS

Region Number Nameplate Capacity Heat CO2 emission Age Number Nameplate Capacity Heat CO2 emission Age
of plants capacity factor rate rate of plants Capacity factor rate rate

(MW) (%) (Btu/kWh) (lb/MMBtu) (years) (MW) (%) (Btu/kWh) (lb/MMBtu) (years)

WECC

NW 18 779 0.73 11,472 207.58 32.48 18 765 0.69 12,527 208.13 35.56
(648) (0.23) (4,801) (2.33) (11.53) (660) (0.24) (7,566) (2.14) (11.05)

RoW 25 537 0.74 12,484 208.57 29.53 25 558 0.72 11,878 208.55 29.84
(659) (0.21) (4,911) (3.01) (15.44) (669) (0.22) (3,404) (4.28) (15.74)

SW 7 1,289 0.72 12,229 206.22 31.09 6 1,376 0.70 10,497 206.45 34.75
(837) (0.17) (4,652) (3.29) (8.92) (688) (0.17) (418) (2.45) (8.91)

Controls

FRCC 10 1,081 0.53 11,197 201.53 26.85 10 1,078 0.43 11,287 198.50 30.92
(678) (0.22) (2,415) (26.34) (7.67) (678) (0.22) (2,092) (17.29) (7.64)

MRO-US 49 459 0.54 13,814 209.84 38.18 56 491 0.52 13,591 210.55 40.55
(515) (0.23) (6,538) (3.17) (11.06) (512) (0.23) (6,409) (3.98) (11.43)

SERC 71 1,232 0.59 11,675 205.92 38.68 71 1,247 0.51 11,801 205.78 41.26
(836) (0.23) (4,764) (8.47) (10.80) (835) (0.24) (4,722) (9.64) (11.96)

SPP 35 689 0.63 11,730 208.44 33.70 35 706 0.55 11,680 208.87 34.47
(546) (0.24) (2,980) (5.73) (9.86) (529) (0.26) (3,395) (7.78) (13.06)

TRE 18 1,134 0.72 10,870 213.14 26.14 20 1,167 0.64 11,170 213.06 26.97
(762) (0.26) (1,051) (5.22) (8.91) (739) (0.26) (2,203) (5.28) (12.21)

Note: Summary statistics are based on monthly data from the U.S. Energy Information Administration. Pre ETS refers to January 2009-December 2012 and post ETS to

January 2013-December 2016. Standard deviations are reported in parentheses.
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Table 3: Control strategy for hydro, nuclear and renewable generation by model specification

Model specification In-state In-state Controls for Capacity factor
hydro and nuclear renewable hydro, nuclear frequency

generation generation and renewable
generation at
two additional

geographic scales?

(1), (3), (4)

Each series is modeled Modeled with

No Daily
with a cubic spline; a cubic spline;
spline coefficients spline coefficients

do not vary do not vary
across markets across markets

(2)

Hydro and nuclear

No Daily

generation are combined Modeled with
into one series, a cubic spline;

which is modeled spline coefficients
with a cubic spline; vary by interconnection
spline coefficients

vary by interconnection

(5)

Each series is modeled Modeled with

No Hourly
with a cubic spline; a cubic spline;
spline coefficients spline coefficients

do not vary do not vary
across markets across markets

(6)

Hydro and nuclear

Yes Hourly

generation are combined Modeled with
into one series, a cubic spline;

which is modeled spline coefficients
with a cubic spline; vary by interconnection
spline coefficients

vary by interconnection

(7)

Hydro and nuclear

No Hourly

generation are combined Modeled with
into one series, a cubic spline;

which is modeled spline coefficients
with a cubic spline; vary by interconnection
spline coefficients and time of day

vary by interconnection

(8)

Each series is modeled

No Hourly

with a cubic spline; Modeled with
hydro spline coefficients a cubic spline;

do not vary spline coefficients
across markets, vary by interconnection

nuclear spline coefficients and time of day
vary by interconnection
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Table 4: Econometric model results: Treatment effects based on daily capacity factors

(1) (2) (3) (4)
NGCC Coal NGCC Coal NGCC Coal NGCC Coal

Spline coeff. Spline coeff. Standard errors Alternate
invariant vary by clustered by BA matching set

across markets interconnection

CA −0.058∗∗ - −0.044∗ - −0.058∗∗ - −0.060∗∗ -
(0.025) - (0.025) - (0.025) - (0.027) -

NW 0.021 0.047∗∗∗ 0.038∗ 0.048∗∗∗ 0.021 0.047∗∗∗ 0.015 0.041∗∗∗

(0.020) (0.013) (0.022) (0.013) (0.017) (0.017) (0.019) (0.011)

RoW −0.015 0.044∗∗∗ 0.001 0.049∗∗∗ −0.015 0.044∗∗ −0.034 0.043∗∗∗

(0.018) (0.016) (0.021) (0.016) (0.016) (0.020) (0.025) (0.015)

SW −0.011 0.059 0.005 0.074 −0.011 0.059 −0.014 0.065
(0.023) (0.047) (0.026) (0.046) (0.029) (0.054) (0.023) (0.055)

Before matching
CA plants 40 - 40 - 40 - 40 -

Leaker plants 48 42 48 42 48 42 48 42
Control plants 153 170 153 170 153 170 153 170

After matching
CA plants 33 - 33 - 33 - 34 -

Leaker plants 40 40 40 40 40 40 44 41
Control plants 128 94 128 94 128 94 140 150

Observations 567, 484 379, 028 567, 484 379, 028 567, 484 379, 028 616, 666 533, 642
Clusters 201 134 201 134 38 28 218 191

Note: The unit of observation is plant-day. All regressions include plant, year, day-of-week and state by month-year fixed ef-

fects. Standard errors are reported in parentheses, and clustered by plant in specifications (1), (2) and (4), and by balancing

authority in (3). ∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5% and 1% level, respectively.
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Table 5: Econometric model results: Treatment effects based on hourly capacity factors

(5) (6) (7) (8)
NGCC Coal NGCC Coal NGCC Coal NGCC

Spline coeff. Spline coeff. vary by Spline coeff. vary by Hydro spline coeff.
invariant interconnection, interconnection, invariant across markets,

across markets controls for hydro, nuclear renewable spline nuclear spline coeff.
and renewable generation coeff. also vary vary by interconnection,

at two additional by time of day renewable spline coeff.
geographic scales vary by interconnection

(outside-BA but in-region, and time of day
and outside-CA but in-WECC)

Day

CA −0.089∗∗∗ - −0.057∗∗ - −0.063∗∗ - −0.049∗∗

(0.024) - (0.025) - (0.026) - (0.024)

NW 0.008 0.035∗∗∗ 0.019 0.037∗∗ 0.028 0.045∗∗∗ 0.019
(0.019) (0.012) (0.020) (0.014) (0.020) (0.014) (0.020)

RoW −0.020 0.031∗ −0.014 0.038∗∗ 0.001 0.043∗∗∗ −0.003
(0.019) (0.017) (0.021) (0.016) (0.020) (0.016) (0.020)

SW −0.018 0.050 −0.004 0.060 −0.001 0.075 −0.008
(0.023) (0.061) (0.026) (0.056) (0.026) (0.056) (0.025)

Night

CA −0.028 - 0.002 - −0.026 - −0.012
(0.026) - (0.026) - (0.026) - (0.023)

NW 0.033 0.058∗∗∗ 0.043∗ 0.060∗∗∗ 0.047∗ 0.048∗∗∗ 0.038
(0.022) (0.015) (0.026) (0.015) (0.024) (0.014) (0.024)

RoW −0.011 0.059∗∗∗ −0.004 0.066∗∗∗ 0.002 0.054∗∗∗ −0.002
(0.020) (0.017) (0.024) (0.016) (0.023) (0.016) (0.023)

SW −0.006 0.091 0.006 0.102∗ 0.011 0.091∗ 0.003
(0.025) (0.057) (0.027) (0.051) (0.027) (0.052) (0.026)

Observations 13, 619, 137 9, 096, 375 13, 619, 137 9, 096, 375 13, 619, 137 9, 096, 375 13, 619, 137
Clusters 201 134 201 134 201 134 201

Note: The unit of observation is plant-hour for all specifications. All regressions include plant, time-of-day, day-of-week, year and state by month-year fixed

effects. Standard errors are clustered by plant and reported in parentheses.
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Table 6: Balancing tests on plant capacity factors

NGCC Coal

Before After Before After
matching matching matching matching

Hour 0 2.075∗∗ 0.192 6.364∗∗∗ 1.004
Hour 1 1.932∗ 0.064 6.670∗∗∗ 1.207
Hour 2 1.856∗ −0.001 6.779∗∗∗ 1.263
Hour 3 1.835∗ −0.041 6.707∗∗∗ 1.171
Hour 4 1.869∗ −0.051 6.357∗∗∗ 0.892
Hour 5 1.772∗ −0.160 5.832∗∗∗ 0.564
Hour 6 1.859∗ −0.120 5.064∗∗∗ 0.126
Hour 7 2.001∗∗ −0.043 4.636∗∗∗ −0.028
Hour 8 1.917∗ −0.185 4.381∗∗∗ −0.057
Hour 9 1.621 −0.509 4.244∗∗∗ −0.021
Hour 10 1.377 −0.662 4.215∗∗∗ 0.055
Hour 11 1.266 −0.692 4.217∗∗∗ 0.058
Hour 12 1.298 −0.601 4.249∗∗∗ 0.047
Hour 13 1.380 −0.529 4.350∗∗∗ 0.135
Hour 14 1.399 −0.502 4.468∗∗∗ 0.195
Hour 15 1.392 −0.502 4.542∗∗∗ 0.272
Hour 16 1.339 −0.542 4.528∗∗∗ 0.229
Hour 17 1.383 −0.503 4.380∗∗∗ 0.151
Hour 18 1.426 −0.488 4.218∗∗∗ 0.048
Hour 19 1.500 −0.405 4.172∗∗∗ 0.005
Hour 20 1.659∗ −0.203 4.427∗∗∗ 0.133
Hour 21 2.100∗∗ 0.391 4.852∗∗∗ 0.290
Hour 22 2.320∗∗ 0.567 5.442∗∗∗ 0.590
Hour 23 2.283∗∗ 0.441 5.929∗∗∗ 0.771

Morning 1.646 −0.402 4.447∗∗∗ 0.026
Afternoon 1.378 −0.519 4.473∗∗∗ 0.208
Evening 1.627 −0.240 4.419∗∗∗ 0.128
Night 2.009∗∗ 0.129 6.308∗∗∗ 0.945

Note: The table reports t statistics of a two-sided test of mean compa-

risons between treated and control groups before and after matching.
∗, ∗∗, and ∗∗∗ indicate statistical significance at 10%, 5% and 1% le-

vel, respectively.
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Table 7: Parallel trends test: Treatment effects with and without trends

No trend Linear trend Quadratic trend
NGCC Coal NGCC Coal NGCC Coal

Day

CA −0.089∗∗∗ - −0.018 - −0.013 -
(0.024) - (0.027) - (0.027) -

NW 0.008 0.035∗∗∗ - 0.098∗∗∗ - 0.099∗∗∗

(0.019) (0.012) - (0.030) - (0.030)

RoW −0.020 0.031∗ - 0.026 - 0.025
(0.019) (0.017) - (0.021) - (0.021)

SW −0.018 0.050 - - - -
(0.023) (0.061) - - - -

Night

CA −0.028 - - - - -
(0.026) - - - - -

NW 0.033 0.058∗∗∗ - 0.121∗∗∗ - 0.122∗∗∗

(0.022) (0.015) - (0.026) - (0.026)

RoW −0.011 0.059∗∗∗ - 0.054∗∗∗ - 0.053∗∗∗

(0.020) (0.017) - (0.020) - (0.020)

SW −0.006 0.091 - - - -
(0.025) (0.057) - - - -

Note: If a treatment effect is statistically significant in the baseline regression

(“No trend”), we augment the model with a group-specific linear (quadratic)

trend for all treated regions. The table presents the estimated coefficients in the

augmented models. Standard errors are clustered by plant and reported in paren-

theses.
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Table 8: Econometric model results: Emissions and leakage based on the econometric estimates, 2013 and
2016

2013 Lower bound Upper bound
of the robust of the robust

95% CI 95% CI

Change in CA local emissions (E1) −6.84 −2.07
Change in CA import emissions (E2) −10.87 −10.87
Change in CA regulated emissions (E3 = E1 + E2) −17.71 −12.94
Change in WECC-NonCA emissions (E4) −3.65 17.33
- NW 1.26 12.82
- RoW −4.91 4.51
Change in WECC emissions (E5 = E1 + E4) −10.49 15.26
Leakage [(1− E5/E3)× 100%] 40.8% 217.9%

2016 Lower bound Upper bound
of the robust of the robust

95% CI 95% CI

Change in CA local emissions (E1) −7.09 −2.86
Change in CA import emissions (E2) −11.81 −11.81
Change in CA regulated emissions (E3 = E1 + E2) −18.90 −14.67
Change in WECC-NonCA emissions (E4) −8.51 14.21
- NW −4.54 7.27
- RoW −3.97 6.94
Change in WECC emissions (E5 = E1 + E4) −15.60 11.35
Leakage [(1− E5/E3)× 100%] 17.4% 177.4%

Note: Emissions are in million metric tons of CO2 per year. Results are based on robust confidence inter-

vals for CA NGCC Day and RoW Coal Day that allow for linear violations of parallel trends (M=0), and

OLS confidence intervals for CA NGCC Night, NW Coal Day and Night, and RoW Coal Night. We assu-

me negative bias and monotonicity restrictions for CA NGCC Day, and no restrictions for RoW Coal Day.

Only contemporaneous (i.e., same season and time of day) changes in capacity factors in the regulated

and unregulated regions are included for the leakage calculation.
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Table 9: Simulation model results: Effect of California’s cap-and-trade program on capacity factors in
WECC, 2013 and 2016

2013 2016
No cap Carbon cap ∆ No cap Carbon cap ∆

CA

Hydro 24.9% 24.9% - 30.1% 30.1% -

NGCC 50.2% 49.5% -0.7% 43.3% 33.8% -9.6%

NGCT 6.1% 5.5% -0.6% 4.4% 4.4% -

Nuclear 95.0% 95.0% - 95.0% 95.0% -

Oil 5.3% 5.3% - 5.3% 5.3% -

Solar 9.8% 9.8% - 19.2% 19.2% -

Wind 19.9% 19.9% - 19.7% 19.7% -

NW

Coal 87.5% 87.5% - 76.6% 79.2% +2.6%

Hydro 29.9% 29.9% - 31.0% 31.0% -

NGCC 56.9% 57.9% +1.0% 59.0% 62.5% +3.5%

NGCT 1.6% 2.0% +0.4% 1.6% 2.8% +1.2%

Nuclear 95.0% 95.0% - 95.0% 95.0% -

Oil 94.0% 94.0% - 94.0% 94.0% -

Solar 21.4% 21.4% - 20.5% 20.5% -

Wind 16.8% 16.8% - 17.6% 17.6% -

RoW

Coal 87.1% 87.1% - 79.2% 79.6% +0.4%

Hydro 32.0% 32.0% - 38.5% 38.5% -

NGCC 19.5% 19.9% +0.4% 33.1% 35.2% +2.1%

NGCT 0.9% 1.0% +0.1% 4.1% 4.7% +0.6%

Nuclear - - - - - -

Oil 18.2% 18.2% - 18.2% 18.2% -

Solar 16.7% 16.7% - 15.0% 15.0% -

Wind 29.9% 29.9% - 31.9% 31.9% -

SW

Coal 83.3% 83.2% -0.1% 59.4% 60.2% +0.8%

Hydro 32.1% 32.1% - 37.0% 37.0% -

NGCC 19.5% 19.0% -0.5% 34.1% 41.3% +7.2%

NGCT 1.0% 1.1% +0.1% 1.0% 1.3% +0.3%

Nuclear 95.0% 95.0% - 95.0% 95.0% -

Oil - - - - - -

Solar 17.5% 17.5% - 26.0% 26.0% -

Wind 9.3% 9.3% - 9.9% 9.9% -

Note: The oil-fired capacity in the NW region is only 13.80 MW, resulting in high capacity factors

for this peak technology.
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Table 10: Simulation model results: Effect of California’s cap-and-trade program on emissions and leakage,
2013 and 2016

2013 No cap Carbon cap

Local emissions in CA 39.79 38.68
Emissions of CA imports 51.25 39.41
Regulated emissions in CA 91.03 78.10
Emissions in WECC-NonCA 265.42 265.78
- NW 113.28 113.78
- RoW 90.99 91.06
- SW 61.15 60.94
Total emissions in WECC 305.21 304.47
Change in CA local emissions (E1) −1.10
Change in CA import emissions (E2) −11.83
Change in CA regulated emissions (E3 = E1 + E2) −12.94
Change in WECC-NonCA emissions (E4) +0.36
Change in WECC emissions (E5) −0.74
Leakage [(1− E5/E3)× 100%] 94.3%

2016 No cap Carbon cap

Local emissions in CA 35.85 29.27
Emissions of CA imports 38.59 24.71
Regulated emissions in CA 74.45 53.99
Emissions in WECC-NonCA 232.81 241.44
- NW 102.58 107.15
- RoW 83.39 84.31
- SW 46.84 49.98
Total emissions in WECC 268.67 270.71
Change in CA local emissions (E1) −6.58
Change in CA import emissions (E2) −13.88
Change in CA regulated emissions (E3 = E1 + E2) −20.46
Change in WECC-NonCA emissions (E4) +8.62
Change in WECC emissions (E5) +2.04
Leakage [(1− E5/E3)× 100%] 110.0%

Note: Emissions are in million metric tons of CO2 per year.
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Table 11: Comparison of emissions and leakage results, 2013 and 2016

2013 Simulation Econometric Econometric
model model model

95% CI, 95% CI,
No restrictions With restrictions

LB UB LB UB

Change in CA local emissions (E1) −0.51 −6.33 −0.35 −6.84 −2.07
Change in CA import emissions (E2) −11.83 −10.87 −10.87 −10.87 −10.87
Change in CA regulated emissions (E3 = E1 + E2) −12.35 −17.20 −11.22 −17.71 −12.94
Change in WECC-NonCA emissions (E4) −0.05 −3.65 17.33 −3.65 17.33
Change in WECC emissions (E5 = E1 + E4) −0.56 −9.98 16.98 −10.49 15.26
Leakage [(1− E5/E3)× 100%] 95.5% 42.0% 251.4% 40.8% 217.9%

2016 Simulation Econometric Econometric
model model model

95% CI, 95% CI,
No restrictions With restrictions

LB UB LB UB

Change in CA local emissions (E1) −6.35 −5.73 0.31 −7.09 −2.86
Change in CA import emissions (E2) −13.88 −11.81 −11.81 −11.81 −11.81
Change in CA regulated emissions (E3 = E1 + E2) −20.24 −17.54 −11.50 −18.90 −14.67
Change in WECC-NonCA emissions (E4) 2.97 −7.75 11.36 −8.51 14.21
Change in WECC emissions (E5 = E1 + E4) −3.38 −13.48 11.67 −15.60 11.35
Leakage [(1− E5/E3)× 100%] 83.3% 23.1% 201.5% 17.4% 177.4%

Note: Changes in emissions are in million metric tons of CO2 per year. When calculating leakage from the empirical estimates, we

use robust confidence intervals for CA NGCC Day and RoW Coal Day (allowing for linear violations of parallel trends, or M = 0),

and OLS confidence intervals for CA NGCC Night, NW Coal Day and Night, and RoW Coal Night. LB indicates the lower bound

of the 95% confidence interval, while UB refers to its upper bound. Only contemporaneous (i.e., same season and time of day)

changes in capacity factors in the regulated and unregulated regions are included for the leakage calculation. In the model with

restrictions, we assume negative bias and monotonicity restrictions for CA NGCC Day, and no restrictions for RoW Coal Day.
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