Lancaster and Blundell Chapter 17

(17.1) Calculate the retarded field propagator for a free particle in momentum space and the time domain.

$$G^+_0(\mathbf p,t_x,\mathbf q, t_y)=\theta(t_x-t_y)\langle 0|\hat a_{\mathbf p}(t_x)\hat a^\dagger_{\mathbf q}(t_y)|0\rangle$$

We go into the Schrodinger picture:

$$=\theta(t_x-t_y)\langle 0|e^{i\hat Ht_x}\hat a_{\mathbf p}e^{-i\hat Ht_x}e^{i\hat Ht_y}\hat a^\dagger_{\mathbf q}e^{-i\hat Ht_y}|0\rangle$$

Since \hat H|0\rangle=0 and \langle 0|\hat H=0, the exponentials are 1.

$$=\theta(t_x-t_y)\langle \mathbf p|e^{-i\hat Ht_x}e^{i\hat Ht_y}|\mathbf q\rangle\\=\theta(t_x-t_y)e^{-i(E_{\mathbf p}t_x-E_{\mathbf q}t_y)}\langle \mathbf p|\mathbf q\rangle\\=\theta(t_x-t_y)e^{-i(E_{\mathbf p}t_x-E_{\mathbf q}t_y)}\delta^{(3)}(\mathbf p-\mathbf q)$$


(17.2) Demonstrate that the (1+1-dimensional) free scalar propagator is the Green’s function of the Klein-Gordon equation.

We write

$$\Delta(x,y)=\langle0|T\hat\phi(x)\hat\phi(y)|0\rangle=\int \frac{d^2p}{(2\pi)^2}e^{-ip\cdot(x-y)}\frac{i}{p^2-m^2+i\epsilon}$$

Operating on this with \partial^2+m^2=\partial_t^2-\partial_x^2+m^2,

$$\partial_t^2-\partial_x^2+m^2(\Delta(x,y))=\int\frac{d^2p}{(2\pi)^2}\left(-p_0^2+p_x^2+m^2\right)\frac{ie^{-ip\cdot(x-y)}}{p_0^2-p^2-m^2+i\epsilon}\\=-i\int\frac{d^2p}{(2\pi)^2}\frac{p_0^2-p_x^2-m^2}{p_0^2-p^2-m^2+i\epsilon}e^{-ip\cdot(x-y)}\\=-i\delta^{(2)}(x-y)$$


(17.3) Show that the action for the free scalar field may be written $$S=\frac12\int\frac{d^4p}{(2\pi)^4}\tilde\phi(-p)(p^2-m^2)\tilde\phi(p)$$

We integrate the Lagrangian density by parts to get

$$\mathcal L=\frac12\phi(x)\partial^2\phi(x)-\frac{m^2}2\phi(x)^2=\frac12\phi(x)(\partial^2-m^2)\phi(x)$$

We substitute the Fourier transform for each copy of \phi:

$$\mathcal S=\frac12\int\frac{d^4xd^4pd^4q}{(2\pi)^8}\tilde\phi(p)e^{ip\cdot x}(\partial^2-m^2)\tilde\phi(q)e^{iq\cdot x}=\frac12\int\frac{d^4xd^4pd^4q}{(2\pi)^8}\tilde\phi(p)e^{i(p+q)\cdot x}\phi(q)(-q^2-m^2)$$

The integral over \frac{d^4x}{(2\pi)^4} gives \delta^{(4)}(p+q), so integrating over q gives

$$\frac12\int\frac{d^4p}{(2\pi)^4}\tilde\phi(-p)(p^2-m^2)\tilde\phi(p)$$

We may thus identify \tilde G_0(p) as \frac i2 times the inverse of the quadratic term in the momentum-space action ((p^2-m^2+i\epsilon)^{-1}).


(17.4) Find the Feynman propagator \tilde G(\omega) for the quantum harmonic oscillator with spring constant m\omega_0^2.

We write the Lagrangian as

$$L=\frac{\dot x^2}{2m}+\frac{m\omega_0^2}{2}x$$

Substituting the Fourier transform of x=\int\frac{d\omega}{2\pi}\tilde xe^{i\omega t}, the same steps as before (integrating the first term by parts and identifying the free propagator) gives

$$\tilde G(\omega)=\frac1m\frac{i}{\omega^2-\omega_0^2+i\epsilon}$$


(17.5) Consider the Lagrangian density $$\mathcal L=\frac12(\partial_x\phi)^2+\frac{m^2}2\phi(x)^2$$ Discretize this theory (\phi_j=\frac{1}{\sqrt{Na}}\sum_p\tilde\phi_pe^{ipja}) and find the momentum space expression for the action.

The derivative terms becomes a finite difference $$\frac{\phi_{j+1}-\phi_j}{a}=\frac{1}{a\sqrt{Na}}\sum_p\tilde\phi_p(e^{ip(j+1)a}-e^{ipja})$$

The integral becomes Na\sum_j. Carrying out some tedious sums, we find that the momentum is p^2\rightarrow\frac{2-e^{ipa}-e^{iqa}}{a^2}.

$$S=\frac12\sum_p\tilde\phi_{-p}\left(\frac2{a^2}-\frac{2\cos pa}{a^2}+m^2\right)\tilde\phi_p$$

$$\tilde G(p)=\frac{i}{\frac2{a^2}-\frac{2\cos pa}{a^2}+m^2}$$

The Lagrangian for a 1D elastic string in (1+1)-Minkowski space isĀ 

$$\mathcal L=\frac12\left((\partial_0\phi)^2-(\partial_1\phi)^2\right)$$

Discretize this theory in space only and find the propagator, with \omega_0^2=\frac{2}{a^2}.

This is truly unenlightening.

$$\tilde G(\omega,p)=\frac{i}{\omega^2-\omega_0^2(1-\cos pa)}$$

To reason a little, the \partial_t\phi acts as the effective mass in this theory, leading to the \omega^2 in the denominator, whereas the \omega_0^2(1-\cos pa) comes out of the spatial derivative term. There is an extra minus sign on that term since the Lagrangian has the extra minus sign compared to before.

Leave a Reply

Your email address will not be published. Required fields are marked *