CONTENTS

 \mathbf{v}

Ι	IN	IAGE FORMATION	1		
1	RA	DIOMETRY — MEASURING LIGHT	3		
	1.1	Light in Space			
		1.1.1 Foreshortening	3		
		1.1.2 Solid Angle	4		
		1.1.3 Radiance	6		
	1.2	Light at Surfaces	8		
		1.2.1 Simplifying Assumptions	9		
		1.2.2 The Bidirectional Reflectance Distribution Function	9		
	1.3	Important Special Cases	11		
	1.3.1 Radiosity				
		1.3.2 Directional Hemispheric Reflectance	12		
		1.3.3 Lambertian Surfaces and Albedo	12		
		1.3.4 Specular Surfaces	13		
		1.3.5 The Lambertian + Specular Model	14		
	1.4	Quick Reference: Radiometric Terminology for Light	16		
	1.5	Quick Reference: Radiometric Properties of Surfaces	17		
	1.6	Quick Reference: Important Types of Surface	18		
	1.7	Notes	19		
	1.8	Assignments	19		
2	SO	URCES, SHADOWS AND SHADING	21		
	2.1	Radiometric Properties of Light Sources	21		
	2.2	Qualitative Radiometry	22		
	2.3	Sources and their Effects	23		
		2.3.1 Point Sources	24		

vi	

		2.3.2	Line Sources	26
		2.3.3	Area Sources	27
	2.4	Local	Shading Models	28
		2.4.1	Local Shading Models for Point Sources	28
		2.4.2	Area Sources and their Shadows	31
		2.4.3	Ambient Illumination	31
	2.5	Applie	cation: Photometric Stereo	33
		2.5.1	Normal and Albedo from Many Views	36
		2.5.2	Shape from Normals	37
	2.6	Interre	effections: Global Shading Models	40
		2.6.1	An Interreflection Model	42
		2.6.2	Solving for Radiosity	43
		2.6.3	The qualitative effects of interreflections	45
	2.7	Notes		47
	2.8	Assign	aments	50
		2.8.1	Exercises	50
		2.8.2	Programming Assignments	51
3	CO	LOUR		53
	3.1	The P	hysics of Colour	53
		3.1.1	Radiometry for Coloured Lights: Spectral Quantities	53
		3.1.2	The Colour of Surfaces	54
		3.1.3	The Colour of Sources	55
	3.2	Huma	n Colour Perception	58
		3.2.1	Colour Matching	58
		3.2.2	Colour Receptors	61
	3.3	Repres	senting Colour	63
		3.3.1	Linear Colour Spaces	63
		3.3.2	Non-linear Colour Spaces	68
		3.3.3	Spatial and Temporal Effects	73
	3.4	Applie	cation: Finding Specularities	73
	3.5	Surfac	e Colour from Image Colour	77
		3.5.1	Surface Colour Perception in People	77
		3.5.2	Inferring Lightness	80
		3.5.3	A Model for Image Colour	83
		3.5.4	Surface Colour from Finite Dimensional Linear Models	86
	3.6	Notes		89

		3.6.1	Trichromacy and Colour Spaces	89
		3.6.2	Lightness and Colour Constancy	90
		3.6.3	Colour in Recognition	91
	3.7	Assign	aments	91
II	I	MAG	E MODELS	94
4	GE	омет	TRIC IMAGE FEATURES	96
	4.1	Eleme	ents of Differential Geometry	100
		4.1.1	Curves	100
		4.1.2	Surfaces	105
	App	lication	a: The shape of specularities	109
	4.2	Conto	our Geometry	112
		4.2.1	The Occluding Contour and the Image Contour	113
		4.2.2	The Cusps and Inflections of the Image Contour	114
		4.2.3	Koenderink's Theorem	115
	4.3	Notes		117
	4.4	Assign	aments	118
5	AN	ALYT	ICAL IMAGE FEATURES	120
	5.1	Eleme	ents of Analytical Euclidean Geometry	120
		5.1.1	Coordinate Systems and Homogeneous Coordinates	121
		5.1.2	Coordinate System Changes and Rigid Transformations	124
	5.2	Geom	etric Camera Parameters	129
		5.2.1	Intrinsic Parameters	129
		5.2.2	Extrinsic Parameters	132
		5.2.3	A Characterization of Perspective Projection Matrices	132
	5.3	Calib	ration Methods	133
		5.3.1	A Linear Approach to Camera Calibration	134
	Tech	nnique:	Linear Least Squares Methods	135
		5.3.2	Taking Radial Distortion into Account	139
		5.3.3	Using Straight Lines for Calibration	140
		5.3.4	Analytical Photogrammetry	143
	Tech	nnique:	Non-Linear Least Squares Methods	145
	5.4	Notes		147
	5.5	Assign	aments	147

vii

6	AN	INTR	RODUCTION TO PROBABILITY	150
	6.1	Proba	bility in Discrete Spaces	151
		6.1.1	Probability: the P-function	151
		6.1.2	Conditional Probability	153
		6.1.3	Choosing P	153
	6.2	Proba	bility in Continuous Spaces	159
		6.2.1	Event Structures for Continuous Spaces	159
		6.2.2	Representing a P-function for the Real Line	160
		6.2.3	Probability Densities	161
	6.3	Rando	om Variables	161
		6.3.1	Conditional Probability and Independence	162
		6.3.2	Expectations	163
		6.3.3	Joint Distributions and Marginalization	165
	6.4	Stand	ard Distributions and Densities	165
		6.4.1	The Normal Distribution	167
	6.5	Proba	167	
		6.5.1	The Maximum Likelihood Principle	168
		6.5.2	Priors, Posteriors and Bayes' rule	170
		6.5.3	Bayesian Inference	170
		6.5.4	Open Issues	177
	6.6	Discus	ssion	178
11	II	EARI	LY VISION: ONE IMAGE	180
7	LIN	EAR	FILTERS	182
	7.1	Linear	r Filters and Convolution	182
		7.1.1	Convolution	182
		7.1.2	Example: Smoothing by Averaging	183
		7.1.3	Example: Smoothing with a Gaussian	185
	7.2	Shift i	invariant linear systems	186
		7.2.1	Discrete Convolution	188
		7.2.2	Continuous Convolution	190

7.1	Linear	Filters and Convolution	182
	7.1.1	Convolution	182
	7.1.2	Example: Smoothing by Averaging	183
	7.1.3	Example: Smoothing with a Gaussian	185
7.2	Shift i	nvariant linear systems	186
	7.2.1	Discrete Convolution	188
	7.2.2	Continuous Convolution	190
	7.2.3	Edge Effects in Discrete Convolutions	192
7.3	Spatia	l Frequency and Fourier Transforms	193
	7.3.1	Fourier Transforms	193
7.4	Sampl	ing and Aliasing	197
	7.4.1	Sampling	198

		7.4.2	Aliasing	201
		7.4.3	Smoothing and Resampling	202
	7.5	Techn	ique: Scale and Image Pyramids	204
		7.5.1	The Gaussian Pyramid	205
		7.5.2	Applications of Scaled Representations	206
		7.5.3	Scale Space	208
	7.6	Discus	ssion	211
		7.6.1	Real Imaging Systems vs Shift-Invariant Linear Systems	211
		7.6.2	Scale	212
8	ED	GE DI	ETECTION	2 14
	8.1	Estim	ating Derivatives with Finite Differences	214
		8.1.1	Differentiation and Noise	216
		8.1.2	Laplacians and edges	217
	8.2	Noise		217
		8.2.1	Additive Stationary Gaussian Noise	219
	8.3	Edges	and Gradient-based Edge Detectors	224
		8.3.1	Estimating Gradients	224
		8.3.2	Choosing a Smoothing Filter	225
		8.3.3	Why Smooth with a Gaussian?	227
		8.3.4	Derivative of Gaussian Filters	229
		8.3.5	Identifying Edge Points from Filter Outputs	230
	8.4	Comm	nentary	234
9	FIL	TERS	AND FEATURES	237
	9.1	Filters	s as Templates	237
		9.1.1	Convolution as a Dot Product	237
		9.1.2	Changing Basis	238
	9.2	Huma	n Vision: Filters and Primate Early Vision	239
		9.2.1	The Visual Pathway	239
		9.2.2	How the Visual Pathway is Studied	241
		9.2.3	The Response of Retinal Cells	241
		9.2.4	The Lateral Geniculate Nucleus	242
		9.2.5	The Visual Cortex	243
		9.2.6	A Model of Early Spatial Vision	246
	9.3	Techn	ique: Normalised Correlation and Finding Patterns	248
		9.3.1	Controlling the Television by Finding Hands by Normalised Correlation	248

ix

9	0.4 C	orner	s and Orientation Representations	249
9	0.5 A	dvano	ced Smoothing Strategies and Non-linear Filters	252
	9	.5.1	More Noise Models	252
	9	.5.2	Robust Estimates	253
	9	.5.3	Median Filters	254
	9	.5.4	Mathematical morphology: erosion and dilation	257
	9	.5.5	Anisotropic Scaling	258
9	0.6 C	Comme	entary	259
10]	гехт	ſURI	E	261
1	0.1 R	lepres	enting Texture	263
	1	0.1.1	Extracting Image Structure with Filter Banks	263
1	0.2 A	nalys	is (and Synthesis) Using Oriented Pyramids	268
	1	0.2.1	The Laplacian Pyramid	269
	1	0.2.2	Oriented Pyramids	272
1	0.3 A	pplica	ation: Synthesizing Textures for Rendering	272
	1	0.3.1	Homogeneity	274
	1	0.3.2	Synthesis by Matching Histograms of Filter Responses	275
	1	0.3.3	$Synthesis \ by \ Sampling \ Conditional \ Densities \ of \ Filter \ Res$	ponses 280
	1	0.3.4	Synthesis by Sampling Local Models	284
1	0.4 S	hape	from Texture: Planes and Isotropy	286
	1	0.4.1	Recovering the Orientation of a Plane from an Isotropic T	lexture288
	1	0.4.2	Recovering the Orientation of a Plane from an Homogen	neity
			Assumption	290
	1	0.4.3	Shape from Texture for Curved Surfaces	291
1	.0.5 N	lotes		292
	1	0.5.1	Shape from Texture	293
TX 7	E A		V VICION. MULTIDI E IMACES	205
1 V	L A	ILL.	I VISION: MULTIPLE IMAGES	295
11 7	гне	GEO	METRY OF MULTIPLE VIEWS	297
1	1.1 T	wo V	iews	298
	1	1.1.1	Epipolar Geometry	298
	1	1.1.2	The Calibrated Case	299
	1	1.1.3	Small Motions	300
	1	1.1.4	The Uncalibrated Case	301

11.1.5 Weak Calibration

		2	s	c
	•	4		

11.2 Three Views	305
11.2.1 Trifocal Geometry	307
11.2.2 The Calibrated Case	307
11.2.3 The Uncalibrated Case	309
11.2.4 Estimation of the Trifocal Tensor	310
11.3 More Views	311
11.4 Notes	317
11.5 Assignments	319
12 STEREOPSIS	321
12.1 Reconstruction	323
12.1.1 Camera Calibration	324
12.1.2 Image Rectification	325
Human Vision: Stereopsis	327
12.2 Binocular Fusion	331
12.2.1 Correlation	331
12.2.2 Multi-Scale Edge Matching	333
12.2.3 Dynamic Programming	336
12.3 Using More Cameras	338
12.3.1 Trinocular Stereo	338
12.3.2 Multiple-Baseline Stereo	340
12.4 Notes	341
12.5 Assignments	343
13 AFFINE STRUCTURE FROM MOTION	345
13.1 Elements of Affine Geometry	346
13.2 Affine Structure from Two Images	349
13.2.1 The Affine Structure-from-Motion Theorem	350
13.2.2 Rigidity and Metric Constraints	351
13.3 Affine Structure from Multiple Images	351
13.3.1 The Affine Structure of Affine Image Sequences	352
Technique: Singular Value Decomposition	353
13.3.2 A Factorization Approach to Affine Motion Analysis	353
13.4 From Affine to Euclidean Images	356
13.4.1 Euclidean Projection Models	357
13.4.2 From Affine to Euclidean Motion	358
13.5 Affine Motion Segmentation	360
13.5.1 The Reduced Echelon Form of the Data Matrix	360

xi

	13.5.2 The Shape Interaction Matrix	360
13.6	Notes	362
13.7	Assignments	363
14 PR0	DJECTIVE STRUCTURE FROM MOTION	365
14.1	Elements of Projective Geometry	366
	14.1.1 Projective Bases and Projective Coordinates	366
	14.1.2 Projective Transformations	368
	14.1.3 Affine and Projective Spaces	370
	14.1.4 Hyperplanes and Duality	371
	14.1.5 Cross-Ratios	372
	14.1.6 Application: Parameterizing the Fundamental Matrix	375
14.2	Projective Scene Reconstruction from Two Views	376
	14.2.1 Analytical Scene Reconstruction	376
	14.2.2 Geometric Scene Reconstruction	378
14.3	Motion Estimation from Two or Three Views	379
	14.3.1 Motion Estimation from Fundamental Matrices	379
	14.3.2 Motion Estimation from Trifocal Tensors	381
14.4	Motion Estimation from Multiple Views	382
	14.4.1 A Factorization Approach to Projective Motion Analysis	383
	14.4.2 Bundle Adjustment	386
14.5	From Projective to Euclidean Structure and Motion	386
	14.5.1 Metric Upgrades from (Partial) Camera Calibration	387
	14.5.2 Metric Upgrades from Minimal Assumptions	389
14.6	Notes	392
14.7	Assignments	394

V MID-LEVEL VISION

15 SEGMENTATION USING CLUSTERING METHODS		
15.1 Human vision: Grouping and Gestalt	403	
15.2 Applications: Shot Boundary Detection, Background Subtraction		
and Skin Finding	407	
15.2.1 Background Subtraction	407	
15.2.2 Shot Boundary Detection	408	
15.2.3 Finding Skin Using Image Colour	410	
15.3 Image Segmentation by Clustering Pixels	411	

15.3.1	Simple Clustering Methods	411
15.3.2	Segmentation Using Simple Clustering Methods	413
15.3.3	Clustering and Segmentation by K-means	415
15.4 Segme	entation by Graph-Theoretic Clustering	417
15.4.1	Basic Graphs	418
15.4.2	The Overall Approach	420
15.4.3	Affinity Measures	420
15.4.4	Eigenvectors and Segmentation	424
15.4.5	Normalised Cuts	427
15.5 Discus	ssion	430
10 FITTINO		490
16 I The U	Ioursh Transform	430
10.1 The n	Eitting Lines with the Hough Thensform	437
10.1.1	Prostical Dashlarra with the Hough Transform	437
16.2 Fittin	r Lines	438
10.2 FILLIN 16.2.1	Lines	440
10.2.1	Which Doint is on Which Line?	1411011441
16.2.2	a Current is on which Line:	444
10.3 FILUIII 16.2.1	Impligit Current	445
10.3.1	Parametria Curves	440
16.4 Fittin	r to the Outlines of Surfaces	449
10.4 110011	Some Polotions Potreon Surfaces and Outlines	450
10.4.1	Clustering to Form Summetries	451
16.5 Discus	Scien	455
10.5 Discus	1010	401
17 SEGMEN	TATION AND FITTING USING PROBABILISTIC	C METH-
ODS		460
17.1 Missir	ng Data Problems, Fitting and Segmentation	461
17.1.1	Missing Data Problems	461
17.1.2	The EM Algorithm	463
17.1.3	Colour and Texture Segmentation with EM	469
17.1.4	Motion Segmentation and EM	470
17.1.5	The Number of Components	474
17.1.6	How Many Lines are There?	474
17.2 Robus	stness	475
17.2.1	Explicit Outliers	475

17.2.2 M-estimators

xiii

		17.2.3	RANSAC	480
	17.3	How N	Iany are There?	483
		17.3.1	Basic Ideas	484
		17.3.2	AIC — An Information Criterion	484
		17.3.3	Bayesian methods and Schwartz' BIC	485
		17.3.4	Description Length	486
		17.3.5	Other Methods for Estimating Deviance	486
	17.4	Discus	sion	487
18	TRA	ACKIN	٩G	489
	18.1	Tracki	ng as an Abstract Inference Problem	490
		18.1.1	Independence Assumptions	490
		18.1.2	Tracking as Inference	491
		18.1.3	Overview	492
	18.2	Linear	Dynamic Models and the Kalman Filter	492
		18.2.1	Linear Dynamic Models	492
		18.2.2	Kalman Filtering	497
		18.2.3	The Kalman Filter for a 1D State Vector	497
		18.2.4	The Kalman Update Equations for a General State Vector	499
		18.2.5	Forward-Backward Smoothing	500
	18.3	Non-L	inear Dynamic Models	505
		18.3.1	Unpleasant Properties of Non-Linear Dynamics	508
		18.3.2	Difficulties with Likelihoods	509
	18.4	Particl	le Filtering	511
		18.4.1	Sampled Representations of Probability Distributions	511
		18.4.2	The Simplest Particle Filter	515
		18.4.3	A Workable Particle Filter	518
		18.4.4	If's, And's and But's — Practical Issues in Building Particle	
			Filters	519
	18.5	Data A	Association	523
		18.5.1	Choosing the Nearest — Global Nearest Neighbours	523
		18.5.2	Gating and Probabilistic Data Association	524
	18.6	Applic	ations and Examples	527
		18.6.1	Vehicle Tracking	528
		18.6.2	Finding and Tracking People	532
	18.7	Discus	sion	538
	II	Appen	dix: The Extended Kalman Filter, or EKF	540

			xv
VI I	HGH	-LEVEL VISION	542
19 CO	RRESI	PONDENCE AND POSE CONSISTENCY	544
19.1	Initial	Assumptions	544
	19.1.1	Obtaining Hypotheses	545
19.2	Obtain	ning Hypotheses by Pose Consistency	546
	19.2.1	Pose Consistency for Perspective Cameras	547
	19.2.2	Affine and Projective Camera Models	549
	19.2.3	Linear Combinations of Models	551
19.3	Obtain	ning Hypotheses by Pose Clustering	553
19.4	Obtain	ning Hypotheses Using Invariants	554
	19.4.1	Invariants for Plane Figures	554
	19.4.2	Geometric Hashing	559
	19.4.3	Invariants and Indexing	560
19.5	Verific	ation	564
	19.5.1	Edge Proximity	565
	19.5.2	Similarity in Texture, Pattern and Intensity	567
	19.5.3	Example: Bayes Factors and Verification	567
19.6	Applic	cation: Registration in Medical Imaging Systems	568
	19.6.1	Imaging Modes	569
	19.6.2	Applications of Registration	570
	19.6.3	Geometric Hashing Techniques in Medical Imaging	571
19.7	Curve	d Surfaces and Alignment	573
19.8	Discus	sion	576
20 FIN	DING	TEMPLATES USING CLASSIFIERS	581
20.1	Classif	fiers	582
	20.1.1	Using Loss to Determine Decisions	582
	20.1.2	Overview: Methods for Building Classifiers	584
	20.1.3	Example: A Plug-in Classifier for Normal Class-conditional Densities	586
	20.1.4	Example: A Non-Parametric Classifier using Nearest Neighbours	587
	20.1.5	Estimating and Improving Performance	588
20.2	Buildi	ng Classifiers from Class Histograms	590
	20.2.1	Finding Skin Pixels using a Classifier	591
	20.2.2	Face Finding Assuming Independent Template Responses	592
20.3	Featur	re Selection	595

		20.3.1 Principal Component Analysis	595		
		20.3.2 Canonical Variates	597		
	20.4	Neural Networks	601		
		20.4.1 Key Ideas	601		
		20.4.2 Minimizing the Error	606		
		20.4.3 When to Stop Training	610		
		20.4.4 Finding Faces using Neural Networks	610		
		20.4.5 Convolutional Neural Nets	612		
	20.5	The Support Vector Machine	615		
		20.5.1 Support Vector Machines for Linearly Separable Datasets	616		
		20.5.2 Finding Pedestrians using Support Vector Machines	618		
	20.6	Conclusions	622		
	II	Appendix: Support Vector Machines for Datasets that are not Linearly Separable			
	III	Appendix: Using Support Vector Machines with Non-Linear Kernels	625		
21	REC	COGNITION BY RELATIONS BETWEEN TEMPLATES	627		
	21.1	Finding Objects by Voting on Relations between Templates	628		
		21.1.1 Describing Image Patches	628		
		21.1.2 Voting and a Simple Generative Model	629		
		21.1.3 Probabilistic Models for Voting	630		
		21.1.4 Voting on Relations	632		
		21.1.5 Voting and 3D Objects	632		
	21.2	Relational Reasoning using Probabilistic Models and Search	633		
		21.2.1 Correspondence and Search	633		
		21.2.2 Example: Finding Faces	636		
	21.3	Using Classifiers to Prune Search	639		
		21.3.1 Identifying Acceptable Assemblies Using Projected Classifiers	640		
		21.3.2 Example: Finding People and Horses Using Spatial Relations	640		

21.0	Using Classifiers to I fulle Search	059
	21.3.1 Identifying Acceptable Assemblies Using Projected Classifiers	640
	21.3.2 Example: Finding People and Horses Using Spatial Relations	640
21.4	Technique: Hidden Markov Models	643
	21.4.1 Formal Matters	644
	21.4.2 Computing with Hidden Markov Models	645
	21.4.3 Varieties of HMM's	652
21.5	Application: Hidden Markov Models and Sign Language Understanding	g654
21.6	Application: Finding People with Hidden Markov Models	659
~ -		000

21.7	Frames	s and Probabil	ity Models				662
	21.7.1	Representing	Coordinate	Frames	Explicitly in	n a Probability	
		Model					664

		21.7.2 Using a Probability Model to Predict Feature Positions	666
		21.7.3 Building Probability Models that are Frame-Invariant	668
		21.7.4 Example: Finding Faces Using Frame Invariance	669
	21.8	Conclusions	669
22	ASP	PECT GRAPHS	672
	22.1	Differential Geometry and Visual Events	677
		22.1.1 The Geometry of the Gauss Map	677
		22.1.2 Asymptotic Curves	679
		22.1.3 The Asymptotic Spherical Map	681
		22.1.4 Local Visual Events	682
		22.1.5 The Bitangent Ray Manifold	684
		22.1.6 Multilocal Visual Events	686
		22.1.7 Remarks	687
	22.2	Computing the Aspect Graph	689
		22.2.1 Step 1: Tracing Visual Events	690
		22.2.2 Step 2: Constructing the Regions	691
		22.2.3 Remaining Steps of the Algorithm	692
		22.2.4 An Example	692
	22.3	Aspect Graphs and Object Recognition	696
	22.4	Notes	696
	22.5	Assignments	697

VII APPLICATIONS AND TOPICS

23 RANGE DATA 70123.1 Active Range Sensors 70123.2 Range Data Segmentation 704Technique: Analytical Differential Geometry 70523.2.1 Finding Step and Roof Edges in Range Images 707 23.2.2 Segmenting Range Images into Planar Regions 71223.3 Range Image Registration and Model Construction 714Technique: Quaternions 715 $23.3.1\,$ Registering Range Images Using the Iterative Closest-Point Method 71623.3.2 Fusing Multiple Range Images 71923.4 Object Recognition 720

		23.4.1	Matching Piecewise-Planar Surfaces Using Interpretation	Trees721
		23.4.2	Matching Free-Form Surfaces Using Spin Images	724
	23.5	Notes		729
	23.6	Assign	ments	730
24	API	PLICA	TION: FINDING IN DIGITAL LIBRARIES	732
	24.1	Backg	round	733
		24.1.1	What do users want?	733
		24.1.2	What can tools do?	735
	24.2	Appea	rance	736
		24.2.1	Histograms and correlograms	737
		24.2.2	Textures and textures of textures	738
	24.3	Findin	g	745
		24.3.1	Annotation and segmentation	748
		24.3.2	Template matching	749
		24.3.3	Shape and correspondence	751
	24.4	Video		754
	24.5	Discus	sion	756
25	API	PLICA	TION: IMAGE-BASED RENDERING	758
	25.1	Constr	ructing 3D Models from Image Sequences	759
		25.1.1	Scene Modeling from Registered Images	759
		25.1.2	Scene Modeling from Unregistered Images	767
	25.2	Transf	er-Based Approaches to Image-Based Rendering	771
		25.2.1	Affine View Synthesis	772
		25.2.2	Euclidean View Synthesis	775
	25.3	The Li	ight Field	778
	25.4	Notes		782
	25.5	Assign	ments	784