What Is the Preferred Conformation of Phosphatidylserine–Copper(II) Complexes? A Combined Theoretical and Experimental Investigation

Kari Kusler,† Samuel O. Odoh,‡ Alexey Silakov,§ Matthew F. Poyton,‡ Saranya Pullanchery,‡ Paul S. Cremer,*‡ and Laura Gagliardi*†

†Department of Chemistry, Chemistry Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States
‡Department of Chemistry, The Pennsylvania State University, 104 Chemistry Building, University Park, Pennsylvania 16802, United States
§Department of Chemistry, Chemical Theory Center, and Minnesota Supercomputing Institute, University of Minnesota, 207 Pleasant Street SE, Minneapolis, Minnesota 55455-0431, United States

ABSTRACT: Phosphatidylserine (PS) has previously been found to bind Cu²⁺ in a ratio of 1 Cu²⁺ ion per 2 PS lipids to form a complex with an apparent dissociation constant that can be as low as picomolar. While the affinity of Cu²⁺ for lipid membranes containing PS lipids has been well characterized, the structural details of the Cu–PS₂ complex have not yet been reported. Coordinating to one amine and one carboxylate moiety on two separate PS lipids, the Cu–PS₂ complex is unique among ion–lipid complexes in its ability to adopt both cis and trans conformations. Herein, we determine which stereoisomer of the Cu–PS₂ complex is favored in lipid bilayers using density functional theory calculations and electron paramagnetic resonance experiments. It was determined that a conformation in which the nitrogen centers are cis to each other is the preferred binding geometry. This is in contrast to the complex formed when two glycine molecules bind to Cu²⁺ in bulk solution, where the cis and trans isomers exist in equilibrium, indicating that the lipid environment has a significant steric effect on the Cu²⁺ binding conformation. These findings are relevant for understanding lipid oxidation caused by Cu²⁺ binding to lipid membrane surfaces and will help us understand how ion binding to lipid membranes can affect their physical properties.

INTRODUCTION

Phosphatidylserine (PS) is the most common negatively charged lipid in mammalian cell membranes.¹ In healthy cells, PS lipids are actively transported to the cytoplasmic leaflet of the cell membrane² and play important roles in many physiological processes including apoptosis² and blood clotting.¹⁵ PS lipids also function as binding sites for specific proteins and divalent cations.⁴⁻⁷ Being negatively charged, divalent cations readily bind to PS lipid headgroups.⁷ Upon binding, divalent cations can exert dramatic and physiologically relevant changes on the physical properties of lipid membranes. For example, divalent cation binding to PS lipid headgroups can induce domain formation, lipid phase separation,⁹⁻¹⁰ and increase the gel to liquid crystalline phase transition temperature of lipid bilayers.¹¹ Exposure to divalent cations will also cause vesicles containing PS lipids to aggregate or fuse together.¹²,¹³

The changes in the physical properties of lipid membranes and induction of vesicle fusion and aggregation caused by divalent cation binding to PS lipids are ion-specific. A well-studied example of ion specificity is the ability of Ca²⁺ to induce the fusion of lipid vesicles more readily than Mg²⁺, an intriguing observation considering that both ions have a similar affinity for PS lipid headgroups.¹³,¹⁴ The difference in the ability to fuse lipid vesicles together is thought to be caused by Ca²⁺ and Mg²⁺ binding to different locations on the PS lipid headgroup. Molecular dynamics simulations suggest that, while both Ca²⁺ and Mg²⁺ can bind to two separate PS lipid headgroups, Ca²⁺ binds to oxygen atoms on both the phosphate and carboxylate groups, whereas Mg²⁺ binds to either phosphate or carboxylate oxygen atoms on PS lipid headgroups but not both simultaneously.¹⁴ This example illustrates that it is vital to determine exactly how ions bind to specific lipids in order to understand how divalent cation binding can affect the physical properties of lipid membranes.

It has recently been found that Cu²⁺ can bind to PS lipids. Lipid membranes containing transition metal ion–lipid complexes have been referred to as metallomembranes.¹⁵ In stark contrast to divalent cations such as Ca²⁺ and Mg²⁺, which bind to PS with dissociation constants of 83 and 125 mM, respectively,⁷ Cu²⁺ binds to PS with a picomolar dissociation constant.¹⁶¹⁷ This is due to the ability of Cu²⁺ to...
simultaneously coordinate to the carboxylate and amine moieties of two separate PS lipid headgroups. The primary coordination sphere of the Cu–PS2 complex is identical to that of the bis(glycinato)copper(II) complex formed where Cu2+ binds to two glycinic molecules in bulk solution. Coordinating to two PS lipid headgroups in this manner introduces the ability to form stereoisomers, a cis and a trans Cu–PS2 complex, as shown in Figure 1. To the best of our knowledge, this property of ion–lipid complexes has not been observed previously. However, in bulk solution, Cu2+ can form both cis- and trans-bis(glycinato)copper(II) complexes. While the trans complex is favored thermodynamically, EPR studies have shown that (glycinato)copper(II) exists as a mixture of cis and trans stereoisomers in bulk solution at room temperature. Therefore, the analogous question in membranes is whether the Cu–PS complex should be cis or trans.

While the first coordination sphere of the bis(glycinato)copper(II) complex and the Cu–PS, complex are identical, the rest of the ligand environment differs dramatically. Therefore, it is not known if Cu2+ prefers to bind to PS lipid headgroups in either a cis or trans geometry. To elucidate the stereochemistry of the complex between Cu2+ and two PS lipids, a combined theoretical and experimental study of this interaction was undertaken. Herein, we use density functional theory (DFT) calculations and electron paramagnetic resonance (EPR) experiments to show that Cu2+ prefers to bind to PS lipids in the cis configuration. The formation of the cis instead of the trans complex may have relevance for lipid oxidation, domain formation, or the fusion of lipid vesicles containing PS lipids.

MATERIALS AND METHODS

1-Palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) and 1-palmitoyl-2-oleoyl-sn-glycero-3-phospho-1-serine (POPS) were purchased from Avanti Polar Lipids (Alabaster, AL). Copper(II) chloride (CuCl2, >99.9% trace metal basis) was purchased from Sigma-Aldrich (St. Louis, MO). 3-(4-Morpholinyl) propanesulfonic acid (MOPS, 99%) was purchased from Alfa Aesar (Haverhill, MA). Sodium chloride (NaCl, >99%) was purchased from Dot Scientific (Burton, MI). D2O (D, 99.9%) was purchased from Cambridge Isotope Laboratories (Tewksbury, MA). While the binding of Cu2+ to lipid headgroups could increase the rate of lipid oxidation, we found that oxidation is only increased in the presence of an oxidant that reacts with Cu2+ to generate reactive oxygen species, such as hydrogen peroxide. When incubated with Cu2+ alone, vesicles containing the Cu2+-binding lipid phosphatidy-lthanolamine showed no indications of lipid oxidation. We do not expect a large amount of lipids to be oxidized in current experiments either, as there is no chemical that can react with lipid-bound Cu2+ to produce reactive oxygen species.

DFT Calculations. The interactions of PS with Cu2+ were studied using a model that contained the entire PS headgroup. Both lipid chains after the ester groups in the tails were replaced with hydrogen atoms. Calculations were performed using a cluster of two PS lipids and one Cu2+ ion. To mimic the experimental findings about the behavior of PS when interacting with Cu2+, the amino groups were deprotonated, resulting in a net charge of –2 for each PS headgroup. To determine the preferred binding sites of Cu2+ to PS, the geometries of a large variety of conformations were optimized with particular focus on the corresponding cis and trans structures. The free energies were then compared. As Cu2+ interactions with PS have been studied very little, the coordination number of this complex is not known. Therefore, the number of water molecules included in the calculations was determined by explicitly adding water molecules coordinated to Cu2+ until they no longer stabilized the system or remained within 3 Å of Cu2+ after optimization. While this is not a definitive way to determine the coordination number, calculations using varying numbers of water molecules showed the same trend in preferred binding conformations.

After the binding conformation with the lowest energy was determined, the preference for the negatively charged Cu2–PS2 cluster relative to a neutral Cu–PS2 cluster was examined in order to compare with previous experimental results. This was done by first optimizing the Cu–PS2 clusters with the amino group not deprotonated, making the clusters electrically neutral. The free energy difference between the negatively charged and the neutral cluster were calculated using eq 1. Two water molecules are present on the left side of the equation because Cu2+ was coordinated to two more water molecules in the neutral cluster than in the negatively charged cluster. The previously reported free energy of H+ corrected for a pH of 8 was used, as it is known that Cu2+ will bind to PS at this pH:16,17

\[
[\text{CuPS}_2\text{OH}_2]^{2-} + \text{H}_2\text{O} + \text{H}^+ \rightarrow [\text{CuPS}_2(\text{OH}_2)_2]^+ \tag{1}
\]

A simpler model used to gain additional insight into the binding conformation involved Cu(II)–bis(glycinato) monohydrate. We also considered a model with no explicit water molecules and one with two explicit water molecules bound to the system. Similar trends were observed in all three cases, and we thus report only results from the monohydrate species.

Calculations on the systems described above were performed in Gaussian 09 using DFT with the functionals B3LYP-D3,26–29 M06-L,30 and M0631 with triple-ζ polarized basis sets from Ahlrichs and co-workers. B3LYP was chosen because it has been used successfully to study similar systems, and the D3 correction was added to account for long-range dispersion interactions. M06 and M06-L were used because they perform well for systems involving transition metals. The doublet electronic state was considered, and frequencies were calculated in all cases. Starting conformations were chosen manually. When water was involved in the reactions, the total.
free energy was obtained by adding the experimental free energy of hydration\(^{39}\) to the calculated gas-phase free energy. Unless otherwise noted, all calculations were performed in solution with water represented with the polarizable continuum model using the integral equation formalism.\(^{40}\)

For comparison with experiments, EPR g-factors and hyperfine coupling constants were determined using the ADF (Amsterdam Density Functional) program.\(^{41}\) The optimized cis and trans geometries obtained with the M06 functional were used for these calculations. The spin–orbit zero order regular approximation (ZORA) was used to include relativistic effects,\(^{42,43}\) and solvent effects of water were included using the conductor-like screening model (COSMO).\(^{44,45}\) EPR calculations were performed with B3LYP, M06, and M06-L using Slater-type triple-\(\zeta\) doubly polarized (TZ2P) basis sets.

Vesicle Preparation. Small unilamellar phospholipid vesicles were prepared by freeze–thaw and extrusion techniques.\(^{46,47}\) POPS and POPC lipids were mixed in a 1:1 ratio in chloroform, and the solvent was evaporated under nitrogen. The dried lipids were placed under a vacuum for 2 h, to remove any residual chloroform. Subsequently, the lipid film was rehydrated in 10 mM MOPS buffer containing 100 mM NaCl and 200 \(\mu\)M CuCl\(_2\) in D\(_2\)O at pH 7.4. The total concentration of lipids in the buffer solution was 15 mg/mL. Ten freeze–thaw cycles were conducted on the lipid solution using liquid nitrogen and hot water. Then, the lipids were extruded 10 times through a polycarbonate membrane with 400 nm pores (Whatman, Florham Park, NJ). Vesicle size was determined using dynamic light scattering (90 Plus Particle Size Analyzer, Brookhaven Instrument Corp., Holtsville, NY). The average diameter was 287 ± 3 nm.

EPR Experiments. CW EPR measurements were performed using a Bruker ESP 300 X-band spectrometer with an ER 041MR microwave bridge. An ER4116DM cavity operated in the perpendicular TE102 microwave mode was used to collect all spectra. Cryogenic temperatures were achieved using an ER4112-HV Oxford Instruments variable temperature helium flow cryostat.

RESULTS AND DISCUSSION

In the lowest energy structure found for the negatively charged Cu–PS\(_2\) cluster, Cu\(^{2+}\) was bound to the amine and carboxylate on the headgroup of two PS lipids, with the nitrogen centers cis to each other and the oxygen centers also cis to each other. In this structure, Cu\(^{2+}\) was also bound to one water molecule, resulting in a square pyramidal geometry. As has been noted previously, Cu\(^{2+}\) likely binds to the two amino and two carboxylate groups because of its relatively high affinity for these moieties.\(^{50}\) Additionally, a square pyramidal structure is not surprising, as a coordination number of 5 is common for Cu\(^{2+}\) complexes.\(^{51}\) The cis and trans structures of the Cu–PS\(_2\) cluster are shown in Figures 2a, 2b. According to these calculations, the cis conformer will be extremely more abundant at physiological temperatures (e.g., 37 °C), as it is lower in

Figure 2. Optimized three-dimensional structures of the cis (a), trans (b), and neutral (c) configurations of PS bound to Cu\(^{2+}\) (carbon is gray, copper is salmon, hydrogen is white, nitrogen is blue, oxygen is red, and phosphorus is orange) and two-dimensional representations, in the same order (d, e, f).
energy than the trans conformer by 6.5–8.3 kcal/mol (Table 1), which corresponds to an equilibrium constant on the order of 10^3–10^6.

<table>
<thead>
<tr>
<th>functional</th>
<th>ΔG (Cu–PS$_2$)</th>
<th>ΔG (Cu(II)–bis(glycinato))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP-D3</td>
<td>8.28</td>
<td>−1.38</td>
</tr>
<tr>
<td>M06</td>
<td>6.45</td>
<td>−2.30</td>
</tr>
<tr>
<td>M06-L</td>
<td>7.29</td>
<td>−2.76</td>
</tr>
</tbody>
</table>

The comparison of the neutral and negatively charged cluster energetics revealed that it was more favorable for the Cu–PS$_2$ system to be negatively charged than to be electrically neutral (Table 2). The lowest-energy structure found for the neutral Cu–PS$_2$ cluster is shown in Figure 2c. The energetic preference for Cu$^{2+}$ to be bound to the amine and carboxylate groups on two separate PS lipids is in agreement with experimental data.16,17

EPR spectroscopic investigations augmented with calculations of EPR parameters by DFT provide additional support for the DFT calculations that show the cis structure is the preferred conformation. The X-band CW EPR measurements of Cu$^{2+}$ in 50 mol % POPS/50 mol % POPC vesicles showed a well-defined signal with a typical Cu$^{2+}$ hyperfine splitting pattern (Figure 3). The half-field component of the spectrum exhibits a fine structure that is attributed to a hyperfine interaction with two strongly coupled 14N nuclei. Vesicles prepared in D$_2$O showed an increased resolution of this fine structure.

Pezzato et al.52 studied the temperature dependence of the conformational isomerism of the Cu(II)–bis(glycinato) complex, in which the 14N HF coupling constants were found to be markedly different for cis and trans isomers: 33 and 29 MHz, respectively. Moreover, the 14N HF coupling seems to be very consistent across different bis(aminooxycarbonyl) copper(II) complexes. As our EPR analysis of the samples results in a well-defined 14N HF splitting that corresponds to an $A_{iso} = 33$ MHz coupling constant, we conclude that the experimentally observed EPR spectrum can be attributed to the cis isomer. Moreover, since all parameters for the g-matrix and the 63,65Cu and 14N hyperfine couplings are expected to be somewhat different for the cis and trans conformers, the fact that the spectrum can be fit well with only one set of parameters indicates that the cis isomer is dominant in the sample.

In order to confirm the experimental EPR results, parameters for the cis and trans conformers were computed using DFT and compared to the experimental parameters (Table 3). Although the calculated cis and trans g-matrices are quite similar, the 14N hyperfine coupling constants show much closer agreement with the cis structure than with the trans (Table 3). This is seen to a greater extent with B3LYP and M06 than with M06-L. However, this is to be expected, as it has previously been found that hybrid functionals are better suited for the prediction of EPR parameters.53 The fact that the experimental EPR parameters are relatively close to those of the computationally determined cis structure, especially when using the hybrid functionals, supports the conclusion that the cis isomer is dominant.

To investigate the reason for the cis preference of the Cu–PS$_2$ system, energetics of smaller models containing only the immediate Cu$^{2+}$ binding environment were compared. These Cu(II)–bis(glycinato) systems showed a small preference (Table 2) for the trans isomer compared to the cis isomer (Figure 4). The trans preference in the Cu(II)–bis(glycinato) system is in agreement with previous \textit{ab initio} calculations50,54 and may be due to lower electrostatic repulsion between the carboxylate groups in the trans isomer. Because this system shows an opposite conformational preference compared with the Cu–PS$_2$ model, the cis preference in the Cu–PS$_2$ model should be related to the presence of the phosphate, diacylglycerol and long carbon chains that make up the rest of the lipid. From an examination of the structures (Figure 5), the lower energy of the cis structure compared to the trans structure can be attributed to the extra stabilization of hydrogen bonds between the amino and phosphate groups as well as the more favorable electrostatic interactions between the parallel alkyl lipid chains, which are closer together in the cis conformer.

Now that the stereochemistry for the binding of Cu$^{2+}$ to PS lipids has been revealed, it is reasonable to begin investigating the physiological consequences of this geometry. It has recently

![Figure 3. X-band CW EPR spectrum of Cu$^{2+}$ with 50 mol % POPS/50 mol % POPC vesicles in 10 mM MOPS buffer containing 100 mM NaCl and 200 μM CuCl$_2$ in D$_2$O at pH 7.4 measured at 70 K (blue) and the corresponding simulation (red). The inset shows the derivative of the high-field part of the experimental spectrum (blue) and the simulation (red), emphasizing the 14N fine structure. The simulation was obtained using the following spin-Hamiltonian parameters: $g = [2.0550, 2.0583, 2.2582]$, $A(^{63}Cu) = [45, 45, 557]$ MHz, $A_{iso}(^{14}N) = 33$ MHz, $g_{iso} = [0.013, 0.00, 0.00]$, $g_{cor} = [0.00, 0.007, 0.014]$, $A_{iso}(^{14}N) = [0, -10, -60]$ MHz. The experimental conditions were as follows: temperature, 70 K; MW frequency, 9.625 GHz; MW power, 2 mW; modulation amplitude, 2 G; time constant, 40.96 ms; conversion time, 40 ms.](image-url)

DOI: 10.1021/acs.jpcb.6b10675

Table 1. Relative Energies of the cis and trans Conformations of Cu(II)–Bis(glycinato) Monohydrate and the Cu–PS$_2$ Cluster Model, Where ΔG Is the Free Energy of the trans Conformation Minus the Free Energy of the cis Conformation in kcal/mol

<table>
<thead>
<tr>
<th>functional</th>
<th>ΔG (Cu–PS$_2$)</th>
<th>ΔG (Cu(II)–bis(glycinato))</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP-D3</td>
<td>8.28</td>
<td>−1.38</td>
</tr>
<tr>
<td>M06</td>
<td>6.45</td>
<td>−2.30</td>
</tr>
<tr>
<td>M06-L</td>
<td>7.29</td>
<td>−2.76</td>
</tr>
</tbody>
</table>

Table 2. Preference of Negatively Charged over Neutral Cu–PS$_2$ Systems, That Is, the Difference in Free Energy between the Left Side of eq 1 and the Right Side of eq 1

<table>
<thead>
<tr>
<th>functional</th>
<th>preference of strength (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP-D3</td>
<td>15.82</td>
</tr>
<tr>
<td>M06</td>
<td>13.32</td>
</tr>
<tr>
<td>M06-L</td>
<td>17.24</td>
</tr>
</tbody>
</table>
been shown that Cu²⁺ bound to lipids containing free amines (like phosphatidylethanolamine but also PS) can lead to lipid oxidation.¹⁵ The geometry of binding may control the rate of oxidation as binding sites deeper into the membrane headgroup region may aid in the oxidation of double bonds deeper within the membrane structure. Next, it has been found that lipid domain formation is not induced by Cu²⁺−PS²⁻ complex formation. It was previously postulated that this result may be a consequence of the negative charge on each complex, which should cause repulsion between complexes. Since it is now known that these complexes are in the cis conformation, it can be further stated that they should lie relatively flat within the membrane and resist curvature effects that can also lead to domain formation. Finally, unlike cations such as Ca²⁺ or Zn²⁺, the addition of Cu²⁺ to PS-containing vesicles does not promote vesicle fusion at µM Cu²⁺ concentrations or lower. Like with domain formation, the tendency for bivalent complexes to lie within the membrane plane probably influences this. If, instead, trans complexes had been formed, it might have been easier to link vesicles together or cause membrane fusion. The next step going forward will be to understand how transition metal ions like Cu²⁺ from the Irving−Williams series influence the physical properties of metallomembranes. Just like with the structure formed by transition metal ions binding to proteins to form metalloproteins, the structure of metallomembranes might also be linked to function and physical properties. This prospect should now be explored.

CONCLUSIONS

For the first time, we have identified the stereochemistry of an ion bound to two lipid headgroups. Results from the computed energy differences, EPR experiments, and EPR calculations definitively show that the Cu²⁺−PS complex adopts a cis conformation. This is remarkable considering that the bis-(glycinato)copper(II) complex, which has an identical primary coordination sphere as the Cu²⁺−PS complex, prefers the trans conformation. The cis preference of the Cu²⁺−PS complex may be caused by more favorable hydrogen bonding between the amino and phosphate groups and electrostatic interactions between the lipid chains. These results suggest that, when Cu²⁺ is bound to PS lipids in vitro, it should form a cis complex. This is significant because it predicts that, other than linking two adjacent lipids together,¹⁷ Cu²⁺ can bind to PS lipids without significantly perturbing the order of lipids within the bilayer.

ASSOCIATED CONTENT

* Supporting Information

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jpcb.6b10675.

Computational details, primarily Cartesian coordinates with their associated energies (PDF)

Table 3. Computed and Experimental EPR Parameters, with Hyperfine Coupling Constants for Two Nonequivalent Nitrogen Atoms (N_A and N_B) Shown in MHz

<table>
<thead>
<tr>
<th>functional</th>
<th>conformation</th>
<th>A_(iso)(N_A)</th>
<th>A_(iso)(N_B)</th>
<th>g_xx</th>
<th>g_yy</th>
<th>g_zz</th>
</tr>
</thead>
<tbody>
<tr>
<td>B3LYP</td>
<td>cis</td>
<td>33.92</td>
<td>32.78</td>
<td>2.04</td>
<td>2.05</td>
<td>2.16</td>
</tr>
<tr>
<td></td>
<td>trans</td>
<td>29.42</td>
<td>29.34</td>
<td>2.05</td>
<td>2.05</td>
<td>2.17</td>
</tr>
<tr>
<td>M06</td>
<td>cis</td>
<td>34.36</td>
<td>33.13</td>
<td>2.05</td>
<td>2.07</td>
<td>2.29</td>
</tr>
<tr>
<td></td>
<td>trans</td>
<td>29.75</td>
<td>29.66</td>
<td>2.06</td>
<td>2.07</td>
<td>2.31</td>
</tr>
<tr>
<td>M06-L</td>
<td>cis</td>
<td>36.67</td>
<td>35.35</td>
<td>2.03</td>
<td>2.04</td>
<td>2.11</td>
</tr>
<tr>
<td></td>
<td>trans</td>
<td>32.14</td>
<td>31.95</td>
<td>2.03</td>
<td>2.04</td>
<td>2.11</td>
</tr>
<tr>
<td>experiment</td>
<td></td>
<td>33 (±1)</td>
<td>33 (±1)</td>
<td>2.06</td>
<td>2.06</td>
<td>2.26</td>
</tr>
</tbody>
</table>

Figure 4. Optimized structures of the cis (a) and trans (b) configurations of Cu(II)−bis(glycinato) monohydrate (carbon is gray, copper is salmon, hydrogen is white, nitrogen is blue, and oxygen is red).

Figure 5. Optimized structures of the cis (a) and trans (b) configurations of PS bound to Cu²⁺, showing the smallest distances (in Å) between the amino hydrogens and phosphate oxygens, as well as selected carbon atoms in the carbon backbone (carbon is gray, copper is salmon, hydrogen is white, nitrogen is blue, oxygen is red, and phosphorus is orange). Images were created with VMD.⁴⁹
The manuscript was written through contributions of all authors. All authors have given approval to the final version of the manuscript.

Notes
The authors declare no competing financial interest.

ACKNOWLEDGMENTS
The computational and theoretical part of this work was supported in part by the U.S. Department of Energy, Office of Basic Energy Sciences, under SciDAC Grant No. DE-SC0008666. The experimental lipid chemistry was supported in part by the U.S. Department of Energy, Office of Basic Energy Sciences, under SciDAC Grant No. DE-SC0008666. The Journal of Physical Chemistry B provided part of the computational resources for this work.

REFERENCES

(36) Rulís, L.; Havlas, Z. Theoretical Studies of Metal Ion Selectivity. 1. DFT Calculations of Interaction Energies of Amino Acid Side Chains with Selected Transition Metal Ions (Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, and Hg²⁺) in Metalloproteins. J. Am. Chem. Soc. 2000, 122 (42), 10428–10439.
(37) Remko, M.; Rode, B. M. Effect of Metal Ions (Li⁺, Na⁺, K⁺, Mg²⁺, Ca²⁺, Ni²⁺, Cu²⁺, and Zn²⁺) and Water Coordination on the Structure of Glycine and Zwitterionic Glycine. J. Phys. Chem. A 2006, 110, 1960–1967.
(38) Rulís, L.; Havlas, Z. Theoretical Studies of Metal Ion Selectivity. 2. DFT Calculations of Complexation Energies of Selected Transition Metal Ions (Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, and Hg²⁺) in Metal-Binding Sites of Metalloproteins. J. Phys. Chem. A 2002, 106, 3855–3866.
(51) Rulís, L.; Vondrášek, J. Coordination Geometries of Selected Transition Metal Ions (Co²⁺, Ni²⁺, Cu²⁺, Zn²⁺, Cd²⁺, and Hg²⁺) in Metalloproteins. J. Inorg. Biochem. 1998, 71 (3–4), 115–127.