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ABSTRACT: The orchestrated recognition of phosphoinositides
and concomitant intracellular release of Ca2+ is pivotal to almost
every aspect of cellular processes, including membrane homeo-
stasis, cell division and growth, vesicle trafficking, as well as
secretion. Although Ca2+ is known to directly impact phosphoi-
nositide clustering, little is known about the molecular basis for
this or its significance in cellular signaling. Here, we study the
direct interaction of Ca2+ with phosphatidylinositol 4,5-bi-
sphosphate (PI(4,5)P2), the main lipid marker of the plasma
membrane. Electrokinetic potential measurements of PI(4,5)P2
containing liposomes reveal that Ca2+ as well as Mg2+ reduce the
zeta potential of liposomes to nearly background levels of pure
phosphatidylcholine membranes. Strikingly, lipid recognition by
the default PI(4,5)P2 lipid sensor, phospholipase C delta 1 pleckstrin homology domain (PLC δ1-PH), is completely inhibited in
the presence of Ca2+, while Mg2+ has no effect with 100 nm liposomes and modest effect with giant unilamellar vesicles.
Consistent with biochemical data, vibrational sum frequency spectroscopy and atomistic molecular dynamics simulations reveal
how Ca2+ binding to the PI(4,5)P2 headgroup and carbonyl regions leads to confined lipid headgroup tilting and conformational
rearrangements. We rationalize these findings by the ability of calcium to block a highly specific interaction between PLC δ1-PH
and PI(4,5)P2, encoded within the conformational properties of the lipid itself. Our studies demonstrate the possibility that
switchable phosphoinositide conformational states can serve as lipid recognition and controlled cell signaling mechanisms.

■ INTRODUCTION

Cell signaling pathways are largely organized via a specific
recruitment of signaling effector proteins to their target
membranes and a confined release of calcium ions. The
quintessential example of this is the action of phospholipase C
(PLC) that binds and hydrolyzes phosphatidylinositol 4,5-
bisphosphate (PI(4,5)P2) in the plasma membrane to

diacylglycerol (DAG) and the water-soluble inositol 1,4,5-
trisphosphate (IP3), the latter inducing the release of Ca2+ from
the endoplasmic reticulum (ER) into the cytosol.1 Another
prominent example is synaptotagmin-1, the main Ca2+ sensor of
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neuronal exocytosis in the presynaptic axon terminal.
Synaptotagmin-1 binding to PI(4,5)P2 directly amplifies protein
cooperativity and thus sensitivity to Ca2+ by a factor of >40.
This mutual interplay is a critical step in neurotransmitter
release.2

PI(4,5)P2 is enriched in the inner leaflet of the plasma
membrane3,4 and constitutes around 1% of the total anionic
phospholipid content in cellular membranes.5 In comparison
with other phospholipids, it contains a rather bulky
phosphorylated inositol headgroup with a negative charge
ranging from −3 e to −5 e, depending on the pH and the
presence of proteins or ions.6 PI(4,5)P2 and other negatively
charged lipids in the cytosolic leaflet are constantly exposed to
divalent cations. In resting cells, the free cytosolic Ca2+

concentration is approximately 100 nM.7,8 The cytosolic
concentration of Ca2+ upon cell signaling has been reported
to span a wide range from 0.5 μM to several hundred μM, with
a half-life of 500 μs to 26 ms.9−14 Ca2+ influx primarily
originates from internal stores within the endoplasmic/
sarcoplasmic reticulum or from specialized channels within
the plasma membrane providing an essentially infinite supply of
extracellular calcium.9 In all cases, Ca2+ is delivered as brief
transients, forming microdomains at the membrane site of
influx,10 and thus, local concentrations of Ca2+ can be expected
to exceed cytosolic concentrations by orders of magnitude.15

Meanwhile, unlike Ca2+, the levels of free, cytosolic Mg2+ are
maintained within a fairly narrow concentration range of 0.25−
1 mM.16,17 Interestingly, calcium but not magnesium ions have
been ascribed a strong propensity to promote the formation of
PI(4,5)P2 clusters as demonstrated in several studies, primarily
by using monolayer techniques.18−22

While the overall effects of divalent cations, including
calcium, on PI(4,5)P2 lateral organization have been intensely
studied, the mechanism of Ca2+ and PI(4,5)P2 interactions at
the molecular level remain unclear. Experiments with pure
PI(4,5)P2 monolayers have suggested partial dehydration of
both Ca2+ and PI(4,5)P2 upon interaction with each other,23

triggering an electron density increase in the PI(4,5)P2
headgroup region as well as acyl chain region thickening.24

Interactions between PI(4,5)P2 and Ca2+ have also been
studied computationally. These studies, however, have typically
focused on single PI(4,5)P2 molecules25 or used simplified
coarse-grained models19 that lack sufficient details to deal with
specific chemical features of phosphatidylinositides.
Herein, we combine protein−lipid binding assays and

spectroscopic experiments with atomistic molecular dynamics
(MD) simulations employing refined state-of-the art force fields
to unravel the functional and structural consequences of the
interplay between Ca2+ and PI(4,5)P2. Our data indicate a
hitherto undiscovered role and mechanism for Ca2+ in cellular
signaling, namely the direct organization of the phosphoinosi-
tide headgroup conformation and the selective recognition
thereof by the pleckstrin homology (PH) domain of PLC δ1,
the canonical PI(4,5)P2 sensor.

■ RESULTS AND DISCUSSION
Protein−Lipid Binding Assays. To determine the

equilibrium dissociation constants (KD) for divalent cation/
PI(4,5)P2 interaction, we employed a simple fluorescent assay
using a supported lipid bilayer platform26−28 containing 5 mol
% of PI(4,5)P2 (for details, see the Supporting Information).
Significantly, the KD values differed by less than a factor of 2,
with a KD of 0.6 ± 0.2 mM for Ca2+ compared to 1.2 ± 0.2 mM

for Mg2+ (Figure S1). We therefore decided to use a cation
concentration of 1 mM for all follow-up experiments, matching
the free Mg2+ concentration in the cytosol. In order to
systematically study the effects of Ca2+ on PI(4,5)P2, we
produced 100 nm diameter large unilamellar vesicles (LUVs),
facilitating the control of membrane lipid composition and
properties. For quality control and physicochemical character-
ization, all preparations were first subjected to thin layer
chromatography (TLC), dynamic light scattering (DLS), and
zeta potential measurements (Figure S2). Having the opposite
charge of PI(4,5)P2, it is not surprising that Ca2+ and Mg2+

equally reduce the zeta potential of POPC liposomes
containing 5 mol % of PI(4,5)P2, the former being described
previously.29 In fact, the presence of either cation attenuates the
electrokinetic potential of the membrane down to the level of
POPC alone (Figure S2c).
Because of its extraordinary stereospecificity, the PLC δ1-PH

domain is widely used as the canonical reporter for cellular
PI(4,5)P2 levels at the plasma membrane as well as with in vitro
assays.30−34 We therefore used recombinant PLC δ1-PH
domain to follow PI(4,5)P2 binding to synthetic liposomes.
Size-exclusion chromatography and DLS confirmed that the
purified PLC δ1-PH domain (Figure S3a,b) was monomeric in
solution, even in the presence of Ca2+ and Mg2+ (Figure S3c,d).
Next, we performed liposome flotation assays to follow PLC
δ1-PH binding efficiency to POPC/PI(4,5)P2 vesicles.
Interestingly, preincubation with 1 mM Ca2+ but not 1 mM
Mg2+ fully inhibited liposome binding (Figure 1a,b). Moreover,
PLC δ1-PH did not bind to pure POPC liposomes, highlighting
its specificity to PI(4,5)P2.
Circular dichroism (CD) spectroscopy excluded a direct

effect for cations on the secondary structure of the protein
(Figure S3e,f). As such, although Ca2+ and Mg2+ bind to
PI(4,5)P2 with comparable KD values and reduce electrokinetic
membrane properties in an equal manner, only Ca2+ was
capable of inhibiting PLC δ1-PH binding. This indicates that
PI(4,5)P2 recognition by proteins cannot be solely based on
electrostatic interactions.
Because a concentration of 1 mM Ca2+ corresponds to twice

its KD for PI(4,5P)2 interaction, we performed additional
flotation assays with lower Ca2+ concentrations. Here, a
significant reduction in protein binding could be observed
already at a concentration of 0.6 mM Ca2+ (Figure S4). In this
context, recent data by Milovanovic and colleagues show that
Ca2+ but not Mg2+ promotes syntaxin-1/PI(4,5)P2 domain
formation by an underlying mechanism in which Ca2+ clusters
PI(4,5)P2 and syntaxin-1 independently from each other.
Moreover, Ca2+ acts as a charge bridge that merges multiple
syntaxin-1/PI(4,5)P2 clusters into larger domains. Also here,
Ca2+ was found to be effective at a concentration of 0.5 mM
while even 1 mM Mg2+ had no effect.35

Ca2+ binding to membranes has been recently reported to
increase with high curvature.36 We therefore additionally
followed the binding of monomeric ECFP-PLC δ1-PH fusion
protein to giant unilamellar vesicles (GUVs) (Figure 1c).
Despite limited control over membrane lipid composition at
the individual GUV level,37 GUVs provide the most appropriate
synthetic approach for flat and freestanding bilayer systems. In
this system, the presence of 1 mM Ca2+ drastically reduced
ECFP-PLC δ1-PH binding (Figure 1d and Figure S5),
demonstrating the robustness of the observed effect,
irrespective of membrane curvature. Magnesium, however,
also reduced ECFP-PLC δ1-PH domain binding, halfway
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toward the Ca2+ effect. To understand this result, it is important
to note that liposome flotation experiments with proteins are
nonequilibrium assays because much of the protein stays in the
bottom of the tube. At the same time, cation concentrations
remain constant, leading to an additional stoichiometric shift.
By contrast, protein binding in the GUV experiment is at
equilibrium and binding events are quantified at the individual
GUV level.
Vibrational Sum Frequency Spectroscopy. To analyze

the molecular basis for the cation specificity, vibrational sum
frequency spectroscopy (VSFS) was employed to study the
effects of Ca2+ and Mg2+ on pure PI(4,5)P2 monolayers at the
air/water interface. The spectra were recorded over frequency
ranges corresponding to the headgroup and acyl-chain portions
of the lipid molecules and included the adjacent interfacial
water structure.
We present VSFS spectra from the inositol ring and

phosphate regions of PI(4,5)P2 in the absence and presence
of 1 mM Ca2+ and Mg2+ (Figure 2a, detailed peak assignments
in Figure S6 and Table S1). In the absence of cations in the
subphase, both the inositol ring vibrations and the phosphate
stretches were rather weak (black data points). This is because
of a relatively disordered arrangement of the PI(4,5)P2
headgroups adopted in a pure buffer with a wide range of tilt
angles relative to the surface normal. With 1 mM Ca2+,
however, the inositol ring signal (961 cm−1 and 1012 cm−1

peaks from the C−C and C−O coupled vibrations,
respectively)38 increased substantially (red data points). In

fact, the resonances showed 2.7- and 3.6-fold increases,
respectively, in oscillator strength (Table S1). These changes
reflect both reorientation of the inositol rings and a narrowing
of their orientational distribution upon cation binding.
Significantly, the changes were not nearly as strong upon the
addition of 1 mM Mg2+ (blue data points). In that case, the
oscillator strength of the inositol ring vibrations was increased
by only a factor of 1.5 and 2.1, respectively. Such results
indicated that Ca2+ rigidified the configuration of the PI(4,5)P2
headgroups much more effectively than Mg2+.
In addition to the inositol ring modes, the phosphate peaks

(e.g., symPO3
2− at 982 cm−1, symPO2

− at 1086 cm−1, asyPO3
2− at

1115 cm−1, asyPO2
− at 1154 cm−1, detailed assignments in

Figure S6 and Table S1) also showed a substantial intensity
increase upon the introduction of Ca2+ to the subphase. This
indicates a strong net orientation and/or ordering of the
headgroup phosphates upon Ca2+ binding. It should be noted
that Ca2+ binding may help to deprotonate the second
monoesterified phosphate,25 which would prompt additional
changes in the spectra beyond those related to ordering and tilt
angle. Moreover, upon the addition of Ca2+, the symmetric
PO3

2− stretch exhibited a relatively large 20 cm−1 blue shift,
while the asymmetric PO3

2− and PO2
− stretches shifted by 6

cm−1 and 8 cm−1, respectively (Table S1). The shifts of both
PO3

2− peaks are consistent with phosphate dehydration upon
cation binding and/or a symmetry change of the C3v point
group.39,40 The shift of the asymmetric PO2

− peak also suggests
headgroup phosphate dehydration upon Ca2+ binding.40−42

The spectral change brought about by 1 mM Mg2+ in the
phosphate region was much less pronounced overall compared
to that with 1 mM Ca2+. The difference in the interactions of
Ca2+ and Mg2+ with phosphate could be explained at least in
part by different dehydration penalties for these two cations. It
has been suggested that Ca2+ binding to phosphate groups is
favored because Ca2+ is more easily dehydrated than Mg2+.23

This difference in the hydration shell chemistry may, in turn,
act to disfavor the bridging of the inositol rings of PI(4,5)P2,
which would weaken the ordering effect of Mg2+.
In addition to phosphate and inositol resonances, VSFS

spectra were also obtained in the carbonyl CO symmetric
stretch (1730 cm−1)43 region before and after addition of 1 mM
CaCl2 or MgCl2 (Figure 2b). Again, Ca2+ showed a more
prominent effect on the PI(4,5)P2 than Mg2+. In fact, a 1.6-fold

Figure 1. (a) Setup of the LUV flotation assay. (b) PLC δ1-PH
binding to LUVs with POPC/PI(4,5P)2 (95/5 mol %). Error bars are
standard deviations of three independent experiments. (c) GUVs after
ECFP-PLC δ1-PH addition (green) and Dil as membrane marker
(red). The scale bar corresponds to 10 μm. (d) The distribution of
median ECFP-PLC δ1-PH intensity per pixel of individual GUVs and
different sizes of control (blue) and after preincubation with 1 mM
Mg2+ (green) or Ca2+ (red) (data from two additional independent
experiments are provided in Figure S5). Each dot represents a single
GUV. The number of analyzed GUVs is indicated in the respective
color. The median intensity values with mean and standard deviation
are depicted in the inset. The Mann−Whitney test was used as
significance test (p value <0.0001 for all cases).

Figure 2. VSFS spectra of (a) the inositol ring and phosphate regions
and (b) the carbonyl CO symmetric stretch region of PI(4,5)P2 on
a buffer subphase (black spectra) containing 1 mM MgCl2 (blue
spectra) or 1 mM CaCl2 (red spectrum) at a surface pressure of 17
mN/m. The open circles represent VSFS data points, and the solid
lines are fits to the data. All spectra were taken with the ssp
polarization combination. Spectra of the same data offset along the y-
axis are provided in Figure S7. Details of monolayer preparation and
images are provided in Figure S14.
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increase in the oscillator strength of this peak was observed
upon binding of Ca2+, while only a 1.3-fold increase was found
for Mg2+ (Table S2). This oscillator strength increase should
correspond to a backbone ordering effect, thus helping to
reinforce a more rigid configuration of the headgroup inositol
rings. Ordering of the lipid acyl chains was also observed
(Figure S8 and Table S3).44

Taken together, the changes in the VSFS spectra provide
strong experimental evidence for distinct conformational
changes within the lipid headgroup region in the presence of
Ca2+, but less with Mg2+. Such results should be important for
the PLC δ1-PH domain selectivity of PI(4,5)P2 found above
with liposomes and GUVs.
Atomistic Molecular Dynamics Simulations. With the

aim of obtaining mechanistic insights into the effects of Ca2+

and Mg2+ on PI(4,5)P2 molecules at a molecular level, we
employed atomistic MD simulations. In order to reduce
methodological bias, we used two all-atom force fields
(OPLS-AA and CHARMM36) as well as the united-atom
force field from Berger (Table S4).45−47 Importantly, to further
account for electronic polarization effects of charged groups in
a mean field manner, for Ca2+ interacting with PI(4,5)P2
phosphates we also employed the recently developed electronic
continuum correction with rescaling (ECCR) method.48 This,
to a large extent, dampens the unrealistically high ion pairing
found when employing nonpolarizable force fields.48 It is
particularly useful in the present case where strong electronic
polarization can be expected in the vicinity of multiple-charged
moieties.
We generated multiple sets of 1 μs long trajectories for

different initial PI(4,5)P2 distributions prior to and after the
addition of Ca2+ or Mg2+. For all simulations, consistently with
all force fields used, we find that Ca2+ interacts with PI(4,5)P2
and has a pronounced effect on the lipid headgroup orientation
(Figure 3 and Figures S9 and S13). Moreover, control
simulations with Mg2+ showed that the effects induced by
magnesium are much weaker than those induced by calcium for
all simulations (Figure 3c,d and SI), in full agreement with
experiments.
The addition of Ca2+ or Mg2+ immediately leads to a

significant reduction of the area per lipid (Figure S10 and Table
S5). This macroscopic effect is in agreement with lateral
condensation of the PI(4,5)P2-containing monolayers by
Ca2+ 20,22−24 and our VSFS analysis of the CH stretches
(Figure S8). At the microscopic level, we found that each
PI(4,5)P2 molecule binds on average 1.6−3.1 Ca2+ molecules,
depending on the force field that is employed (Table S5). This
is consistent with the water peak spectral changes, which show
that each lipid molecule binds more than two Ca2+ ions (Figure
S8). Ca2+ binds mostly to the phosphate groups at positions 4
and 5, but it also penetrates deeper into the lipid bilayer to
interact with the carbonyl groups (Figure S11). Ca2+ binding to
the lipid carbonyl group is consistent with the VSFS data in the
carbonyl stretch region, as documented herein (Figure 2b) and
elsewhere.49−53 In agreement with previously published
computational and experimental results,24,50 we observed that
Ca2+ increases the order parameters of the PI(4,5)P2 acyl chains
(Figure S12). The acyl chain ordering is also fully in line with
the effects observed in the VSFS spectra (Figure S8).
The most prominent feature observed by simulations is a

pronounced headgroup reorientation, primarily caused by the
ability of Ca2+ to bridge two PI(4,5)P2 headgroups (Figure
3a,b). This result was found regardless of which force field was

used. To quantitatively analyze the headgroup reorientation, we
monitored the tilt angle between the C1−C4 atoms of the
PI(4,5)P2 inositol ring and the bilayer normal. The average tilt
angle in the control simulation without Ca2+ was in the range of
35−41°, depending on the employed force field. This result is
in agreement with previously published MD studies.54−56 In the
presence of Ca2+ ions, however, the average tilt angle
significantly increased for all of the force fields up to 65°
(Figure 3c and Figures S9 and S13). Simulations thus
consistently showed bending of the PI(4,5)P2 headgroup
toward the plane of the bilayer and away from bulk water
(Table S5). Moreover, consistent with a narrowing of the
inositol ring’s distribution as indicated by VSFS results above
(Figure 2a), Ca2+ slowed PI(4,5)P2 headgroup rotational
diffusion as revealed by the rotational correlation function
(Figure S9e). The Ca2+ effect was also manifested in the density
profiles (Figure 3d), where the location of the PI(4,5)P2
headgroups shifted in the presence of calcium toward the
bilayer center. Moreover, Ca2+ significantly decreased the
solvent accessible surface area of PI(4,5)P2, which correlated
with a reduced average number of hydrogen bonds between the
PI(4,5)P2 headgroups and water molecules (Table S5). These
data also match the experimentally observed partial dehydration
of PI(4,5)P2 in the presence of Ca2+ as measured here by VSFS
and elsewhere.23

The charge state of PI(4,5)P2 in lipid membranes is highly
sensitive to the cellular pH and the presence of proteins and
ions.6,57 By using not only the default parametrization
(CHARMM36 and OPLS-AA) but also the ECCR corrected
charges for the ions and PI(4,5)P2 phosphate groups (Berger,
OPLS-AA), we were able to assess the potential effects of the
lipid charge state. Namely, the charge used for PI(4,5)P2 varied
from −3.75 to −5, depending on the particular force field (for

Figure 3. Snapshots from MD simulations of the lipid bilayer taken at
1 μs (a) without and (b) with Ca2+. (c) Tilt angle distribution of the
PI(4,5)P2 headgroup and (d) density profiles of lipid headgroups
without (blue) and with Mg2+ (green) or Ca2+ (red). Numbers in (c)
represent mean tilt angles for each system. Here, only the results of the
Berger force field simulations are presented. Additional force field
simulations with similar outcomes can be found in the Supporting
Information.
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more details, see the SI). Reassuringly, we found semi-
quantitatively the same effect of Ca2+ on the PI(4,5)P2 tilt
angle with Ca2+ in all the systems which were tested. This
indicates that under the conditions of these investigations the
protonation state of PI(4,5)P2 was not particularly critical for
the observed effects.

■ CONCLUSION
By means of protein−lipid binding assays and spectroscopic
experiments, together with atomistic MD simulations, we have
unraveled and characterized in molecular detail the pronounced
effect of Ca2+ on PI(4,5)P2 headgroup presentation. First, we
confirmed the previously observed increase of the PI(4,5)P2
acyl chain order and PI(4,5)P2 cluster formation,18−21 as
evidenced here by VSFG spectroscopy and MD simulations.
Second, we characterized at the molecular level the interactions
of Ca2+ with PI(4,5)P2 headgroup phosphates, as well as the
more deeply seated carbonyl groups. We observed the hitherto
unrecognized consequences of Ca2+ binding for PI(4,5)P2 at
the molecular level. Namely, we observed a dramatic change in
the PI(4,5)P2 headgroup tilt angle. By means of liposome
flotation and GUV binding assays, we show that Ca2+ has a
strong propensity to render the PI(4,5)P2 headgroup invisible
to the PLC-δ1 PH domain.
Our data lead to the plausible conjecture that the calcium-

induced switching of phosphoinositide conformational states
may serve as a potential cellular mechanism for lipid
recognition and thus play a decisive role in cell signaling and
membrane trafficking. A systematic correlation of kinetics and
curvature sensitivities at the nanoscale in vitro58 will be key to
understanding the general applicability of our data to other
proteins and to different endomembranes.
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