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1. Fluid properties and concept of continuum 
• Fluid: a substance that deforms continuously under an applied shear stress (e.g., air, 

water, upper mantle...) 
• Not practical/possible to treat fluid mechanics at the molecular level! 
• Instead, need to define a representative elementary volume (REV) to average quantities 

like velocity, density, temperature, etc. within a continuum 
• Continuum: smoothly varying and continuously distributed body of matter – no holes or 

discontinuities 

 
1.1 What sets the scale of analysis? 

• Too small: bad averaging 
• Too big: smooth over relevant scales of variability… 

 
 

An obvious length scale L for ideal gases is the mean free path (average distance traveled by 
before hitting another molecule): 

 𝐿𝐿 =  𝑘𝑘𝑏𝑏
4𝜋𝜋√2𝑟𝑟2

𝑇𝑇
𝑃𝑃

 ( 1 ) 

where kb is the Boltzman constant, πr2 is the effective cross sectional area of a molecule, T is 
temperature, and P is pressure. 

 



Geosc 548 Notes  R. DiBiase 9/2/2016 

Mean free path of atmosphere 

Sea level L ~ 0.1 μm 

z = 50 km L ~ 0.1 mm 

z = 150 km L ~ 1 m 

 

For liquids, not as straightforward to estimate L, but typically much smaller than for gas. 

 
1.2 Consequences of continuum approach 

Consider a fluid particle in a flow with a gradient in the velocity field 𝑢𝑢�⃑ : 

 
For real fluids, some “slow” molecules get caught in faster flow, and some “fast” molecules get 
caught in slower flow. This cannot be reconciled in continuum approach, so must be modeled. 
This is the origin of fluid shear stress and molecular viscosity. For gases, we can estimate 
viscosity from first principles using ideal gas law, calculating rate of momentum exchange 
directly. For liquids, experiments are needed... 

 
1.3 Couette flow and fluid rheology 
Maurice Couette in late 1800s performed a series of experiments using a cylinder viscometer to 
characterize fluid rheology and viscosity, and demonstrate validity of the “no slip” condition. 
Consider a small section of the flow that can be treated as flow between two plates, where a 
force F is applied to the upper plate (shear force per unit area = shear stress): 
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The velocity profile that develops depends on fluid rheology (i.e., constitutive equations that 
relate shear stress and strain rate). Here 𝑢𝑢�⃑  indicates the velocity vector field (in Cartesian 
coordinates dependent on x, y, z, t), with the directional components 𝑢𝑢𝑥𝑥, 𝑢𝑢𝑦𝑦, and 𝑢𝑢𝑧𝑧 
corresponding to flow in the x, y, and z directions. 

Experimental result (Newtonian fluid): 

 𝐹𝐹/𝐴𝐴 ∝ 𝑢𝑢𝑚𝑚𝑚𝑚𝑥𝑥/𝑏𝑏 ( 2 ) 

Newtonian fluid: linear relationship between applied shear stress and strain rate (in 1-D example 
above this is equal to the x-velocity gradient in y). For a given position in flow:  

 𝜏𝜏𝑦𝑦𝑥𝑥 = 𝜇𝜇 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦

 ( 3 ) 

where τyx is the fluid shear stress acting in the x direction on the y-plane, and μ is the dynamic 
viscosity (units of ML-1T-1), a measure of fluid resistance to shear at the molecular level. We can 
also define the kinematic viscosity for convenience as: 

 𝜈𝜈 = 𝜇𝜇/𝜌𝜌 ( 4 ) 

 
Some common fluid viscosities (kg m-1 s-1) 

Air: 2 x 10-5 
Water: 1 x 10-3 
Honey: 1 x 101 

Upper mantle: 1 x 1020 

 

Non-Newtonian fluids: nonlinear relationship between shear stress and strain rate 

• Bingham fluid: linear, but with critical shear stress τ0 before deformation begins (debris 
flows) 

 𝜏𝜏𝑦𝑦𝑥𝑥 − 𝜏𝜏0 = 𝜇𝜇𝑏𝑏
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦

 ( 5 ) 
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• Glen’s law: power-law relationship between shear stress and strain rate (ice flow in 
glaciers) 

 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦

= 𝐴𝐴𝜏𝜏𝑛𝑛 ( 6 ) 

 where A depends on ice temperature, composition, etc, and n is typically ~3. 

2. Basics of open-channel flow mechanics 

 
Things we want to know: 

• Vertical velocity profile (e.g., suspended sediment transport) 
• Cross-sectional averaged velocity (e.g., discharge calculation) 
• Bed shear stress (e.g., erosion and bedload transport) 

For natural channels, typically use hydraulic radius instead of depth. 

 𝑅𝑅ℎ = 𝐴𝐴/𝑃𝑃𝑤𝑤  ( 7 ) 

where A is cross-sectional area and Pw is the wetted perimeter. For rectangular channels, this 
becomes: 

 𝑅𝑅ℎ = 𝑊𝑊𝑊𝑊
𝑊𝑊+2𝑊𝑊

 ( 8 ) 

We can see that for “wide” channel (W>>H), Rh = H. What is wide? Non-dimensionalize to: 

 𝑅𝑅ℎ/𝐻𝐻 = 𝑊𝑊/𝑊𝑊
𝑊𝑊/𝑊𝑊+2

 ( 9 ) 

Plotting Rh/H vs W/H we can see that Rh ~ H for W/H > 20. 
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2.1 Conservation of mass 
For an arbitrary control volume V with density ρ: 

 
Rate of change of mass within control volume = mass flux in – mass flux out: 

LHS: rate of change of mass m within control volume: 

 𝜕𝜕𝑚𝑚
𝜕𝜕𝜕𝜕

= 𝜕𝜕(𝜌𝜌𝜌𝜌)
𝜕𝜕𝜕𝜕

= 𝑉𝑉 𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

= ∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧 𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

 ( 10 ) 

RHS: Net mass flux into control volume: 

 𝜌𝜌𝑢𝑢𝑥𝑥(𝑥𝑥)∆𝑦𝑦∆𝑧𝑧 − 𝜌𝜌𝑢𝑢𝑥𝑥(𝑥𝑥 + ∆𝑥𝑥)∆𝑦𝑦∆𝑧𝑧 + 

 𝜌𝜌𝑢𝑢𝑦𝑦(𝑦𝑦)∆𝑥𝑥∆𝑧𝑧 − 𝜌𝜌𝑢𝑢𝑦𝑦(𝑦𝑦 + ∆𝑦𝑦)∆𝑥𝑥∆𝑧𝑧 + ( 11 ) 

 𝜌𝜌𝑢𝑢𝑧𝑧(𝑧𝑧)∆𝑥𝑥∆𝑦𝑦 − 𝜌𝜌𝑢𝑢𝑧𝑧(𝑧𝑧 + ∆𝑧𝑧)∆𝑥𝑥∆𝑦𝑦 

Equating the above two expressions, and dividing through by the control volume 𝑉𝑉 = ∆𝑥𝑥∆𝑦𝑦∆𝑧𝑧 
results in: 

 𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

= −�𝜌𝜌𝑢𝑢𝑥𝑥(𝑥𝑥+∆𝑥𝑥)−𝜌𝜌𝑢𝑢𝑥𝑥(𝑥𝑥)
∆𝑥𝑥

+ 𝜌𝜌𝑢𝑢𝑦𝑦(𝑦𝑦+∆𝑦𝑦)−𝜌𝜌𝑢𝑢𝑦𝑦(𝑦𝑦)
∆𝑦𝑦

+ 𝜌𝜌𝑢𝑢𝑧𝑧(𝑧𝑧+∆𝑧𝑧)−𝜌𝜌𝑢𝑢𝑧𝑧(𝑧𝑧)
∆𝑧𝑧

� ( 12 ) 
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In the limit of small ∆𝑥𝑥, ∆𝑦𝑦, and ∆𝑧𝑧, the above equation simplifies to: 

 𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

= −�𝜕𝜕𝜌𝜌𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝜌𝜌𝑢𝑢𝑦𝑦
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝜌𝜌𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧

� ( 13 ) 

and can be rearranged to form: 

 𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ ∇ ∙ 𝜌𝜌𝑢𝑢�⃑ = 0 ( 14 ) 

which is the expression for conservation of mass in an Eulerian reference frame. We will also 
find it useful to track fluid properties in a Lagrangian reference frame, where an individual fluid 
particle is followed as it moves through space. 

 

The material derivative of a property is indicated by the differential operator D/Dt, and defined 
(in this case for fluid density ρ): 

 𝐷𝐷𝜌𝜌
𝐷𝐷𝜕𝜕

= 𝜕𝜕𝜌𝜌
𝜕𝜕𝜕𝜕

+ 𝑢𝑢�⃑ ∙ ∇𝜌𝜌 ( 15 ) 

where the right hand terms refer to the change in field properties with time and the advection of a 
fluid particle through a spatially variable field (note that we will come back to this when deriving 
conservation of momentum to describe the concept of convective acceleration, which is the 
material derivative of velocity). Combining the above two equations (and applying the chain 
rule: ∇ ∙ 𝜌𝜌𝑢𝑢�⃑ = 𝜌𝜌∇ ∙ 𝑢𝑢�⃑ + 𝑢𝑢�⃑ ∙ ∇𝜌𝜌) results in the following expression for conservation of mass: 

 𝐷𝐷𝜌𝜌
𝐷𝐷𝜕𝜕

+ 𝜌𝜌∇ ∙ 𝑢𝑢�⃑ = 0 ( 16 ) 

If we assume that flow is incompressible (usually very reasonable), then the material derivative 
of density is zero, leading to the following form: 

 ∇ ∙ 𝑢𝑢�⃑ = 0  ( 17 ) 

 
2.2 Conservation of mass (depth-averaged) 
Often more useful to pick a larger control volume and look at depth-averaged quantities. 
Consider unidirectional flow a rectangular channel with uniform width. We will furthermore 
make the assumption that fluid density is uniform, which equates conservation of mass with 
conservation of volume. 
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For a rectangular cross section, the volumetric water flux Q is defined by: 

 Q = 〈𝑢𝑢𝑥𝑥〉𝑊𝑊𝐻𝐻  ( 18 ) 

where 〈𝑢𝑢𝑥𝑥〉 is the cross-sectional averaged downstream velocity. The statement of mass balance 
for the control volume can then be described by: 

 𝜕𝜕(𝑊𝑊𝑊𝑊∆𝑥𝑥)
𝜕𝜕𝜕𝜕

= 〈𝑢𝑢𝑥𝑥〉𝑊𝑊𝐻𝐻|𝑥𝑥 − 〈𝑢𝑢𝑥𝑥〉𝑊𝑊𝐻𝐻|𝑥𝑥+∆𝑥𝑥 ( 19 ) 

which after dividing both sides by 𝑊𝑊∆𝑥𝑥 and taking the limit of small ∆𝑥𝑥 becomes: 

 𝜕𝜕𝑊𝑊
𝜕𝜕𝜕𝜕

+ 𝜕𝜕〈𝑢𝑢𝑥𝑥〉𝑊𝑊
𝜕𝜕𝑥𝑥

= 0  ( 20 ) 

Note also that this expression could equally be derived by 1D depth-averaging of the more 
general form ∇ ∙ 𝑢𝑢�⃑ = 0. 

 
 
2.3 Conservation of momentum 

Recall Newton’s second law relating the sum of forces �⃑�𝐹 acting on a body to the product of its 
mass 𝑚𝑚 and acceleration �⃑�𝑎: 

 ∑ �⃑�𝐹 = 𝑚𝑚�⃑�𝑎 ( 21 ) 

noting that the product 𝑚𝑚�⃑�𝑎 is equal to the rate of change in momentum. When applied to fluids, 
the above equation becomes: 
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 ∑ �⃑�𝐹𝜌𝜌 = 𝜌𝜌 𝐷𝐷𝑢𝑢��⃑
𝐷𝐷𝜕𝜕

 ( 22 ) 

where �⃑�𝐹𝜌𝜌 indicates a force per unit volume acting on fluid parcel and 𝐷𝐷𝑢𝑢�⃑ /𝐷𝐷𝐷𝐷 is the material 
derivative of velocity, or the convective acceleration. This equation is an expression of the force 
balance acting on a fluid particle known as the Cauchy momentum equation. Recall that the 
material derivative of velocity can be expanded to: 

 𝐷𝐷𝑢𝑢��⃑
𝐷𝐷𝜕𝜕

= 𝑑𝑑𝑢𝑢��⃑
𝑑𝑑𝜕𝜕

+ 𝑢𝑢�⃑ ∙ ∇𝑢𝑢�⃑  ( 23 ) 

The forces acting on the particle can be can be classified as either body forces or surface forces. 

 
Body forces: In our case, the only external field acting on the particle is gravity (for 
ferromagnetic flows, magnetic field also needs to be taken into account). Recall that the 
gravitational force �⃑�𝐹𝑔𝑔 = 𝑚𝑚�⃑�𝑔, where g is the gravitational acceleration vector. Thus, the 
gravitational force per volume becomes: 

 �⃑�𝐹𝑔𝑔𝑔𝑔 = 𝜌𝜌�⃑�𝑔 ( 24 ) 

Surface (traction) forces: Surface forces include pressure and shear stresses that act in the form 
of traction on the surface of a fluid particle. Specifically, the surface force per volume �⃑�𝐹𝑠𝑠𝑔𝑔 can be 
described by: 

 �⃑�𝐹𝑠𝑠𝑔𝑔 = ∇ ∙ 𝝈𝝈𝑖𝑖𝑖𝑖  ( 25 ) 

where 𝝈𝝈𝑖𝑖𝑖𝑖 is the 3x3 stress tensor: 

 𝝈𝝈𝑖𝑖𝑖𝑖 = �
𝜎𝜎𝑥𝑥𝑥𝑥 𝜏𝜏𝑥𝑥𝑦𝑦 𝜏𝜏𝑥𝑥𝑧𝑧
𝜏𝜏𝑦𝑦𝑥𝑥 𝜎𝜎𝑦𝑦𝑦𝑦 𝜏𝜏𝑦𝑦𝑧𝑧
𝜏𝜏𝑧𝑧𝑥𝑥 𝜏𝜏𝑧𝑧𝑦𝑦 𝜎𝜎𝑧𝑧𝑧𝑧

� ( 26 ) 
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This stress tensor can be split into a mean surface stress (pressure) field 𝑝𝑝, and a deviatoric stress 
tensor 𝝉𝝉𝑖𝑖𝑖𝑖 that characterizes shear stresses acting on the fluid: 

𝝈𝝈𝑖𝑖𝑖𝑖 = −𝑝𝑝 + 𝝉𝝉𝑖𝑖𝑖𝑖  ( 27 ) 

𝑝𝑝 = − �𝜎𝜎𝑥𝑥𝑥𝑥+𝜎𝜎𝑦𝑦𝑦𝑦+𝜎𝜎𝑧𝑧𝑧𝑧�
3

( 28 ) 

𝝉𝝉𝑖𝑖𝑖𝑖 = �
𝜎𝜎𝑥𝑥𝑥𝑥 + 𝑝𝑝 𝜏𝜏𝑥𝑥𝑦𝑦 𝜏𝜏𝑥𝑥𝑧𝑧
𝜏𝜏𝑦𝑦𝑥𝑥 𝜎𝜎𝑦𝑦𝑦𝑦 + 𝑝𝑝 𝜏𝜏𝑦𝑦𝑧𝑧
𝜏𝜏𝑧𝑧𝑥𝑥 𝜏𝜏𝑧𝑧𝑦𝑦 𝜎𝜎𝑧𝑧𝑧𝑧 + 𝑝𝑝

� ( 29 ) 

This results in the following expression for the sum of fluid surface forces per volume: 

�⃑�𝐹𝑠𝑠𝑔𝑔 = −∇p + ∇ ∙ 𝝉𝝉𝑖𝑖𝑖𝑖 ( 30 ) 

Combining these equations, we get the following general expression for conservation of 
momentum: 

𝜌𝜌 𝐷𝐷𝑢𝑢��⃑
𝐷𝐷𝜕𝜕

= −∇p + ∇ ∙ 𝝉𝝉𝑖𝑖𝑖𝑖 + 𝜌𝜌�⃑�𝑔 ( 31 ) 

This expression is not particularly useful because we are not typically able to quantify shear 
stresses directly (resulting in more unknowns than equations). Rather, we need a constitutive 
equation that relates the shear stress to fluid deformation. As we did earlier in 1D, we will 
assume a Newtonian fluid, which takes the general form: 

𝝉𝝉𝑖𝑖𝑖𝑖 = 𝜇𝜇 �𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� ( 32 ) 

where the term in brackets is the symmetric component of the strain rate tensor (i.e., the 
component of strain that leads to deformation, as opposed to rotation). As an example, consider 
the x component of the viscous term: 

∇ ∙ 𝝉𝝉𝑖𝑖𝑥𝑥 = 𝜇𝜇∇ ∙ �𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥𝑖𝑖
� ( 33 ) 

= 2𝜇𝜇 𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥2

+ 𝜇𝜇 𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦2

+ 𝜇𝜇 𝜕𝜕2𝑢𝑢𝑦𝑦
𝜕𝜕𝑦𝑦𝜕𝜕𝑥𝑥

+ 𝜇𝜇 𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧2

+ 𝜇𝜇 𝜕𝜕2𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧𝜕𝜕𝑥𝑥

( 34 ) 

= 𝜇𝜇 �𝜕𝜕
2𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧2

� + 𝜇𝜇 �𝜕𝜕
2𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑢𝑢𝑦𝑦
𝜕𝜕𝑦𝑦𝜕𝜕𝑥𝑥

+ 𝜕𝜕2𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧𝜕𝜕𝑥𝑥

� ( 35 ) 

= 𝜇𝜇∇2𝑢𝑢𝑥𝑥 + 𝜇𝜇 𝜕𝜕
𝜕𝜕𝑥𝑥

(∇ ∙ 𝑢𝑢�⃑ ) = 𝜇𝜇∇2𝑢𝑢𝑥𝑥 ( 36 ) 
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similar terms emerge for the y and z components (recall ∇ ∙ 𝑢𝑢�⃑ = 0 for incompressible flow), 
resulting in: 

 ∇ ∙ 𝝉𝝉𝑖𝑖𝑖𝑖 = 𝜇𝜇∇2𝑢𝑢�⃑  ( 37 ) 

which we can plug into the momentum equation to get our final expression for conservation of 
momentum (Navier-Stokes equations) for an incompressible, Newtonian fluid: 

 𝜌𝜌 𝐷𝐷𝑢𝑢��⃑
𝐷𝐷𝜕𝜕

= −∇𝑝𝑝 + 𝜇𝜇∇2𝑢𝑢�⃑ + 𝜌𝜌�⃑�𝑔 ( 38 ) 

or alternatively: 

 𝜕𝜕𝑢𝑢��⃑
𝜕𝜕𝜕𝜕

+ 𝑢𝑢�⃑ ∙ ∇𝑢𝑢�⃑ = − 1
𝜌𝜌
∇𝑝𝑝 + 𝜇𝜇

𝜌𝜌
∇2𝑢𝑢�⃑ + �⃑�𝑔  ( 39 ) 

Note that this is a series of 3 second-order, non-linear partial differential equations (in x, y, and z 
directions for Cartesian coordinates), and when combined with conservation of mass (Eqn. 17) 
we have 4 equations with 4 unknowns (ux, uy, uz, and p). The second (convective) term on the left 
hand side of Equation 39 is the non-linear term, and makes a general analytical solution fairly 
hopeless (as of 2016 one of six unsolved “Millenium Prize Problems”). We will explore a 
number of simplifications that enable analytical approximations for common flows, as well as 
use a 3D flow model (Delft3D) to solve more complicated problems numerically. 

2.4 Application: flow down inclined plane 
As a simple example, we will derive the velocity profile and bed shear stress for laminar flow 
down an inclined plane:  

 
We will make a number of assumptions to help simplify things: 

1. Incompressible flow: ∇ ∙ 𝑢𝑢�⃑ = 0 

2. Newtonian fluid: 𝝉𝝉𝑖𝑖𝑖𝑖 = 𝜇𝜇 �𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

+ 𝜕𝜕𝑢𝑢𝑗𝑗
𝜕𝜕𝑥𝑥𝑖𝑖
� 

3. Steady flow:  𝜕𝜕𝑢𝑢��⃑
𝜕𝜕𝜕𝜕

= 0 

4. Uniform flow: 𝑢𝑢𝑦𝑦 = 𝑢𝑢𝑧𝑧 = 0, H = constant, 𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

= 0 
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5. Infinitely wide channel: 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧

= 0 

First, we apply conservation of mass using Equation 17: 

 ∇ ∙ 𝑢𝑢�⃑ = 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕x

+ 𝜕𝜕𝑢𝑢𝑦𝑦
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧

= 0 ( 40 ) 

 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕x

= 0 ( 41 ) 

Conservation of momentum in 1D becomes: 

 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝜕𝜕

+ 𝑢𝑢𝑥𝑥
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕x

+ 𝑢𝑢𝑦𝑦
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦

+ 𝑢𝑢𝑧𝑧
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧

= − 1
𝜌𝜌
𝜕𝜕𝜕𝜕
𝜕𝜕𝑥𝑥

+ 𝜇𝜇
𝜌𝜌
�𝜕𝜕

2𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥2

+ 𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦2

+ 𝜕𝜕2𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧2

�+ 𝑔𝑔 sin𝜃𝜃 ( 42 ) 

Many of these terms cancel out with assumptions 1-5 to get: 

 𝑑𝑑2𝑢𝑢𝑥𝑥
𝑑𝑑𝑦𝑦2

= −𝜌𝜌𝑔𝑔 sin𝜃𝜃
𝜇𝜇

 ( 43 ) 

This is a second-order ordinary differential equation (ux only varies in y). To solve we will need 
two boundary conditions. We will assume that there is no shear stress at the free surface, and that 
velocity goes to zero at the boundary (no slip condition): 

 d𝑢𝑢𝑥𝑥
𝑑𝑑𝑦𝑦 �𝑦𝑦=𝐻𝐻

= 0 ( 44 ) 

 𝑢𝑢𝑥𝑥|𝑦𝑦=0 = 0 ( 45 ) 

Integrate with respect to y to get: 

 d𝑢𝑢𝑥𝑥
𝑑𝑑𝑦𝑦

= −𝜌𝜌𝑔𝑔 sin𝜃𝜃
𝜇𝜇

𝑦𝑦 + 𝐶𝐶1 ( 46 ) 

Applying the first boundary condition we get: 

 d𝑢𝑢𝑥𝑥
𝑑𝑑𝑦𝑦

= −𝜌𝜌𝑔𝑔 sin𝜃𝜃
𝜇𝜇

𝑦𝑦 + 𝜌𝜌𝑔𝑔 sin𝜃𝜃
𝜇𝜇

ℎ ( 47 ) 

Integrate once more to get: 

 𝑢𝑢𝑥𝑥 = −𝜌𝜌𝑔𝑔sin𝜃𝜃
2𝜇𝜇 𝑦𝑦2 + 𝜌𝜌𝑔𝑔sin𝜃𝜃

𝜇𝜇 ℎ𝑦𝑦+ 𝐶𝐶2 ( 48 ) 

Applying the second boundary condition (C2 = 0) we can simplify to: 

 𝑢𝑢𝑥𝑥 = 𝜌𝜌𝑔𝑔sin𝜃𝜃
𝜇𝜇 (ℎ𝑦𝑦− 1

2𝑦𝑦
2)  ( 49 ) 
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which is the vertical velocity profile for laminar flow. We can also calculate the bed shear stress 
𝜏𝜏𝑏𝑏 using the velocity gradient (Eqn. 47) evaluated at y = 0: 

𝜏𝜏𝑏𝑏 = 𝜇𝜇 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦
�
𝑦𝑦=0

= 𝜇𝜇 �−𝜌𝜌𝑔𝑔 sin𝜃𝜃
𝜇𝜇

𝑦𝑦�
𝑦𝑦=0

+ 𝜌𝜌𝑔𝑔 sin𝜃𝜃
𝜇𝜇

ℎ� = 𝜌𝜌𝑔𝑔ℎ sin𝜃𝜃 ( 50 ) 

If the slope angle is low (less than about 10°), we can make the small angle approximation 𝑆𝑆 =
tan𝜃𝜃 ≈ sin 𝜃𝜃 ≈ 𝜃𝜃 to get the familiar expression: 

𝜏𝜏𝑏𝑏 = 𝜌𝜌𝑔𝑔ℎ𝑆𝑆 ( 51 ) 

Although we used the velocity profile to determine the bed shear stress, it is very important to 
note that this relationship is independent of rheology (i.e., Eqns. 3, 5, 6). For any flow that is 
steady and uniform, the momentum equation simplifies to a force balance between the weight of 
the fluid and the resistance due to bed friction 

Dimensionless Navier-Stokes equations 
It is often useful to develop dimensionless forms of governing equations in order to better 
understand the controls on system behavior, and especially so when comparing model 
predictions with empirical data (either from the field or experiments). In order to do this, we 
need to define scaling factors for each of the dimensional variables present – in some cases this 
is a trivial process, and in others can be quite tricky. For the momentum equations (Eqn. 38 or 
39), we can define the following scales: 

Length: 𝑙𝑙∗ = 𝑙𝑙
𝐿𝐿
, ∇∗= 𝐿𝐿∇ ( 52 ) 

Velocity: 𝑢𝑢�⃑ ∗ = 𝑢𝑢��⃑
𝑈𝑈

( 53 ) 

Time: 𝐷𝐷∗ = 𝜕𝜕
𝐿𝐿/𝑈𝑈

( 54 ) 

where the starred variables are dimensionless, and L and U are length and velocity scales. We 
also need to scale the pressure term, which is less straightforward, and can take two forms, 
depending on the dominant source of pressure fluctuations: 

Pressure (inertial): 𝑝𝑝∗ = 𝜕𝜕
𝜌𝜌𝑈𝑈2

( 55 ) 

Pressure (viscous): 𝑝𝑝∗ = 𝜕𝜕𝐿𝐿
𝜇𝜇𝑈𝑈

 ( 56 ) 

We thus have two options for non-dimensionalizing the momentum equations, depending on the 
pressure scaling. If we use the inertial pressure scaling, Equation 38 becomes: 



Geosc 548 Notes  R. DiBiase 9/2/2016 

 𝐷𝐷𝑢𝑢��⃑ ∗
𝐷𝐷𝜕𝜕∗

= −∇∗𝑝𝑝∗ + 𝜇𝜇
𝜌𝜌𝑈𝑈𝐿𝐿

∇∗2𝑢𝑢�⃑ ∗ + 𝑔𝑔𝐿𝐿
𝑈𝑈2
𝑔𝑔� ( 57 ) 

where g is the magnitude of gravitational acceleration, and 𝑔𝑔� is a unit vector in the direction of 
gravity. Two non-dimensional coefficients emerge, which can be defined as the Reynolds 
number (Re) and the Froude number (Fr): 

 𝑅𝑅𝑅𝑅 = 𝜌𝜌𝑈𝑈𝐿𝐿
𝜇𝜇

 ( 58 ) 

 𝐹𝐹𝐹𝐹 = 𝑈𝑈
�𝑔𝑔𝐿𝐿

 ( 59 ) 

Combining Equations 57-59 results in: 

 𝐷𝐷𝑢𝑢��⃑ ∗
𝐷𝐷𝜕𝜕∗

= −∇∗𝑝𝑝∗ + 1
𝑅𝑅𝑅𝑅
∇∗2𝑢𝑢�⃑ ∗ + 1

𝐹𝐹𝑟𝑟2
𝑔𝑔� ( 60 ) 

The Reynolds number can thus be thought of as the ratio of inertial forces to viscous forces (you 
can show this mathematically), and the Froude number is a measure of inertial forces relative to 
graviational forces. For cases when Re >> 1, Equation 60 can be simplified to: 

 𝐷𝐷𝑢𝑢��⃑ ∗
𝐷𝐷𝜕𝜕∗

= −∇∗𝑝𝑝∗ + 1
𝐹𝐹𝑟𝑟2

𝑔𝑔�  ( 61 ) 

which is the non-dimensional form of Euler’s equations for inviscid flow. The approximation of 
inviscid flow (i.e., no viscous forces) works well to describe pressure gradients away from the 
boundary layer where viscous forces dominate, and among other applications is useful for 
estimating lift forces on sediment in a river. 
If instead we use the viscous pressure scaling (Eqn. 56), then the momentum equation becomes: 

 𝐷𝐷𝑢𝑢��⃑ ∗
𝐷𝐷𝜕𝜕∗

= − 1
𝑅𝑅𝑅𝑅
∇∗𝑝𝑝∗ + 1

𝑅𝑅𝑅𝑅
∇∗2𝑢𝑢�⃑ ∗ + 1

𝐹𝐹𝑟𝑟2
𝑔𝑔� ( 62 ) 

For the case where Re << 1, we can simplify to: 

 −∇∗𝑝𝑝∗ + ∇∗2𝑢𝑢�⃑ ∗ + 𝑅𝑅𝑅𝑅
𝐹𝐹𝑟𝑟2

𝑔𝑔� = 0  ( 63 ) 

which is the non-dimensional form of the momentum equation for Stokes, or creeping flow 
approximation, which is useful for looking at particle settling velocities, for example. The 
Froude and Reynolds numbers emerge as the key parameters that describe the behavior of fluid 
momentum, and the implication from the above treatment is that flows with the same Froude and 
Reynolds numbers will behave the same – this is what is called dynamics similarity, and is the 
crux of simulating natural systems in downscaled laboratory flume experiments. Often it is 
impossible to achieve both Froude and Reynolds scaling and tradeoffs need to be evaluated (see 
Paola et al., 2009 for a good discussion of these challenges and compromises). 



Geosc 548 Notes  R. DiBiase 9/2/2016 

 
2.5 Turbulence 
Observations of natural flows often reveals large-scale mixing due to turbulence (random, 3D 
velocity fluctuations due to fluid shear). Osborne Reynolds (late 1800s) performed a series of 
experiments using dye tracers to understand the transition from laminar to turbulent flow. This 
transition is governed by the dimensionless Reynolds number defined above (Eqn. 58), which 
describes the propensity for small disturbances to amplify by inertial forces or get dampened by 
viscous forces. For open channel flow, Re > 1000 typically is fully turbulent. 

The net effect of turbulence is momentum diffusion in response to fluid shear, so how to 
incorporate this into the momentum equation (Eqn. 39)? 

 
2.5.1 Reynolds averaging 
Reynolds proposed decomposing velocity into its mean (deterministic) and fluctuating 
(stochastic) components, such that: 

 𝑢𝑢�⃑ = 𝑢𝑢�⃑ + 𝑢𝑢�⃑ ′ ( 64 ) 

where 𝑢𝑢�⃑  is the time-averaged velocity, and 𝑢𝑢�⃑ ′ is the deviation from this mean. Thus, we can 
substitute all of the velocities in the continuity and momentum equations (Eqn. 17 and 39) with 
the expression in Eqn. 64. Before we do this, need to define some math rules for the averaging. 
First, the mean of the sum is equal to the sum of the means, for example: 

 𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑦𝑦 = 𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑦𝑦 ( 65 ) 

Second, the mean of a constant multiplied by velocity is simply the constant multiplied by the 
mean velocity: 

 𝑎𝑎𝑢𝑢𝑥𝑥 = 𝑎𝑎𝑢𝑢𝑥𝑥 ( 66 ) 

The mean of the product of two velocities, however, is not so trivial, and must be expanded: 

 𝑢𝑢𝑥𝑥𝑢𝑢𝑦𝑦 = 𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 + 𝑢𝑢𝑥𝑥′ 𝑢𝑢𝑦𝑦 + 𝑢𝑢𝑦𝑦′ 𝑢𝑢𝑥𝑥 + 𝑢𝑢𝑥𝑥′ 𝑢𝑢𝑦𝑦′  ( 67 ) 

Noting that the mean of the deviations is zero: 

 𝑢𝑢𝑥𝑥′ = 𝑢𝑢𝑦𝑦′ = 0 ( 68 ) 

the above expression can be simplified to: 

 𝑢𝑢𝑥𝑥𝑢𝑢𝑦𝑦 = 𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦 + 𝑢𝑢𝑥𝑥′ 𝑢𝑢𝑦𝑦′  ( 69 ) 

where the term 𝑢𝑢𝑥𝑥′ 𝑢𝑢𝑦𝑦′  is the covariance of the two velocity components, and the source of much 
frustration. 
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Reynolds averaging of the continuity equation (Eqn. 17) results in an identical form, as there are 
no nonlinear terms. 

 ∇ ∙ 𝑢𝑢�⃑ = ∇ ∙ 𝑢𝑢�⃑ = 0 ( 70 ) 

However, when applying Reynolds averaging to the momentum equation, the convective term 
𝑢𝑢�⃑ ∙ ∇𝑢𝑢�⃑  requires careful treatment. For example, consider the convective term in the x-direction: 

 𝑢𝑢�⃑ ∙ ∇𝑢𝑢𝑥𝑥 = 𝑢𝑢𝑥𝑥
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝑢𝑢𝑦𝑦
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑦𝑦

+ 𝑢𝑢𝑧𝑧
𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧

 ( 71 ) 

Applying the chain rule, and assuming incompressibility (∇ ∙ 𝑢𝑢�⃑ = 0), we can simplify to: 

 𝑢𝑢�⃑ ∙ ∇𝑢𝑢𝑥𝑥 = 𝜕𝜕𝑢𝑢𝑥𝑥𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥

+ 𝜕𝜕𝑢𝑢𝑥𝑥𝑢𝑢𝑦𝑦
𝜕𝜕𝑦𝑦

+ 𝜕𝜕𝑢𝑢𝑥𝑥𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧

 ( 72 ) 

Now, apply Reynolds averaging: 

 𝜕𝜕𝑢𝑢𝑥𝑥𝑢𝑢𝑥𝑥
𝜕𝜕𝑥𝑥 + 𝜕𝜕𝑢𝑢𝑥𝑥𝑢𝑢𝑦𝑦

𝜕𝜕𝑦𝑦 + 𝜕𝜕𝑢𝑢𝑥𝑥𝑢𝑢𝑧𝑧
𝜕𝜕𝑧𝑧 = 𝜕𝜕𝑢𝑢𝑥𝑥 𝑢𝑢𝑥𝑥

𝜕𝜕𝑥𝑥 + 𝜕𝜕𝑢𝑢𝑥𝑥 𝑢𝑢𝑦𝑦
𝜕𝜕𝑦𝑦 + 𝜕𝜕𝑢𝑢𝑥𝑥 𝑢𝑢𝑧𝑧

𝜕𝜕𝑧𝑧 + 𝜕𝜕𝑢𝑢𝑥𝑥′ 𝑢𝑢𝑥𝑥′
𝜕𝜕𝑥𝑥 + 𝜕𝜕𝑢𝑢𝑥𝑥′ 𝑢𝑢𝑦𝑦′

𝜕𝜕𝑦𝑦 + 𝜕𝜕𝑢𝑢𝑥𝑥′ 𝑢𝑢𝑧𝑧′
𝜕𝜕𝑧𝑧  ( 73 ) 

 = 𝑢𝑢�⃑ ∙ ∇𝑢𝑢𝑥𝑥 + 𝜕𝜕𝑢𝑢𝑥𝑥′ 𝑢𝑢𝑥𝑥′

𝜕𝜕𝑥𝑥
+ 𝜕𝜕𝑢𝑢𝑥𝑥′ 𝑢𝑢𝑦𝑦′

𝜕𝜕𝑦𝑦
+ 𝜕𝜕𝑢𝑢𝑥𝑥′ 𝑢𝑢𝑧𝑧′

𝜕𝜕𝑧𝑧
 ( 74 ) 

For three dimensions, we can generalize to: 

 𝑢𝑢��⃑ ∙ ∇𝑢𝑢��⃑ = 𝑢𝑢��⃑ ∙ ∇𝑢𝑢��⃑ + ∇ ∙ 𝑢𝑢𝑖𝑖′𝑢𝑢𝑗𝑗′  ( 75 ) 

where the subscripts i and j indicate the components of a 3x3 tensor. Plugging back into the full 
momentum equation, and noting that the mean velocity does not change in time (𝜕𝜕𝑢𝑢�⃑ /𝜕𝜕𝐷𝐷 = 0) we 
get: 

 𝑢𝑢�⃑ ∙ ∇𝑢𝑢�⃑ + ∇ ∙ 𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′ = − 1
𝜌𝜌
∇𝑝𝑝 + 𝜇𝜇

𝜌𝜌
∇2𝑢𝑢�⃑ + �⃑�𝑔 ( 76 ) 

where the u is the time-averaged velocity and the overbars on mean quantities have been dropped 
for clarity. We can furthermore rearrange to get: 

 𝑢𝑢�⃑ ∙ ∇𝑢𝑢�⃑ = − 1
𝜌𝜌
∇𝑝𝑝 + 1

𝜌𝜌
∇ ∙ �µ∇𝑢𝑢�⃑ − 𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′� + �⃑�𝑔 ( 77 ) 

Recall that µ∇𝑢𝑢�⃑  is our model for the shear stress tensor (Eqn. 32) for an incompressible 
Newtonian fluid, which describes the efficiency of momentum tranfer via the molecular 
viscosity. The term −𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′ is called the Reynolds stress tensor, and encapsulates the momentum 
transfer due to turbulent eddies. So… how to deal with this term? In order to “close” the Navier-
Stokes equations, we need an additional expression or expressions to describe how the Reynolds 
stresses depend on the mean velocity field. This is the turbulence closure problem. 
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The simplest approach to this closure problem is to model the turbulent stresses in a similar 
fashion to how we modeled viscous stresses (Eqn. 32): 

 −𝜌𝜌𝑢𝑢𝑖𝑖′𝑢𝑢𝑖𝑖′ = 𝐾𝐾 𝜕𝜕𝑢𝑢𝑖𝑖
𝜕𝜕𝑥𝑥𝑗𝑗

= 𝐾𝐾∇𝑢𝑢�⃑  ( 78 ) 

where K is the eddy viscosity, and describes the efficiency momentum transport due to turbulent 
eddies similar to how μ describes the efficiency of momentum transport due to molecular 
fluctuations. Plugging this relationship into the momentum equation, we get: 

 𝑢𝑢�⃑ ∙ ∇𝑢𝑢�⃑ = − 1
𝜌𝜌
∇𝑝𝑝 + 1

𝜌𝜌
∇ ∙ (µ∇𝑢𝑢�⃑ + 𝐾𝐾∇𝑢𝑢�⃑ ) + �⃑�𝑔  ( 79 ) 

It is crucial to note that in contrast to molecular viscosity, which is a property of the fluid, the 
eddy viscosity is a property of the flow. Additionally, for turbulent flows, K >> μ, except very 
close to the boundaries (in the laminar sublayer). 

In the case of steady, uniform flow down an infinitely wide channel, Equation 79 simplifies to: 

 0 = ∇ ∙ (𝐾𝐾∇𝑢𝑢�⃑ ) + �⃑�𝑔 ( 80 ) 

 𝜕𝜕
𝜕𝜕𝑧𝑧
�𝐾𝐾 𝜕𝜕𝑢𝑢𝑥𝑥

𝜕𝜕𝑧𝑧
� = −𝜌𝜌𝑔𝑔 sin𝜃𝜃 ( 81 ) 

Integrating both sides with respect to z gives: 

 𝐾𝐾 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧

= −𝜌𝜌𝑔𝑔𝑧𝑧 sin𝜃𝜃 + 𝐶𝐶 ( 82 ) 

Noting that the velocity gradient at a free surface must go to zero, the following boundary 
condition can be applied: 

 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧
�
𝑧𝑧=𝑊𝑊

= 0 ( 83 ) 

such that: 

 𝐶𝐶 =  𝜌𝜌𝑔𝑔𝐻𝐻 sin𝜃𝜃 = 𝜏𝜏𝑏𝑏 ( 84 ) 

resulting in the following expression for bed shear stress in turbulent open channel flow: 

 𝜏𝜏𝑏𝑏 =  𝐾𝐾 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧

 ( 85 ) 
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Prandtl mixing length hypothesis 
Ludwig Prandtl in early 1900s proposed that the eddy viscosity K should scale with the size of 
the largest eddies in the flow, as well as the change in momentum over this length scale (i.e., the 
product of density, velocity gradient, and eddy size), giving in 1D: 

 𝐾𝐾 = 𝜌𝜌𝐿𝐿2 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧

 ( 86 ) 

where L is the eddy length scale. Near the boundary (z/H < 0.2), Prantdl hypothesized that L is 
proportional to the distance from the wall: 

 𝐿𝐿 = 𝜅𝜅𝑧𝑧 ( 87 ) 

where k is the von Karman constant (𝜅𝜅 = 0.4  from experiments), resulting in: 

 𝐾𝐾 = 𝜌𝜌𝜅𝜅2𝑧𝑧2 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧

 ( 88 ) 

Combining Equations 85 and 88 results in: 

 𝜏𝜏𝑏𝑏 =  𝜌𝜌𝜅𝜅2𝑧𝑧2 �𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧
�
2

 ( 89 ) 

which can be simplified to: 

 𝜕𝜕𝑢𝑢𝑥𝑥
𝜕𝜕𝑧𝑧

= 𝑢𝑢∗
𝜅𝜅
1
𝑧𝑧
 ( 90 ) 

Integrating with respect to z results in: 

 𝑢𝑢𝑥𝑥(𝑧𝑧) = 𝑢𝑢∗
𝜅𝜅

ln 𝑧𝑧 + 𝐶𝐶 ( 91 ) 

Applying the boundary condition 𝑢𝑢𝑥𝑥(𝑧𝑧0) = 0, where 𝑧𝑧0 ≪ 𝐻𝐻 results in: 

 𝑢𝑢𝑥𝑥(𝑧𝑧) = 𝑢𝑢∗
𝜅𝜅

ln 𝑧𝑧
𝑧𝑧0

 ( 92 ) 

Equation 92 is known as “the law of the wall”, but for natural rivers often describes well the full 
vertical velocity profile. 


