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ABSTRACT  
   

The San Gabriel Mountains (SGM) of southern California provide the 

opportunity to study the topographic controls on erosion rate in a mountain range where 

climate and lithology are relatively constant. I use a combination of digital elevation 

model data, detailed channel survey data, decadal climate records, and catchment-

averaged erosion rates quantified from 10Be concentrations in stream sands to investigate 

the style and rates of hillslope and channel processes across the transition from soil-

mantled to rocky landscapes in the SGM. Specifically, I investigate (1) the interrelations 

among different topographic metrics and their variation with erosion rate, (2) how 

hillslopes respond to tectonic forcing in "threshold" landscapes, (3) the role of discharge 

variability and erosion thresholds in controlling the relationship between relief and 

erosion rate, and (4) the style and pace of transient adjustment in the western SGM to a 

recent increase in uplift rate.  

Millennial erosion rates in the SGM range from 0.03-1.1 mm/a, generally 

increasing from west to east. For low erosion rates (< 0.3 mm/a), hillslopes tend to be 

soil-mantled, and catchment-averaged erosion rates are positively correlated with 

catchment-averaged slope, channel steepness, and local relief. For erosion rates greater 

than 0.3 mm/a, hillslopes become increasingly rocky, catchment-mean hillslope angle 

becomes much less sensitive to erosion rate, and channels continue to steepen. I find that 

a non-linear relationship observed between channel steepness and erosion rate can be 

explained by a simple bedrock incision model that combines a threshold for erosion with 

a probability distribution of discharge events where large floods follow an inverse power-

law. I also find that the timing of a two-staged increase in uplift rate in the western SGM 

based on stream profile analysis agrees with independent estimates. Field observations in 

the same region suggest that the relict topography that allows for this calculation has 
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persisted for more than 7 Ma due to the stalling of migrating knickpoints by locally 

stronger bedrock and a lack of coarse sediment cover. 
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PREFACE 
 

“This range, containing most of the characteristic features of the other ranges just 
mentioned, overlooks the Los Angeles vineyards and orange groves from the north, and 

is more rigidly inaccessible in the ordinary meaning of the word than any other that I ever 
attempted to penetrate. The slopes are exceptionally steep and insecure to the foot, and 
they are covered with thorny bushes from five to ten feet high. With the exception of 

little spots not visible in general views, the entire surface is covered with them, massed in 
close hedge growth, sweeping gracefully down into every gorge and hollow, and swelling 

over every ridge and summit in shaggy, ungovernable exuberance.” 
 

-John Muir, The Mountains of California (1894) 
  



CHAPTER 1 

INTRODUCTION 

MOTIVATION 

Earth’s surface topography encodes the rich story of the competition between 

uplift and erosion. Fundamental to the job of geomorphologists is the task of identifying 

the processes acting to shape the landscape and quantifying their rates. Gilbert [1877] 

was perhaps the first to systematically analyze a landscape in terms of discrete processes. 

Indeed, many of the original hypotheses Gilbert developed in the Henry Mountains of 

Utah are still topics of active debate today. For example, the interpretation that convex 

hilltops arise as a result of slope-dependent soil transport dates to the early work of Davis 

[1892] and Gilbert [1909]. Later workers formalized analytical approaches to predicting 

hillslope form [e.g., Culling, 1963; Kirkby, 1971], and only recently have the predictions 

of such models been explicitly field tested [e.g., Heimsath et al., 1997]. 

The fact that these topics continue to garner interest in the geomorphology 

community can best be ascribed to the initial difficulties and subsequent advances in both 

quantifying long-term erosion rates and characterizing and manipulating topographic 

data. Traditionally, erosion rates were estimated by measuring either suspended sediment 

loads directly, or integrating rates over decadal timescales using reservoir infilling rates 

[e.g., Schumm, 1963]. Classical studies of the influence of climate [Langbein and 

Schumm, 1958] and relief [Ahnert, 1970] on erosion rate were based on these short-term 

sediment yield data. However, these methods had significant limitations; short-term 

erosion rates do not adequately capture the influence of low recurrence, high magnitude 

events, and are sensitive to anthropogenic influences or the fire cycle [e.g., Kirchner et 

al., 2001; Lavé and Burbank, 2004]. 
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In the past few decades, the advent of cosmogenic radionuclide (CRN) exposure 

dating has enabled the measurement of erosion rates over much longer timescales (102-

105 years) [Granger and Riebe, 2007]. Cosmogenic isotopes such as 10Be are created 

through the interaction of high-energy cosmic rays with the uppermost meters of Earth’s 

surface. Thus, CRN concentrations of rock (and soil) samples are inversely proportional 

to the time spent near the surface, and can be used to infer exposure ages or erosion rates. 

We focus here on one application in particular that forms the backbone for much of this 

dissertation. Bierman and Steig [1996] proposed that the CRN concentrations in alluvial 

sediments should reflect the average exposure history of each grain and allow for the 

determination of a catchment-averaged erosion rate. Granger et al. [1996] tested this 

method using catchments where erosion rates were independently known from the 

measured volume of dated alluvial fan deposits. Since then, this method has been 

successfully applied in numerous studies of upland landscapes [e.g., von Blanckenburg, 

2005 and references within]. 

The availability of digital elevation models (DEMs) and increasing computing 

power has similarly rejuvenated methods of quantitative landscape analysis. For example, 

the pioneering studies of scaling in fluvial systems were painstakingly conducted using 

field surveys and paper topographic maps [e.g., Flint, 1974; Hack, 1957]. Today, the 

proliferation of high quality DEMs and consumer GIS software makes such calculations 

trivial, and enables a more sophisticated analysis of topographic metrics. Specifically, the 

topographic variables of local slope, curvature, and contributing drainage area are 

routinely used to identify slope stability thresholds [e.g., Dietrich et al., 1995], highlight 

transitions in dominant erosion process [e.g., Montgomery and Foufoula-Georgiou, 
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1993], and discriminate among predictions from different landscape evolution models 

[e.g., Dietrich et al., 2003]. 

Bedrock rivers define the relief structure of unglaciated mountain ranges, set the 

local baselevel for hillslopes, and transmit signals of climatic and tectonic forcing 

throughout the landscape [Whipple, 2004]. Because of this, much of the work presented 

in this dissertation focuses on understanding the controls on bedrock river incision. I use 

a combination of DEM analysis, detrital CRN erosion rates, and detailed field surveys to 

investigate the controls on erosion rate in the San Gabriel Mountains of California, where 

a gradient in uplift rate allows for the study of channel and hillslope processes across the 

transition from low-slope, soil mantled regions to rugged, rocky terrain.  

A summary of the chapters is provided below. Chapters 2-5 were prepared 

independently for publication as stand-alone journal articles, so there is a certain 

unavoidable overlap in background material. 

OUTLINE OF CHAPTERS 2-6 

Chapter 2 sets the stage (both location-wise and methods-wise) for the remainder 

of the dissertation. In this paper, we use 10Be concentrations in stream sediments to 

quantify catchment-averaged erosion rates across a gradient in topographic relief in the 

San Gabriel Mountains. We use a 10 m resolution DEM to calculate a range of 

topographic metrics for each of our sample catchments, including mean hillslope angle, 

channel steepness index, and local relief measured over different length scales. We show 

that mean hillslope angle increases with erosion rate until it reaches a maximum value of 

~37 degrees at erosion rates of ≥ 0.3 mm/a. In contrast, the channel steepness index 

increases monotonically with erosion rate (for E = 0.03 - 1.1 mm/a), and emerges as a 

robust metric of erosion rate in steep landscapes. 
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In Chapter 3, we use a LiDAR-derived 1 m DEM covering 500 km2 in the San 

Gabriel Mountains to explore how hillslope form and texture vary with erosion rate in a 

steep landscape (mean slopes > 30). We also use high-resolution panoramic photographs 

to calibrate a new slope-based metric of hillslope rock exposure determined from the 

LiDAR DEM. We study in detail 20 small (2-3 km2) catchments that span a wide range 

of erosion rates (0.04-1.0 mm/a), mean slope (16-43), and texture (soil mantled to 

rocky). In contrast to previous work based on coarser topographic data, we find that mean 

slopes increase with erosion rate up to 1 mm/a. Exposed rock is rare in catchments with 

mean slope lower than 30. For steeper catchments, rock exposure increases steadily with 

mean slope and erosion rate, and a positive relationship between slope distribution 

skewness and mean slope emerges as the prevalence of angle-of-repose debris wedges 

keeps modal slopes near 37. Finally, as erosion rates increase, the extent of the fluvial 

network decreases, while colluvial channels extend downstream, keeping the total 

drainage density, and thus mean hillslope length, similar across the range. 

In Chapter 4, we use a 1-D river incision model to explore how climate 

variability and the magnitude of erosion thresholds influence the relationship between 

relief (quantified by the channel steepness index) and erosion rate shown in Chapter 2. 

We calibrate this model using field observations, discharge records, and catchment-

averaged erosion rate data from the San Gabriel Mountains. The non-linear relationship 

between channel steepness index and erosion rate observed in the San Gabriel Mountains 

can be explained by this simple bedrock incision model that includes both a threshold for 

erosion and a probability distribution function of discharge events where large floods 

follow a power-law scaling. Starting from this case, we explore the implications of an 

empirical relationship between mean runoff and variability to test whether dry, variable 
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climates can erode more efficiently than wet, stable climates. For channels with high 

thresholds or low steepness, modeled erosion rate reaches a maximum at a mean runoff 

of 200-400 mm/a. In general, erosion rates are predicted to become less sensitive to 

increases in runoff above 500 mm/a, with important implications for the hypothesized 

influence of climate on tectonics. 

In Chapter 5, we focus on Big Tujunga Creek, a 300 km2 catchment that drains 

much of the western San Gabriel Mountains. A hypothesized two-stage increase in uplift 

rate has resulted in three physiographic regions in Big Tujunga Creek separated by two 

knickpoints. We use a combination of DEM analysis, detailed field surveys, and detrital 

CRN erosion rates to (1) study the style and pace of knickpoint retreat and (2) interpret 

the tectonic history of the western SGM. We find that knickpoint migration in Big 

Tujunga Creek and its tributaries does not scale directly with drainage area, as predicted 

by simple stream power models. Rather, small-scale heterogeneities in rock strength stall 

the upward migration of knickpoints through the generation oversteepened reaches 

consisting of large bedrock steps. We find that this effect is enhanced in catchments with 

low coarse sediment supply. By reconstructing relict stream profiles and using detrital 

CRN erosion rates, we interpret a two-phase increase in baselevel fall along the Sierra 

Madre Fault Zone. The first increase, estimated at 7-9 Ma, corresponds with independent 

estimates of the initial uplift phase of the SGM. The second increase appears to occur ca. 

1.5 Ma, though there is little independent information constraining uplift rates during this 

time. We hypothesize that this latter increase corresponds to the initiation of the San 

Jacinto Fault, whose age of initiation is similar. 

Chapter 6 presents a synthesis of the preceding chapters, and provides insight 

into future directions. 
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CHAPTER 2 

LANDSCAPE FORM AND MILLENNIAL EROSION RATES IN THE SAN 

GABRIEL MOUNTAINS, CA 

ABSTRACT 

It has been long hypothesized that topography, as well as climate and rock 

strength, exert first order controls on erosion rates. Here we use detrital cosmogenic 10Be 

from 50 basins, ranging in size from 1-150 km2, to measure millennial erosion rates 

across the San Gabriel Mountains in southern California, where a strong E-W gradient in 

relief compared to weak variation in precipitation and lithology allow us to isolate the 

relationship between topographic form and erosion rate. Our erosion rates range from 30-

1000 m/Ma, and generally agree with both decadal sediment fluxes and long term 

exhumation rates inferred from low temperature thermochronometry. Catchment-mean 

hillslope angle increases with erosion rate until ~300 m/Ma, at which point slopes 

become invariant with erosion rate. Although this sort of relation has been offered as 

support for non-linear models of soil transport, we use 1-D analytical hillslope profiles 

derived from existing soil transport laws to show that a model with soil flux linear in 

slope, but including a slope stability threshold, is indistinguishable from a non-linear law 

within the scatter of our data. Catchment-mean normalized channel steepness index 

increases monotonically, though non-linearly, with erosion rate throughout the San 

Gabriel Mountains, even where catchment-mean hillslope angles have reached a 

threshold. This non-linearity can be mostly accounted for by a stochastic threshold 

incision model, though additional factors likely contribute to the observed relationship 

between channel steepness and erosion rate. These findings substantiate the claim that the 

normalized channel steepness index is an important topographic metric in active ranges.
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INTRODUCTION 

Modern surface topography reflects the competition and interaction between 

climatic and tectonic forcing. Whereas climatic and tectonic variables are often difficult 

to quantify, surface topography can be readily obtained for much of the Earth’s land 

surface from spaceborne sensors and aerial photography. However, extracting 

quantitative understanding of the interactions among climate, topography, and tectonics 

requires the unraveling of the relative contributions of a complicated suite of surface 

processes. Consequently, a central theme in modern geomorphology involves linking 

surface processes and their rates to observed landforms [e.g., Dietrich et al., 2003]. Such 

quantitative knowledge is required before we can fully exploit the archive of climatic and 

tectonic history that is encoded in landforms. 

The importance of probing current topography for clues to process rates and 

mechanics is well recognized, and many have proposed that erosion rate increases with 

hillslope angle and local relief [e.g., Ahnert, 1970; Gilbert, 1877; Montgomery and 

Brandon, 2002]. Basic observations support this, and the concept of slope-dependent soil 

flux on hillslopes has been around for over 100 years [Davis, 1892]. Similarly, decadal 

sediment yield measurements were widely used to infer quantitative relationships 

between erosion rate and precipitation, uplift, and relief [e.g., Ahnert, 1970; Judson and 

Ritter, 1964; Langbein and Schumm, 1958; Schumm, 1963]. Much uncertainty remains, 

however, regarding interrelationships among channel steepness, hillslope gradients, relief 

measured at various scales, and erosion rate even within a single climate zone. In 

addition, data of sufficient quality and distribution to allow rigorous testing of existing 

theory are sparse. Cosmogenic radionuclide (CRN) dating of surfaces and inference of 
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erosion rates, in conjunction with the widespread availability of digital elevation models, 

affords an opportunity to make significant progress on this problem. 

Beginning with Granger et al. [1996], there have been a number of comparisons 

of hillslope gradients with millennial erosion rates determined with CRN [e.g., Binnie et 

al., 2007; Ouimet et al., 2009; Safran et al., 2005; Stock et al., 2008; Vanacker et al., 

2007], as well as studies comparing erosion rates with various measures of local relief 

[e.g., Burbank et al., 1996; Montgomery and Brandon, 2002; Schaller et al., 2001; 

Wittmann et al., 2007]. As initially noted by Penck [1953] and Strahler [1950], and later 

recast by Burbank et al. [1996], Schmidt and Montgomery [1995], and Montgomery and 

Brandon [2002], meso-scale rock strength limitations result in hillslopes reaching 

threshold angles wherever erosion rate exceeds a critical value. Above this rate, hillslopes 

are thought to respond to further increases in base level lowering rate via increasing 

landslide frequency [Hovius et al., 1997] and possibly slope length [Howard, 1994; 

Tucker and Bras, 1998]. Recent studies corroborated these thoughts on the transition to 

threshold hillslopes and provided the first quantification of this critical erosion rate. In the 

semi-arid, granitic San Bernardino Mountains, Binnie et al. [2007] found that above 

erosion rates of ~250 m/Ma, catchment-averaged hillslope angle remains constant, 

consistent with field observations of landslide-dominated terrain. Ouimet et al. [2009] 

found similar results for semi-arid catchments in both granitic rocks and highly deformed 

Triassic flysch on the eastern margin of the Tibetan Plateau. 

Comparison of erosion rates with channel form garnered considerably less 

attention, with only a few studies addressing the problem using cosmogenic radionuclides 

[e.g., Ouimet et al., 2009; Safran et al., 2005]. Other workers [e.g., Duvall et al., 2004; 

Kirby and Whipple, 2001; Lague and Davy, 2003; Snyder et al., 2003] used independent 
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measures of rock uplift rate to calibrate models of river long profile evolution. 

Nonetheless, there is a dearth of data suitable for quantifying many basic relationships 

(influence of sediment supply, climate, lithology, channel width, etc.) and for testing 

models of river incision into bedrock [e.g., Whipple, 2004]. 

In this contribution, we quantify and use CRN (10Be) based erosion rates in the 

San Gabriel Mountains, southern California, and use a 10 m digital elevation model 

(DEM), to: (1) evaluate in detail different topographic metrics; (2) test the application of 

detrital CRN techniques to landslide dominated catchments and across catchment sizes; 

(3) quantify the relationship between erosion rate and average hillslope gradient, 

expanding available data and evaluating existing hillslope transport models; and (4) 

quantify the relation between erosion rate and channel steepness and discuss implications 

for theory. 

STUDY AREA 

The San Gabriel Mountains (SGM) provide an excellent field setting for studying 

the relationship between topographic form and erosion rate. The range lies along a large 

restraining bend in the San Andreas Fault in southern California (Figure 2.1), where 

active thrusting along the Sierra Madre and Cucamonga fault zones at the southern range 

front maintained Holocene vertical slip rate components of 0.5-0.9 mm/a [Lindvall and 

Rubin, 2008; Peterson and Wesnousky, 1994]. Uplift of the SGM began with the switch 

of activity from the San Gabriel Fault to the current trace of the San Andreas Fault, ca. 5-

7 Ma [Matti and Morton, 1993]. A progressive increase of dip-slip fault motion from 

west to east creates a strong gradient of relief, short term sediment flux (decadal reservoir 

fills) and long term (Ma) exhumation rates (inferred from apatite fission track and (U-
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Th)/He thermochronology), all increasing to the east [Blythe et al., 2000; Lavé and 

Burbank, 2004; Spotila et al., 2002]. 

Mean annual precipitation rates (MAP) vary south to north, from 0.5 m/a in the 

Los Angeles basin, increasing to 1.3 m/a over the range crest, and decreasing to 0.2 m/a 

in the southern Mojave Desert (PRISM – www.prism.oregonstate.edu). We focused on 

mainly south-draining basins with MAP ranging from 0.6-1.0 m/a with elevation. The 

impact of this gradient on runoff is potentially mediated by a transition from rain to snow 

above 2000 m elevation. While detailed long-term climate is poorly constrained, there is 

no evidence for glaciation in the SGM. 

The geology of the SGM consists primarily of Precambrian and Mesozoic 

granitic and metamorphic rocks. Lithological variation has two potential impacts on our 

analysis. First, uneven quartz distribution within basins can bias calculated basin-wide 

erosion rates [Bierman and Steig, 1996; Small et al., 1999]. The only basin that fits this 

criterion, Falls Creek (SG0730), is characterized by low relief headwaters cut on a 

quartz-poor syenite-anorthosite complex above a major knickpoint at the lower end of the 

basin below which a deep gorge is cut into granite. Guided by available geologic maps 

[Morton and Miller, 2006; Yerkes and Campbell, 2005], all other catchments samples 

were carefully selected to avoid such complications. Second, material strength 

differences between lithologies may influence slope stability thresholds and thus 

catchment mean slopes, drainage density, and relief. Similarly subtle lithologic 

differences could influence the fraction of sediment delivered to channels as bed-load and 

its grain size distribution, both of which could affect the relationship between channel 

steepness and erosion rate. Such variations do not appear to be strong, but likely 

contribute to scatter in our data. 
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The strong E-W gradient in relief, in comparison to a weak variation in 

precipitation and relatively spatially homogenous lithology optimizes our ability to 

isolate the topographic controls on erosion. In addition, the drainage networks in the 

SGM are nearly fully integrated, allowing for appropriate comparisons between low and 

high relief landscapes across basin sizes. 

We also compare our results in the SGM to a similar data set in the San 

Bernardino Mountains (SBM), which lie just to the east across the San Andreas Fault 

[Binnie et al., 2007]. Lithology and climate in the SBM are similar to that of the SGM, 

but the topography and relief structure is strikingly different. The Big Bear Plateau 

dominates the central SBM, and represents an uplifted low relief surface that has yet to 

adjust to the regional base level [Spotila et al., 1998]. Additionally, rapidly uplifting 

regions determined from CRN [Binnie et al., 2007] and low-temperature 

thermochronometry [Blythe et al., 2000; Spotila et al., 1998], are isolated and lack 

drainage basins larger than 10 km2. 

METHODS 

Cosmogenic Erosion Rates 

Traditionally, erosion rates were estimated by measuring suspended sediment 

loads or sediment accumulation behind dams over years to decades. These methods are 

subject to important weaknesses; they fail to capture the role of large events, and are 

sensitive to anthropogenic impacts and the fire cycle [e.g., Kirchner et al., 2001; Lavé 

and Burbank, 2004]. Catchment averaged CRN methods, in contrast, are relatively 

insensitive to short term perturbations and provide geomorphically pertinent erosion rates 

[Bierman and Nichols, 2004; von Blanckenburg, 2005]. 
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We measured 10Be concentrations in quartz-rich sediments for 50 basins ranging 

in size from 1-150 km2 across the region (Figure 2.1) to determine catchment averaged 

erosion rates [Bierman and Steig, 1996; Brown et al., 1995; Granger et al., 1996]. This 

method has been successfully applied in numerous studies of upland landscapes [e.g., von 

Blanckenburg, 2005 and references within]. The timescale over which the erosion rates 

integrate can be estimated by dividing the cosmic ray penetration depth (~0.6 m in rock) 

by the calculated erosion rate (for our case 0.1 – 1 m/ka). For the SGM, this implies 

timescales ranging from ~1-50 ka. Application of detrital CRN methods to landscapes 

dominated by mass wasting was evaluated numerically by Niemi et al. [2005] and Yanites 

et al. [2009], both of whom suggest that at high erosion rates, larger basins must be 

sampled to better integrate stochastic landslide inputs and to ensure adequate fluvial 

mixing. Field testing in the slowly-eroding Great Smoky Mountains by Matmon et al. 

[2003] also shows that larger basins provide more accurate measures of erosion rate. 

However, a recent study in the neighboring San Bernardino Mountains suggests that 

accurate erosion rate measurements in threshold landscapes are possible in basins as 

small as 1-3 km2 [Binnie et al., 2007]. 

With this in mind, our sampling scheme in the SGM focused primarily on basins 

draining areas greater than 1 km2 in soil-mantled catchments, and greater than 20 km2 in 

bedrock dominated catchments. Large basins (>100 km2) in both the low and high uplift 

regions were sampled, and we avoided catchments exhibiting strongly transient behavior 

(containing major knickpoints). With one exception (Cucamonga Canyon, SG162, 

SG163), we also avoided catchments with clear evidence of recent floods or large 

landslides. 
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For each catchment, we separated quartz using standard techniques [Kohl and 

Nishiizumi, 1992] while PrimeLab (Purdue University) performed the 10Be isolation and 

measurement. We calculated 10Be production rates for each catchment, correcting for 

elevation and latitude on a pixel by pixel basis using the 10 m DEM for the catchment 

[Dunai, 2000]. Topographic shielding, snow cover, and muogenic production were not 

accounted for, and contribute to an estimated 5% uncertainty in production rates that is 

added to the 1σ analytical error. Although we lacked data to precisely quantify possible 

variability in quartz content, we do not expect significant variation as nearly all of the 

basins sample quartz-rich basement rocks or granitic intrusions. Comparing our data with 

that of Binnie et al. [2007] in the SBM (Figure 2.1) enables an excellent test of the 

reproducibility and reliability of the detrital CRN method in rapidly eroding mountainous 

topography; catchments span similar ranges of topographic metrics in very similar 

settings, but different researchers selected sampling locations, different laboratories 

prepared targets, different facilities measured 10Be, and our combined data encompass a 

wide range of catchment size across the full spectrum of erosion rates. The range of 

catchment sizes and the development of relations between erosion rate and topographic 

metrics also begin to test the model predictions that the detrital CRN method will 

typically underestimate erosion rates where landsliding is a common process, and that 

this underestimation increases with decreasing catchment size [Niemi et al., 2005; Yanites 

et al., 2009]. 

Catchment-Mean Hillslope Angle 

We used a 10 m digital elevation model to extract a catchment-mean hillslope 

angle for each sample basin. Local slope for each pixel in the DEM is the dip of a plane 

fit to a 3 x 3 array of pixels centered on the pixel of interest, and we averaged individual 
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pixel slopes for each catchment. To focus our attention on the hillslopes, we selectively 

excluded valley fill from our calculation, though few of our sample basins are 

significantly aggraded. As our sampling strategy excluded transient basins characterized 

by prominent knickpoints, inner gorges, and remnant patches of low-relief landscapes at 

high elevation, calculating catchment mean hillslope angle for SGM sample basins is 

straightforward. 

Evaluating a representative hillslope from transient basins, in which there is a 

bimodal hillslope distribution is more complicated, and seven catchments used by Binnie 

et al. [2007] are affected. These catchments primarily lie along the southern front of the 

Big Bear Plateau, with this relict, low relief surface contributing significantly (20-30%) 

to their catchment areas. A minimum value for the representative catchment mean 

hillslope angle is simply the mean slope in the entire catchment, as reported by Binnie et 

al. [2007]. However, as the CRN-derived erosion rate will be strongly weighted to the 

steep, incised lower portions of these catchments, the catchment mean hillslope angle 

associated with this erosion rate is probably closer to the mean hillslope angle 

downstream of the plateau edge (which provides a maximum estimate of the 

representative catchment mean hillslope angle). We use these minimum and maximum 

bounds to define error bars on catchment mean slope and take a weighted average of 

these slopes as a best estimate. The mean slopes of the part of the catchment on the 

plateau and that below the plateau were weighted by their predicted fractional 

contribution to the total sediment flux out of the basin, based on the relationship between 

erosion rate and mean slope defined by our data in the SGM. Generally this flux-

weighted mean slope is close to the maximum estimate given by the mean slope of the 

steep, incised lower portions of these disequilibrium catchments. We show both 
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minimum and maximum representative catchment mean slope in plots and stress that 

these points are included for visual comparison only. The complexity of these seven 

basins does highlight the importance of selecting well-adjusted catchments with uniform 

topographic characteristics to most clearly define the relationships among topographic 

metrics and erosion rate. 

Catchment-Mean Channel Steepness Index 

Graded fluvial channels tend to follow a power law relationship between local 

slope (S) and upstream drainage area (A) commonly referred to as Flint’s law [Flint, 

1974; Hack, 1957]: 

  AkS s , (2.1) 

where ks is the channel steepness index and θ is the concavity index. Models of fluvial 

incision ranging from detachment-limited to transport-limited end-members all predict a 

monotonic relation between channel slope and rock uplift rate at steady state (when 

erosion rate = rock uplift rate), generally well approximated as a power-law relation 

[Lague et al., 2005; Sklar and Dietrich, 2004; Snyder et al., 2003]: 

 s
p kUS  . (2.2) 

The predicted relation between ks and U varies between models and depends on climate, 

rock strength, and dominant incision process (e.g., plucking, bed-load abrasion). For the 

well known end-member stream power models of detachment-limited and transport-

limited incision, channel steepness index ks is given by, respectively: 

 n
ds KUk /1)/( , (2.3a) 

 tn
ts KUk /1)/( , (2.3b) 
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where U is rock uplift rate, n and nt are the stream power slope exponents, such that p = 

1/n or 1/nt, for detachment- and transport-limited cases, respectively, Kd and Kt are the 

coefficients of erosional efficiency (function of climate, lithology, etc.) for detachment- 

and transport-limited cases, respectively, and β is the fraction of total load delivered to 

channels as bedload. These and most other models predict that channel concavity is 

independent of rock uplift rate at steady state [e.g., Whipple and Tucker, 1999], an 

expectation borne out by field observations in many landscapes, including the SGM 

[Tucker and Whipple, 2002; Wobus et al., 2006]. In analyses of topographic data using 

equation (2.1), a complication arises in that slight variations in best-fit concavity index 

(θ) exist in every landscape and estimates of ks are strongly correlated to the fit concavity 

index [e.g., Sklar and Dietrich, 1998]. This can be resolved by evaluating a normalized 

channel steepness index using a fixed reference concavity, θref [e.g., Wobus et al., 2006]: 

 refAkS sn
  . (2.4) 

By fixing θ = θref, and making the assumption that Kd and n do not vary systematically 

across the landscape, ksn (normalized channel steepness index) proves to be a useful 

metric for studying the relations between topography and rock uplift or erosion [e.g. 

Hilley and Arrowsmith, 2008; Kirby and Whipple, 2001; Kobor and Roering, 2004; 

Snyder et al., 2000]. Wobus et al. [2006] provide additional examples and detailed 

methodology concerning the extraction of river profile topography from DEMs and the 

fitting of ksn to individual channel segments. 

For this study, we determined a representative ksn for each of our sample basins 

in the SGM, and also where possible (i.e., for catchments of sufficient size) for the basins 

sampled in the SBM by Binnie et al. [2007]. We followed a methodology similar to that 

used by Ouimet et al. [2009]. Using a fixed reference concavity index of 0.45, we used a 
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freely available set of Matlab and ArcMap scripts (http://www.geomorphtools.org) to 

automate profile fits for all channel reaches (500 m segments) draining >2 km2 from the 

10 m resolution USGS NED DEM (Figure 2.2). We report the catchment average ksn for 

each sample basin as the mean ksn of all individual reaches, with an uncertainty of 2 

standard errors about this mean. Errors associated with individual reach fits (2 standard 

deviations) are much less than intra-basin variability of ksn. We did not assign a channel 

steepness index to small (<2 km2), steep, rocky catchments (especially those in the SBM), 

as the slope-area data for these basins do not conform to Flint’s law, showing little or no 

variation of slope with drainage area. 

Catchment-Mean Local Relief 

Studies of the controls on denudation rate often use various measures of 

topographic relief as their primary topographic metric [e.g., Aalto et al., 2006; Ahnert, 

1970; Montgomery and Brandon, 2002]. Relief is by definition a scale-dependent 

measurement, and how the scale of analysis affects what aspect of topographic form 

(hillslope relief, colluvial channel relief, fluvial tributary relief, main stem relief, and 

combinations thereof) is measured has never been systematically evaluated. Here we 

quantify the relations among mean hillslope angle, mean channel steepness index, and 

mean local relief measured over a wide range of length scales for all the catchments 

sampled within the SGM. Following Ahnert [1970] and Montgomery and Brandon 

[2002], for each pixel in the SGM DEM we measured local relief within a circular 

window with radius ranging from 100 m to 5 km. Catchment mean local relief is simply 

the average of all values within a catchment. It should be noted that for small catchments 

and large relief windows, local relief calculations may incorporate topography outside of 
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the basin. For convenience we plot these data as normalized mean local relief, where 

normalized local relief is defined as elevation range divided by window diameter. 

RESULTS 

Interrelations Among Topographic Metrics 

Catchment-mean hillslope angle increases with increasing channel steepness 

index until ksn~100 m0.9, above which hillslope angles become invariant (Figure 2.3). The 

form of this relationship supports the hypothesis that channel steepness reflects erosion 

rates, thus retaining a tectonic signature, in landscapes where hillslopes have achieved 

threshold gradients, and corroborates the similar relationship found by Ouimet et al. 

[2009]. 

Figure 2.4 highlights the complex relationships among the various topographic 

metrics (e.g., slope angle, relief, ksn), and the significant influence of the measurement 

scale of relief. At the smallest scales (10’s to 100’s of m) local relief is simply a proxy for 

hillslope angle. Indeed, hillslope gradient can be thought of as fine scale relief 

normalized for the length scale over which it is measured. Relief measured with a 100 m 

radius window is tightly correlated to mean basin gradient (Figure 2.4a), while at 

progressively larger scales (1-5 km), tributary channel relief begins to dwarf hillslope 

relief [Whipple et al., 1999], and local relief begins to be a measure of tributary channel 

steepness. At still larger scales (>10 km) trunk channel relief is incorporated, and 

eventually relief becomes solely a measure of range height. In the SGM, relief measured 

with a 2.5 km radius window tracks linearly with channel steepness index (Figure 2.4b). 

In addition, the spatial pattern of 2.5 km-scale local relief maps directly with the spatial 

pattern of channel steepness index values (Figure 2.2). This optimal relief scale is not 
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universal and can be expected to vary with catchment size, relief magnitude, and drainage 

density. 

Though these two metrics are strongly correlated, there are important advantages 

to using ksn rather than relief. First, not all of the spatial variation in channel steepness is 

captured by km-scale relief; lithologic controls on channel steepness, uplift patterns 

associated with active structures, and knickpoints associated with accelerated incision are 

much more finely resolved using ksn. Additionally, ksn can be derived from specific, 

process-based models of river incision and is scale independent, while local relief always 

measures a combination of landscape elements (e.g., hillslope relief, colluvial and fluvial 

channel steepness, channel length) governed by distinct processes and involves additional 

uncertainty in determining an appropriate measurement scale. Relief is however, easier 

and quicker to calculate than channel steepness, and can yield information in preliminary 

landscape analysis to help direct further, more detailed topographic examination. 

Spatial Distribution of Topographic Metrics 

Catchment-mean hillslope angle in the SGM varies from 10 to 38 degrees, 

generally increasing from west to east until hillslopes attain threshold values. No clear 

dependence of catchment-mean slope on drainage area is seen. Basin slope distributions 

are predominantly normally distributed; skewed or bimodal distributions are either 

attributable to large areas of low slope such as wide valley bottoms and terraces or reflect 

potential disequilibrium conditions with low relief surfaces perched above significant 

knickpoints in channel profiles. 

Local channel steepness values range from below 20 to over 500 m0.9 (Figure 

2.2). However, the highest values are confined primarily to immediately below 

significant knickpoints. Catchment mean ksn in the SGM ranges from 20-200 m0.9, 
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covering much of the known worldwide variation in ksn [Wobus et al., 2006]. Similar to 

hillslope angle, channel steepness index increases generally from west to east, with no 

dependence on drainage area. Basins from the SBM sampled by Binnie et al. [2007] for 

detrital CRN were also analyzed for comparison. In the SBM, channel steepness index 

averaged over the basin has a smaller range than in the SGM. This likely reflects the fact 

that all of the rapidly eroding (>0.7 mm/a) SBM sample basins are less than 2 km2. These 

channels likely are entirely dominated by debris flows [e.g., Montgomery and Foufoula-

Georgiou, 1993; Stock and Dietrich, 2003], making determination of channel steepness 

values inappropriate. 

Erosion Rates and Topography 

Catchment averaged erosion rates, inferred from 10Be concentrations in alluvial 

sands, range from 30 to 1000 m/Ma in the SGM (Table 2.1), and are in general agreement 

with both long-term (Ma) estimates from low-temperature thermochronometry work 

[Blythe et al., 2000; Spotila et al., 2002] and decadal sediment yield data compiled by 

Lavé and Burbank [2004]. For catchments sampled in the SGM, we do not expect the 

actual erosion rates to have any dependence on drainage area. However, for reasons 

discussed earlier, we expect that the CRN derived erosion rates may systematically 

underestimate the actual erosion rates for landslide-dominated catchments, with the effect 

being strongest for small catchments (<10 km2) [Niemi et al., 2005; Yanites et al., 2009]. 

Although we introduced a slight sampling bias towards larger basins in areas of high 

relief to account for this effect, our measured erosion rates in the SGM show little 

dependence on drainage area across a wide range of both basin size (0.1 – 100 km2) and 

erosion rate (10 – 1000 m/Ma, Figure 2.5). In addition, in the SBM, rapid uplift is 

constrained to narrow ridges between faults that preclude sampling large, high relief 
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basins. As a result, there is a sampling bias towards smaller basins at high erosion rates 

[Binnie et al., 2007]. Taken together, there appears to be no dependence of CRN derived 

erosion rate on drainage area, though it should be noted that neither of these two datasets 

were collected with the explicit intention of testing this hypothesis. The data suggest that 

models of the impact of stochastic sediment delivery on erosion rates estimated from 

detrital CRN concentrations may exaggerate the influence of large landslides, a tentative 

conclusion that warrants caution applying these models for data interpretation and merits 

further investigation. 

Catchment-mean hillslope angle increases with erosion rate until ~300 m/Ma 

(Figure 2.6). At erosion rates higher than ~300 m/Ma, catchment-averaged slopes are 

invariant at a threshold value of ~35 degrees. Detrital CRN data from the SBM [Binnie et 

al., 2007] are also plotted here and follow the same trend, particularly after correcting 

mean slope estimates for SBM basins with headwater reaches on the Big Bear plateau 

surface. 

Channel steepness index increases non-linearly but monotonically with erosion 

rate throughout the range of observed erosion rates, with some scatter (Figure 2.7). The 

channel steepness index therefore records erosion rate information in threshold 

landscapes, where hillslope form is no longer sensitive to erosion rate, and thus serves as 

a key metric for interpreting rapidly eroding landscapes in tectonically active settings [see 

also Ouimet et al., 2009]. Comparison with channel profile analysis of the SBM dataset 

shows a very similar trend for erosion rates below 500 m/Ma. As noted earlier, more 

rapidly eroding basins in the SBM are almost all too small to allow meaningful 

assessment of the normalized channel steepness index. 
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ANALYSIS 

Catchment Mean Slope and Erosion Rate 

To model the morphological transition from slope-dependent to threshold 

hillslopes, soil transport laws that account for both creep-related and landslide processes 

must be used [e.g., Anderson, 1994; Howard, 1994; Roering et al., 1999]. Two end-

member approaches allow for analytical 1-D profile analysis: 
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where qs is the volumetric soil flux (m2/yr), K is the transport coefficient (m2/yr), S is 

local slope (dz/dx), and Sc is a critical slope at which soil flux approaches infinity. 

Equation (5a) is a non-linear transport law [Roering et al., 1999] supported by field [e.g., 

Pelletier and Cline, 2007] and experimental [e.g., Gabet, 2003] studies, while equation 

(5b) represents a simple, linear slope-dependent flux at slopes less than critical, with a 

transition to infinite potential soil transport capacity above a threshold slope. Both of 

these models can be combined with a statement of mass conservation to derive one-

dimensional steady-state characteristic forms [e.g., Kirkby, 1971; Roering et al., 2007]: 
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where z(x) is the surface elevation, E is erosion rate, and xt is the transition point from 

convex to planar hillslopes for the linear with threshold model (for full derivations of 

equations (6a) and (7a), see Roering et al. [2007]). Taking the derivative of equation (6) 

with respect to x and averaging slope over the horizontal hillslope length LH, steady state 

relationships between profile-averaged hillslope gradient, Save, and the variables E, Sc, K, 

and LH can be derived: 
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where E* is a dimensionless erosion rate [Roering et al., 2007]. Thus for each model the 

average slope of a 1-D hillslope varies with K/LH – any change to this ratio has an 

equivalent effect on mean slope. Note that the linear transport law with a threshold 

predicts a distinctly non-linear relationship between mean slope and erosion rate. Thus an 

observation of such a non-linear relation does not necessarily support a non-linear 

diffusion model. The relations between mean slope and erosion rate derived above are 
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distinct from that proposed by Montgomery and Brandon [2002]. They predict similar 

non-linear forms, but make explicit how measurable hillslope transport coefficients (K), 

hillslope length (LH), and soil density ( ρr/ρs) influence the erosion coefficient in the 

Montgomery and Brandon [2002] relationship. 

Modeling one-dimensional hillslope profiles using the above framework is 

straightforward, though extending known controls on mean slope of these “characteristic 

forms” to full landscapes is not. Local variables that govern sediment transport (i.e., 

slope) must be related to basin-averaged measurements to make comparisons with 

catchment-averaged cosmogenic erosion rates. Roering et al. [2007] have shown that, to 

first order, this can be done by calculating the average slope over a representative 

(average length, LH) 1-D hillslope profile and equating this to the catchment mean 

hillslope angle. Because this approach allows only a first order comparison, we do not 

attempt to use our data to constrain statistical best-fit model parameters. Instead, we aim 

to evaluate whether realistic values of model parameters reasonably predict observed 

relations between topography and erosion rates and to determine whether the two models 

can be distinguished based on these types of data. 

Reasonable estimates of all parameter values for these hillslope soil transport 

models can be readily determined. Our DEM analysis suggests that Sc ≥ 35º, consistent 

with estimates elsewhere [e.g., Roering et al., 2007]. DEM analysis and aerial photograph 

interpretation suggest LH = 75m is reasonable for the SGM, but is variable within 

catchments and may vary with erosion rate – a complication that merits further 

investigation. A value of 2 is taken as the typical density ratio for granitic soils. Given 

these constraints, and the scatter in our data, we find that reasonable values of K (0.008 

and 0.015 m2/yr for 7A and 7B, respectively) and Sc (39º and 37º for equations (7a) and 
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(7b), respectively) provide visually satisfying fits to our data using both models (solid 

lines in Figure 2.6). In addition to inherent uncertainty in erosion rate estimates from 

detrital CRN concentrations, scatter in our data is likely due to variability in lithology, 

hillslope length, and aspect within our sample basins, and should be expected with such a 

crude mapping of the local, process-controlling slope to a variable such as catchment-

mean hillslope angle. 

Catchment Mean Channel Steepness Index and Erosion Rate 

As noted earlier, channel steepness index increases non-linearly with erosion rate 

in the SGM, and approximately follows the power-law relation described by equation (2) 

where p ~ ½. Other researchers have found this relationship to be approximately 

described by p = 1 [Kirby and Whipple, 2001; Lague and Davy, 2003], p = 1/2 [Ouimet et 

al., 2009], and p = 1/4 [Snyder et al., 2003]. The stream power model of detachment-

limited bedrock incision is consistent with a range of non-linear behaviors (3/5 ≤ p ≤ 3/2), 

depending on process mechanics [Hancock et al., 1998; Whipple et al., 2000]. However, 

for p < 1 channels are predicted to become buried in sediment as erosion rates and 

sediment fluxes increase such that they are forced to maintain a slope sufficient to 

transport the full sediment load [Tucker and Whipple, 2002]. Consistent with this, the 

majority of channels in the SGM, including those in high-relief, rapidly eroding areas, 

show little bedrock exposure in their beds and are likely transporting sediment near 

capacity. Simple models (e.g., equation (3b)) for this transport-limited condition predict p 

= 1 (bedload transport capacity is linear in slope), implying p ≥ 1 across the SGM. 

In light of the expectation that a transition to transport-limited conditions will 

preclude a sub-linear relationship between channel steepness and erosion rate, why our 

data suggest p = ½ becomes an important question. To account for the observed non-
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linear relationship between channel steepness and erosion rate (p < 1), transport as well 

as detachment processes must be affected. We use here the stochastic threshold model of 

Tucker and Bras [2000] and Tucker [2004], which combines a threshold shear stress for 

motion or detachment with variable discharge via an exponential probability distribution 

of rainfall in a stream-power type incision model. 

In its simplest form, the stochastic threshold model expands the coefficient of 

erosional efficiency, Kd in equation (3a), into three terms, such that: 

 nm
cCR SAKKKE  , (2.8) 

where KR encompasses the physical parameters of channel geometry, hydraulic 

roughness, and substrate resistance to erosion, KC is a function of stochastic climate 

parameters, and Kτc is a threshold term set by the critical shear stress and local channel 

slope that varies between 0 and 1 [Tucker, 2004; Whipple, 2004]. To illustrate the 

implications of this model for the SGM data, we used channel geometry and hydraulic 

roughness constants consistent with Snyder et al. [2003] and Tucker [2004]. Climate 

parameters were estimated from rainfall records at Mt. Baldy (National Climatic Data 

Center – http://www.ncdc.noaa.gov), and kept constant for all basins. We then adjusted 

the critical shear stress (controls height of rollover) and substrate resistance to erosion 

(controls slope of curve at high erosion rate) to fit our data by eye in Figure 2.7. We find 

that the stochastic threshold model can explain much of the variance in our data using 

reasonable parameter estimates (Figure 2.7). 
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DISCUSSION 

Implications for Channel Incision Theory 

Our analysis demonstrates that much of the non-linearity of the relation between 

channel steepness index and erosion rate (p < 1) can be explained by the combined 

effects of a critical threshold for bedload entrainment or bedrock detachment and a 

stochastic distribution of floods (Figure 2.7). This is, however, a non-unique finding. 

There are numerous alternate mechanisms for generating p < 1. Two frequently discussed 

factors include orographic precipitation effects [Roe et al., 2002], and a narrowing of 

channel width with erosion rate [Finnegan et al., 2005], but neither appear to play an 

important role in the SGM. We purposefully selected catchments with only weak 

orographic effects (mean annual rainfall increases from ~0.6 to ~0.9 m/a from low to 

high relief catchments). Also, field observations do not support significant channel 

narrowing with increased erosion rate in well-adjusted, quasi-equilibrium catchments 

[DiBiase et al., 2007]. In addition, systematic changes in the caliber, durability, and 

fraction of bedload sediment (β) with erosion rate, as well as an increase in debris flow 

activity with increasing erosion rate, may influence the relationship between ksn and 

erosion rate [e.g., Sklar and Dietrich, 2006; Stock and Dietrich, 2003]. Additional field 

measurements are necessary to evaluate how important these factors may be in this, and 

other, landscapes. 

What is most satisfying about the simple stochastic threshold model illustrated in 

Figure 2.7 is that it incorporates only effects that we know with certainty must operate in 

all landscapes (thresholds of motion and/or detachment and stochastic floods). Much of 

the non-linearity in the relation between channel steepness index and erosion rate seen in 

our data can be explained by these effects alone, suggesting that, in aggregate, other 
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factors exert only a secondary influence. Additional erosion rate and topography data 

from a range of landscapes in different geologic, tectonic, and climatic settings will be 

required to fully evaluate this tentative conclusion. 

Implications for Hillslope Transport Theory 

A non-linear relation between catchment-mean hillslope angle and erosion rate is 

used [e.g., Montgomery and Brandon, 2002; Roering et al., 2007] to support the non-

linear transport model of Roering et al. [1999]. Whereas available data is consistent with 

this model, our analysis demonstrates that the simpler linear-threshold model (equation 

(7b)) fits the data from the SGM and SBM equally well. Indeed, predictions of the two 

models are so similar that they will likely remain indistinguishable on the basis of the 

relation between mean slope and erosion rate, though experimental studies of granular 

creep [Roering et al., 2001] and dry ravel [Gabet, 2003] clearly distinguish and support 

the non-linear model. Ouimet et al. [2009] reached a similar conclusion based on their 

data from catchments on the eastern margin of the Tibetan Plateau (ETP). 

Interestingly, very similar values of the hillslope transport coefficient (K) provide 

the visually most satisfying fit to data from SGM/SBM (~-0.008 m2/a) and the ETP 

(~0.006 m2/a) [Ouimet et al., 2009], consistent with more direct estimates of K in many 

semi-arid to temperate landscapes [e.g., Hanks et al., 1984]. Moreover, although the 

SGM/SBM data require a higher threshold slope (Sc ~38º vs. ~32º for the ETP dataset), 

this merely reflects the difference in DEM resolution available in the two regions (10 m 

in SGM/SBM vs. 90 m in the ETP) [Ouimet et al., 2009]. It is tempting to speculate that 

these hillslope transport model parameters may be insensitive to geologic and climatic 

conditions. However, both field sites are semi-arid, and the ETP data includes a 

significant fraction of catchments underlain by granitic rocks. Similar field data is needed 
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from field sites spanning a range of geologic and climatic conditions before any firm 

conclusions can be drawn. Nonetheless, it is remarkable that no distinction can be made 

either between the SGM/SBM and the ETP datasets nor between catchments underlain by 

granitic rocks and highly deformed Triassic flysch within the ETP dataset [Ouimet et al., 

2009]. 

The transition to slope-invariant erosion rates above ~300 m/Ma is interpreted to 

represent a change from steady, creep-related processes (e.g. tree throw, burrowing) to 

mass wasting and the achievement of threshold slopes [e.g., Binnie et al., 2007; 

Montgomery and Brandon, 2002; Ouimet et al., 2009]. Field observations in the SGM are 

consistent with this interpretation. At low erosion rates (< 150 m/Ma), basins are nearly 

entirely mantled by a thin (<1 m) layer of mobile, well-mixed soil and hilltops are 

smoothly convex up. In rapidly eroding basins (>400 m/Ma), the soil mantle has been 

mostly replaced with a patchwork of talus, bare bedrock, and landslide scarps and 

deposits on roughly planar slopes with rugged ridgelines. 

Cosmogenically determined soil production rates typically show an inverse 

exponential relationship with soil depth [e.g., 2005; Heimsath et al., 1997]. In these 

studies, the maximum surface soil production rates range from ~50-250 m/Ma, and the 

transition to threshold slopes is thought to correspond to erosion exceeding these rates. 

Soil production rates measured in the SGM reach a maximum of either 100 or 300 m/Ma, 

depending on locality, closely matching the erosion rate responsible for the development 

of threshold hillslopes [DiBiase et al., 2008; Heimsath, 1999]. This represents the first 

quantitative test of the hypothesis that the transition to threshold hillslopes corresponds to 

erosion exceeding the ‘speed limit’ set by the conversion of bedrock to soil. Further work 

32



 

 

is needed to test whether this speed limit varies with uplift rate; the coupling of chemical 

weathering with physical erosion rate may complicate this first cut interpretation. 

CONCLUSIONS 

The location of the San Gabriel Mountains along a restraining bend in the San 

Andreas Fault sets up a strong gradient of tectonic forcing (and relief) over a relatively 

small (100 x 30 km) region with minimally varying climate and lithology. Catchment-

mean hillslope angle, channel steepness index, and local relief measured at various scales 

all increase from west to east. We measured 10Be concentrations in 50 alluvial sand 

samples to determine catchment-averaged, millennial scale erosion rates across the range. 

These rates show little dependence on drainage area (which ranges from 0.1 to 100 km2 

in our dataset), in contrast to expectations from numerical experiments [Niemi et al., 

2005; Yanites et al., 2009], suggesting that steep basins as small as 1-3 km2 yield accurate 

detrital CRN erosion rates. Catchment-mean hillslope angle increases with erosion rate 

until ~300m/Ma, above which slopes become invariant with erosion rate. This transition 

in form is seen both in the field, as a switch from soil-mantled to bedrock landscapes, and 

in local soil production rates, which suggest a maximum bedrock weathering rate of 100-

300m/Ma [DiBiase et al., 2008; Heimsath, 1999]. Similar data has supported a non-linear 

soil transport law [e.g., Montgomery and Brandon, 2002], but we show that a simpler 

linear with threshold hillslope transport law fits our data equally well. Normalized 

channel steepness index tracks monotonically, though non-linearly, with erosion rate 

throughout the SGM. Much of this non-linearity can be ascribed to the addition of a 

threshold shear stress and variable discharge to the stream power models of either 

detachment- or transport-limited river incision. Normalized channel steepness thus serves 
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as a reliable topographic metric of erosion rate in actively deforming orogens where 

threshold hillslopes fail to retain a tectonic signature. 
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FIGURE CAPTIONS 

Figure 2.1. (a) Overview map of central transverse ranges, CA, showing topography (0-

3500m) and quaternary faults (black lines, thickness corresponds to activity 

(http//earthquakes.usgs.gov/regional/qfaults/)). SGM = San Gabriel Mountains, SBM = 

San Bernardino Mountains, SAFZ = San Andreas Fault Zone, SMFZ = Sierra Madre 

Fault Zone, CFZ = Cucamonga Fault Zone. Dashed grey box indicates extent of (b), 

location map for basins sampled for detrital CRN (black points, polygons) in the San 

Gabriel Mountains. Basin color corresponds to catchment averaged erosion rate. 

 

Figure 2.2. Map of normalized channel steepness index (ksn) draped on top of 2.5 km 

relief in the San Gabriel Mountains. Although there is a direct correlation between the 

two, channel profiles contain additional high resolution information about both spatial 

and temporal patterns of uplift. 

 

Figure 2.3. Catchment averaged slope (Save) vs. normalized channel steepness index (ksn) 

for SGM sample basins. 

 

Figure 2.4. (a) Measured at 100 m scale, local relief is nearly identical to hillslope angle, 

but as the scale of relief measurement increases, both the scatter and non-linearity of the 

relief-hillslope angle relationship increase. (b) At a radius of 2.5 km, relief increases 

linearly with channel steepness. Measured at 1 km scale or less, relief values reach a 

threshold similar to that shown in figure 2.3. Large scales of relief smooth out the 

variability that we are interested in from the landscape. 
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Figure 2.5. CRN derived erosion rate vs. catchment area for SGM data (black diamonds) 

and SBM data [Binnie et al, 2007, grey diamonds]. SGM error bars include 1σ analytical 

error as well as an additional 5% uncertainty in 10Be production rate calculation. White 

diamonds indicate SGM samples that are either repeats of or nested within catchments 

showing erosion rates less than 110 m/Ma. White squares represent Cucamonga Canyon 

(CC; SG162, SG163). 

 

Figure 2.6. Catchment average hillslope angle (Save) vs. CRN-derived erosion rate 

(symbols as in figure 2.5). Inset plot shows full range of SBM data. Non-linear model 

shown with Sc = 39 degrees, K = 0.008 m2/yr, LH = 75 m. Linear with threshold model 

shown with Sc = 37 degrees, K = 0.015 m2/yr, and LH = 75 m. Dashed grey line indicates 

maximum surface soil production rate measured in the SGM from Heimsath [1999]. 

 

Figure 2.7. Catchment mean normalized channel steepness index vs. CRN-derived 

erosion rate (symbols as in figure 2.5). Data shown only for basins draining >2 km2 (47 

out of 70 basins). Grey line shows result of stochastic threshold model with the following 

parameters: mean rainfall intensity = 3 mm/h, mean storm duration = 7 h, mean 

interstorm period = 238 h, threshold shear stress τc = 55 Pa (equivalent to movement of 

11 cm cobbles), and erosional efficiency ke = 0.0003 (see Tucker [2004] for full 

explanations of variables). Dashed grey line indicates maximum surface soil production 

rate measured in the SGM from Heimsath [1999]. 
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Table 2.1. Detrital CRN sample basin location, morphometry and erosion rate data

Sample ID Eastinga Northinga Area (km2)
mean

elevation (m)
basin

relief (m) S ave (deg) k sn

10Be/SiO2

(x 103 atoms/g) N(z,I)b
Erosion rate 

(m/Ma)c

SGB1 393590 3796490 174.70 1401 1438 25.9 62 ± 6 73.21 ± 14.6 2.46 109 ± 27
SGB2 398070 3796470 102.00 1448 1200 24.2 63 ± 6 69.03 ± 17.25 2.54 119 ± 36
SGB3 396850 3797050 106.90 1437 1268 24.0 63 ± 6 96.74 ± 13.99 2.52 84 ± 16
SGB4 405576 3793270 6.00 1528 489 21.3 43 ± 1 244.33 ± 243.44 2.67 35 ± 37
SGB5 396964 3799133 9.91 1358 817 27.2 60 ± 1 56.53 ± 10.86 2.37 135 ± 33
SGB6 385052 3799080 9.68 1286 875 33.0 115 ± 4 29.39 ± 12.46 2.23 246 ± 117
SGB7 394360 3795594 3.18 1311 770 34.4 106 ± 8 29.16 ± 4.74 2.27 253 ± 54
SGB9 384501 3796261 17.33 1139 1189 33.6 118 ± 3 15.33 ± 0.56 2.01 424 ± 37

SGB10 389930 3793860 7.48 1107 1042 32.1 105 ± 5 22.56 ± 0.76 1.94 279 ± 23
SGB11 431950 3795090 82.45 1953 2131 34.9 157 ± 3 14.82 ± 0.67 3.78 826 ± 79
SGB12 429900 3789052 148.38 1803 2463 35.3 163 ± 2 11.07 ± 0.63 3.45 1010 ± 108
SGB13 431750 3795109 35.03 1959 1921 35.2 178 ± 4 28.22 ± 1.84 3.80 436 ± 50
SG116 406050 3793401 1.11 1511 400 22.5 N/A 27.15 ± 2.54 2.64 314 ± 45
SG118 405531 3793280 6.03 1527 494 21.2 43 ± 1 2.57 ± 2.25         2.67 265 ± 32
SG123 403550 3801480 3.19 1731 838 28.4 66 ± 2 93.68 ± 3.95 3.14 108 ± 10
SG124 403580 3800022 0.35 1409 445 24.2 70 ± 7 52.55 ± 3.06 2.44 151 ± 16
SG125 400471 3785950 1.96 1336 858 33.6 N/A 16.14 ± 1.32 2.32 465 ± 61
SG126 400230 3786700 2.30 1361 801 36.4 N/A 12.94 ± 0.9 2.36 591 ± 71
SG127 400100 3786719 2.60 1344 934 39.1 N/A 10.26 ± 0.87 2.33 736 ± 99
SG128 407130 3799908 2.13 1790 182 12.9 29 ± 8 250.69 ± 20.68 3.25 42 ± 6
SG129 406977 3800170 0.14 1788 149 16.0 29 ± 4 213.83 ± 57.3 3.24 49 ± 16
SG130 408940 3804594 0.29 1734 230 25.5 27 ± 3 138.47 ± 9.04 3.12 73 ± 8
SG131 408762 3802978 2.30 1738 250 14.9 29 ± 3 102.88 ± 12.7 3.13 98 ± 17
SG132 409009 3802950 1.13 1728 257 16.8 35 ± 4 94.48 ± 4.54 3.10 106 ± 10
SG136 427489 3798670 0.11 2275 203 24.4 N/A 103.09 ± 4.45 4.60 144 ± 13
SG137 418150 3792511 46.84 1524 1863 34.6 154 ± 3 15.05 ± 1.4 2.75 591 ± 84
SG138 417980 3792440 17.88 1383 1699 35.7 131 ± 3 18.65 ± 2.75 2.47 428 ± 85
SG140 412561 3789280 7.71 1071 1044 29.9 93 ± 6 32.49 ± 1.99 1.89 189 ± 21
SG141 410390 3790543 43.06 1526 1696 30.2 126 ± 4 30.45 ± 2.38 2.74 292 ± 37
SG150 405510 3793789 0.02 1378 56 13.3 N/A 23.82 ± 2.57 2.38 323 ± 51
SG151 426461 3797780 3.53 2290 813 31.2 146 ± 17 34.82 ± 10.27 4.67 434 ± 150
SG152 426300 3798089 2.10 2343 738 31.4 N/A 199.29 ± 9.52 4.85 79 ± 8
SG157 432789 3796090 25.39 2019 2046 35.0 173 ± 5 11.68 ± 1.57 3.99 1106 ± 204
SG158 432614 3796111 53.21 1949 1922 34.4 145 ± 3 11.68 ± 1.39 3.75 1039 ± 175
SG159 431831 3795020 35.03 1958 1929 35.2 178 ± 4 17.15 ± 1.67 3.80 717 ± 106
SG161 429939 3795791 11.55 1954 1550 36.0 164 ± 7 12.03 ± 1.69 3.74 1006 ± 191
SG162 441441 3780431 27.99 1570 2036 35.9 172 ± 6 33.69 ± 4.63 2.91 279 ± 52
SG163 441440 3780432 27.99 1570 2036 35.9 172 ± 6 43.13 ± 2.83 2.91 218 ± 25
SG204 408889 3802380 0.08 1706 73 10.2 N/A 16 ± 2.18 3.05 617 ± 115
SG205 408780 3802535 0.12 1697 90 10.6 N/A 89.34 ± 5.77 3.03 110 ± 13
SG206 427120 3787967 5.39 862 632 32.2 81 ± 12 18.56 ± 5.21 1.59 277 ± 91
SG207 425810 3788950 6.52 1053 1254 35.1 89 ± 3 23.04 ± 2.33 1.89 265 ± 40

SG0701 408768 3802844 0.19 1680 113 10.3 N/A 81.27 ± 3.49 2.99 119 ± 11
SG0702 405524 3804763 0.18 2087 179 20.8 N/A 167.58 ± 8.31 4.03 78 ± 8
SG0703 398617 3796775 9.89 1349 880 30.1 66 ± 3 12.54 ± 0.83 2.34 605 ± 70
SG0728 417222 3802455 9.07 2088 734 24.6 95 ± 15 110.91 ± 6.08 4.05 118 ± 12
SG0729 416848 3802226 5.34 2127 685 23.9 94 ± 24 155.05 ± 7.65 4.16 87 ± 9
SG0730 393010 3706541 5.69 1174 904 31.5 131 ± 13 11.55 ± 2.64 1.76 492 ± 137
SG0740 411172 3798020 2.09 1916 907 24.4 N/A 78.64 ± 4.28 3.58 147 ± 15
SG0743 409731 3796134 21.96 1725 1291 27.8 113 ± 5 42.7 ± 2.89 3.16 239 ± 28

a UTM coordinates (NAD 27 Datum)
b Production rate latitude/elevation scaling factor (Dunai, 2000)
c Erosion rates calculated using density of 2.6 g/cm3 , attenuation length of 165 g/cm2, and high latitude production rate of 5.1 atoms/g/yr
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CHAPTER 3 

HILLSLOPE RESPONSE TO TECTONIC FORCING IN THRESHOLD 

LANDSCAPES 

ABSTRACT 

Hillslopes are thought to poorly record tectonic signals in threshold landscapes. 

Numerous previous studies of steep landscapes suggest that large changes in long-term 

erosion rate lead to small changes in mean hillslope angle, measured at coarse resolution. 

New LiDAR-derived topography data enables a finer examination of threshold hillslopes. 

Here we quantify hillslope response to tectonic forcing in a threshold landscape. To do 

so, we use a gradient of tectonic forcing and topographic relief in the San Gabriel 

Mountains, California, with extensive cosmogenic 10Be-based averaged erosion rates, and 

a 500 km2 LiDAR-derived 1 m digital elevation model. We also calibrate a new method 

of quantifying rock exposure from LiDAR-derived slope measurements using high-

resolution panoramic photographs. Two distinct trends in hillslope behavior emerge: 

below catchment-mean slopes of 30º, modal slopes increase with mean slopes, slope 

distribution skewness decreases with increasing mean slope, and bedrock exposure is 

limited; above mean slopes of 30º, rock exposure index increases strongly with mean 

slope, and the prevalence of angle-of-repose debris wedges keeps modal slopes near 37º, 

resulting in a positive relationship between slope distribution skewness and mean slope. 

We find that both mean slope and rock exposure increase with erosion rate up to 1 mm/a, 

in contrast to previous work based on coarser topographic data. We also find that as 

erosion rates increase, the extent of the fluvial network decreases, while colluvial 

channels extend downstream, keeping the total drainage density similar across the range. 

Our results reveal important textural details lost in 10 or 30 m resolution digital elevation 
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models of steep landscapes, and highlight the need for process-based studies of threshold 

hillslopes and colluvial channels. 
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INTRODUCTION 

Steep, tectonically active landscapes provoke broad interest, both for 

geoscientists interested in interactions among climate, uplift, and erosion, and for an 

increasing global population that is encroaching deeper into landscapes exposed to 

landslides, floods, and earthquakes. Such regions are typically interpreted to be threshold 

landscapes – where rock strength limitations decouple mean hillslope angle from erosion 

rate, and prevent hillslopes from sustaining mean gradients steeper than 35-40 degrees 

[Burbank et al., 1996; Carson and Petley, 1970; Montgomery and Brandon, 2002; 

Schmidt and Montgomery, 1995]. Mean slope is, therefore, a poor measure of landscape-

averaged erosion rate in steep mountain ranges [DiBiase et al., 2010; Ouimet et al., 

2009]. However, even casual observation suggests that the fraction of exposed bedrock 

varies significantly in these “threshold” landscapes and that local slopes can become 

extreme where rock is outcropping.  The fact that much of the work pertaining to 

threshold hillslope morphology has been based on either detailed but spatially limited 

field measurements [e.g., Strahler, 1950] or coarse resolution topographic analyses (local 

slopes measured over 300-30 meters) using digital elevation models (DEMs) [Binnie et 

al., 2007; Burbank et al., 1996; DiBiase et al., 2010; Korup, 2008; Montgomery, 2001] 

raises the question of whether the observed constancy of mean slope is either an artifact 

of data resolution or the scale of analysis. Moreover, little is known about how hillslope 

form, texture, and length vary with erosion rate in steep landscapes. Key first-order 

questions remain unanswered for steep landscapes: How does rock exposure vary with 

erosion rate? How does the distribution of local slopes reflect changes in rock exposure? 

What sets drainage density and the balance between hillslope relief and that of fluvial and 
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colluvial channels?  In short, do hillslopes in “threshold” landscapes in fact record 

tectonic information? 

The availability of high-resolution DEMs derived from airborne LiDAR surveys 

enables a detailed examination of the response of steep landscapes to tectonic-driven 

erosion rate at the process (and outcrop) scale. The transformative potential of this 

increase in observation scale from ~30 m to ~1 m in soil-mantled landscapes has been 

well appreciated by geomorphologists [e.g., National Research Council, 2010]. For 

example, Roering [2008] used high-resolution topography to discriminate among 

hillslope soil transport laws whose differences in topographic expression cannot be 

captured by coarser elevation data. Similarly, Hilley and Arrowsmith [2008] used a 1 m 

LiDAR DEM to quantify hillslope and channel response to time-varying rock uplift in 

weak sedimentary rocks along the San Andreas Fault, highlighting the potential to extract 

tectonic information from erosional landscapes given sufficiently detailed topographic 

data. We collected ~500 km2 of high-resolution LiDAR topographic data in the San 

Gabriel Mountains, California (SGM) spanning a great diversity in landscape form and 

surface character in order to study the behavior of threshold landscapes in detail. 

Here we quantify hillslope response to tectonics across a threshold landscape 

using this 1 m resolution, LiDAR-derived DEM, high resolution (<0.1 m) panoramic 

photographs, and cosmogenic 10Be-derived catchment averaged erosion rates. We build 

on extensive previous work to investigate how hillslope bedrock exposure, slope angle 

distribution, and drainage density vary across a gradient in relief and erosion rate in the 

SGM that is expressed as a transition from soil mantled to increasingly rocky hillslopes. 

We describe and calibrate a new method of quantifying rock exposure using high 

resolution slope measurements; we calculate statistics from hillslope gradient 
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distributions at a range of spatial scales; and we use small (2-3 km2), representative 

catchments to compare the extent of fluvial versus colluvial valley networks and the 

consequent variations in drainage density. 

STUDY AREA: SETTING, EROSION RATES, AND ANALYSIS STRATEGY 

The San Gabriel Mountains present an excellent landscape for studying the 

transition from soil-mantled to rocky hillslopes. A large restraining bend in the San 

Andreas Fault produces a strong W-E gradient in uplift rate, erosion rate, and topographic 

relief, whereas climate and lithology do not vary much across the 100 km wide range 

[DiBiase et al., 2010; Peterson and Wesnousky, 1994; Spotila et al., 2002]. DiBiase et al. 

[2010] exploited this gradient in tectonic forcing to quantify the topographic controls on 

erosion rates determined from detrital cosmogenic 10Be concentrations. Catchment 

erosion rates averaged over millennial timescales range from 35-1100 m/Ma, and 

correlate with catchment-mean hillslope angle for slopes less than 30º and erosion rates 

less than ~300 m/Ma. For steeper slopes and more rapid erosion rates, mean hillslope 

angle (as measured on 30- and 10-meter USGS DEMs) in catchments 1-150 km2 in size 

appears to be decoupled from erosion rate, similar to studies of other steep landscapes 

[Binnie et al., 2007; Montgomery and Brandon, 2002; Norton et al., 2010; Ouimet et al., 

2009; Stock et al., 2009]. This transition from slope-dependent to effectively slope-

independent erosion rates agrees with predictions from non-linear soil transport models 

[Roering et al., 1999; Roering et al., 2007], and corresponds with the onset of mass 

wasting and rock exposure on hillslopes [Heimsath et al., in press]. Interestingly, in 

contrast to predictions of most hillslope evolution models [e.g., Tucker and Hancock, 

2010 and references within], rock exposure remains patchy and significant soil cover 

persists throughout the range despite the transition to threshold hillslopes [Heimsath et 
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al., in press]. What controls the extent of rock exposure and how does this affect the 

distribution of local slopes? Heimsath et al. [in press] show that soil production rates 

increase with catchment-averaged erosion rates in the SGM and that this effect plus an 

expected increase in the frequency of landslides with erosion rate can explain the 

persistence of significant soil cover at high erosion rates. They also suggested that rock 

exposure should track with local topographic roughness and that a roughness index based 

on local curvature increased broadly with erosion rate, as expected if rock exposure is 

due to the increasing frequency of landslides [Heimsath et al., in press]. We extend this 

work by developing a more robust metric of rock exposure and performing a systematic 

analysis of the response of hillslope morphology to differences in erosion rate. 

An important aspect of our study is the spatial correspondence of a 500 km2 

LiDAR-derived 1 m resolution DEM with an extensive soil production and catchment-

averaged erosion rate data set quantified from cosmogenic 10Be (CRN) concentrations in 

quartz from saprolite and alluvial sands [DiBiase et al., 2010; Heimsath et al., in press]. 

We supplement this dataset with 8 additional alluvial sand samples draining catchments 

ranging from 2-26 km2 (Table 3.1). We collected and processed these samples according 

to methods detailed by DiBiase et al. [2010]. To determine erosion rates, we 

implemented a pixel-by-pixel calculation of elevation and latitude production rate scaling 

factors calibrated by Dunai [2000], using a density of 2.6 g/cm3 and a sea level, high 

latitude production rate of 5.1 atoms/g/yr. 

To focus our DEM-based topographic analyses further, we selected a set of 20 

small catchments, averaging 2-3 km2 in size (Table 3.2). These catchments lie within 

both the coverage of our catchment-averaged erosion rates and of the high-resolution 

LiDAR DEM, are spatially homogeneous (i.e., no major knickpoints or large landslides), 
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and span a wide range of hillslope texture, from low relief and soil mantled to steep and 

rocky. Many of these catchments coincide directly with detrital CRN sample locations. 

For catchments with multiple or nested CRN rates, we used the nearest sample, or 

averaged the erosion rate. We combine field mapping with topographic analyses and this 

database of catchment-average erosion rates to determine (1) a robust topographic metric 

for the spatial extent of rock outcrop, (2) how rock exposure varies with erosion rate, (3) 

how the change in process from soil creep to rapid mass wasting and progressive 

exposure of rock outcrops affect the distribution of local slope angles, (4) how hillslope 

length (or drainage density) varies with erosion rate, and (5) how the drainage network is 

partitioned between fluvial channels and colluvial headwater channels thought to be 

scoured by debris-flows. 

ROCK EXPOSURE  

Steep hillslopes in the SGM and elsewhere are typically composed of a 

patchwork of colluvial soil, scree, and exposed rock. Soils tend to be coarse, thin (<20 

cm), and lack distinct horizons, but we adhere to the geomorphic definition of soil as a 

locally produced, mobile sediment layer [e.g., Heimsath et al., 1997]. In this framework, 

colluvial soils can include rockfall sources, but are dominated by clasts sourced from 

below. The emergence of bedrock outcrops signals that erosion locally exceeds soil 

production, potentially indicating a change in erosion process from steady to stochastic. 

To quantify how the spatial extent of this indicator changes across erosion rates we focus 

our mapping efforts on the hillslope distribution of in-place and exposed bedrock (as 

opposed to transportable rock debris). These exposures tend to blocky, fractured masses 

that range in scale from 0.1-100 m, but planar bedrock flush with the soil surface is not 

uncommon. Vertical cliff faces greater than 10 m are rare.  
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To quantify how bedrock exposure varies with erosion rate, we selected 11 

hillslopes that range in scale from 0.1 – 1 km2, have minimal vegetation (as a result of 

recent fires, for example), and that span a wide range of rockiness. For each hillslope, we 

used unobstructed views approximately surface-normal to construct large panoramic 

images (up to 3 x 108 pixels) with 1-10 cm spatial resolution. Using these panoramas, we 

selected eight 100 m x 100 m patches for detailed mapping of bedrock exposure (Figure 

3.1), with the remainder of the imagery used for spot checking our rock exposure metric 

defined below. These small patches were chosen to span a wide range of surface texture, 

from mostly soil mantled with occasional tors, to steep, rocky cliff faces and debris 

chutes. We chose a spatial scale of 100 m to ensure our mapping area was larger than the 

typical outcrop size (order 10 m), but small enough to allow for detailed and efficient 

mapping over a range of hillslopes. We mapped directly on the photographs, and 

projected the bedrock polygons to plan view maps using perspective hillshade surfaces 

from the 1 m LiDAR DEM (Figure 3.2). We define measured bedrock exposure as the 

plan-view ratio of mapped bedrock to total area. 

We calibrated our maps of rock exposure to a metric based on local slope 

(measured as the dip of a 3x3 m plane fitted at each point). We define this new metric, 

the Rock Exposure Index (REI), as the percentage of cells within a given area greater 

than a critical slope, S*. For each of our eight calibration patches, we calculated REI for 

S* equal to 40, 45, and 50º (Figure 3.3). Measured bedrock exposure increases 

monotonically with REI for each value of S*, though the strongest linear correlation is 

with a critical slope of 45º (R2 = 0.99). Field observations elucidate why S* = 45º is most 

effective in this landscape; soil-mantled slopes between 40-45º exist but are uncommon 

and we have not found soil-covered slopes or scree slopes in the SGM with slopes steeper 
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than 45º. On the other hand, bedrock outcrops gentler than 45º do occur, and likely 

contribute to the deviation of the regressed slope from 1:1 (Figure 3.3), but are 

uncommon. Field reconnaissance with classified slope maps reveals that nearly all in-

place bedrock exposed on hillslopes in the SGM is captured by our metric, and that false 

positives are minimal – a finding corroborated by the detailed analysis of high resolution 

panoramic photographs as described above. The robust linear correlation in Figure 3.3 

and our extensive field observations give us confidence that REI provides an effective 

measure of percent rock exposure in the SGM over spatial scales greater than 100m.  

SLOPE DISTRIBUTIONS  

To compare hillslope morphology at the catchment scale, we used the 20 small 

catchments that span a range of morphology from low gradient, smooth and soil mantled 

to steep, rocky and rugged terrain (Figure 3.1, Table 3.2). For each catchment, we 

generated a slope map from the 1 m LiDAR DEM, and extracted slope histograms 

normalized by the area analyzed (subset shown in Figure 3.4a). For comparison, we 

extracted the same information using the freely available 10m USGS NED DEM (Figure 

3.4b). While the catchment-mean slopes from both datasets are tightly correlated, Figure 

3.4 highlights the inadequacies of the USGS data to accurately capture the details of 

hillslope distributions. Using the 1 m LiDAR DEM, We determined the mean (Smean), 

mode (Smode), standard deviation (σS), and skewness for each slope distribution, and used 

the Rock Exposure Index described above to estimate the percentage of outcropping rock 

for each basin (red filled circles, Figure 3.5). Because Smode is sensitive to binning choice, 

we visually inspected histograms with a range of bin sizes to choose the smallest bin size 

that retains a smooth histogram (0.1º, Figure 3.4).We used the Pearson skewness 

coefficient, defined as skewness = 3( Smean - Smode)/σS. We find that for catchments with 
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Smean less than ~30º, little to no rock is exposed, modal slopes increase with mean slopes, 

and the skewness of the slope distribution decreases with increasing mean slope. For 

catchments with Smean greater than 30º, rock exposure and skewness increase strongly 

with mean slope, while modal slopes increase only slightly. The standard deviation of the 

slope distribution is weakly correlated with mean slope (Table 3.2, r2 = 0.45). 

Plotting mean slope against erosion rate reveals a similar relationship to that 

quantified by DiBiase et al. [2010], though mean slopes continue increasing rather than 

become invariant above 300 m/Ma (Figure 3.6a). This is likely due primarily to choosing 

small, representative basins rather than whole catchments varying widely in scale (up to 

150 km2). As discussed below, the higher resolution of the LiDAR DEM used here does 

not much affect estimates of mean slope. While mean slope increases slowly with erosion 

rate for steep catchments, rock exposure as measured by REI increases approximately 

linearly with erosion rate for steep (Smean > 30º) catchments in the SGM, though with 

considerable scatter (Figure 3.6b). Slowly eroding catchments (< 150 m/Ma) are nearly 

entirely soil mantled (REI < 0.1). The relationship shown in Figure 3.6b is consistent 

with predictions from a simple landslide model [Heimsath et al., in press] and 

observations by Norton et al. [2010]. 

We extended the above analysis to the entire landscape within the LiDAR 

coverage by breaking up the landscape into a 750 m x 750 m square grid (Figure 3.1) and 

computing the same slope statistics for each block, similar to the methodology used by 

Montgomery [2001], Wolinsky and Pratson [2005], and Korup [2008] for their coarser 

scale DEM analyses. We chose a scale of 750 m to mimic the lower end of existing 

detrital erosion rate catchments [DiBiase et al., 2010], capture full crest-swale hillslopes, 

and yet reveal patterns and variations in landscape texture. Results from this analysis 
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corroborate results from the 2-3 km2 catchments, demonstrating that these catchments are 

indeed representative of landscape morphology within the SGM (gray crosses, Figure 

3.5). 

DRAINAGE DENSITY 

For 9 of the 20 small catchments, we extracted the total valley network, 

identified the transition from colluvial to fluvial slope-area scaling, and calculated the 

colluvial, fluvial, and total drainage density. Objectively defining drainage density, 

especially across varied terrain, remains a fundamental challenge in geomorphology. We 

found that the most consistent method for mapping channel heads in both soil-mantled 

and rocky landscapes involved identifying zones where contributing area increased 

rapidly, as occurs at channel heads and along channel banks and can be directly resolved 

in high-resolution LiDAR DEMs. We resampled the 1 m LiDAR DEM to 4m, and 

smoothed the resampled DEM with a 3-cell radius moving average window to remove 

high-resolution topographic noise that tends to reflect transient processes (e.g., recent tree 

throw pits). Such smoothing is often necessary for topographic analysis using LiDAR 

data [e.g., Roering, 2008], and it should be noted that even resampled to 10 m, LiDAR 

topographic data is vastly superior to the 10 m USGS DEM, which is plagued by contour 

stepping and is essentially an upsampled 30 m dataset. From the smoothed LiDAR DEM, 

we generated a grid of total contributing area from Dinf derived flow directions using the 

software package TauDEM [Tarboton, 1997]. We then made a gradient map of the log of 

contributing area grid to highlight zones of rapid convergence. Using this map draped 

over the LiDAR shaded relief image, we hand-selected channel heads using pixels where 

the logarithm of contributing area increases by 10% or greater (Figure 3.7a). This 

resulted in 100-150 channel heads for each of the 9 catchments. We defined the channel 
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network as the downstream extent of drainage network below these channel heads. While 

this methodology is subjective, it agrees with qualitative assessments of landscape 

dissection (from shaded relief maps and field observation) better than a simple threshold 

area classification or curvature- and slope-area-based metrics that work in soil-mantled 

landscapes but not in steep landscapes dominated by planar hillslopes, rugged rock 

outcrops, and colluvial channels. Although close inspection of the resultant drainage 

networks suggests that total drainage density is underestimated in steep landscapes, this 

method provides a sufficient approximation of the total drainage density necessary for 

evaluating the relative extent of the colluvial and fluvial valley networks. 

We used the hand-picked channel heads to extract channel long profiles from the 

1 m LiDAR DEM at vertical intervals of 3 m using the freely available Profiler Toolbar 

for ArcMap and Matlab (http://www.geomorphtools.org). Log-log plots of downstream 

slope against contributing area show scaling relationships typically observed in 

mountainous landscapes (Figure 3.7b). Colluvial channel tips tend to have uniform slopes 

(horizontal line in slope-area space), while reaches downstream of ~105 m2 exhibit 

concave-up, Flint’s law scaling consistent with expectations for fluvial channels [Whipple 

and Tucker, 1999; Wobus et al., 2006]. This transition in channel profile shape is often 

cited as the topographic signature of the transition from debris-flow or colluvial to fluvial 

channels [Montgomery and Foufoula-Georgiou, 1993; Stock and Dietrich, 2003]. While 

we acknowledge that there is likely a gradual handover in process dominance that blurs 

the inflection in slope-area scaling [Stock and Dietrich, 2003; 2006], we choose the 

center of this kink to define a discrete scaling transition, as it is easily identifiable in most 

SGM channels, particularly for short tributaries feeding into larger channels. For each 
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hand-picked channel head, we identified this transition, and measured the average slope 

of each colluvial channel segment (Figure 3.7b).  

From this analysis, we quantify the following metrics for each catchment 

analyzed: total drainage density, defined as the total channel length divided by catchment 

area; fluvial drainage density, defined by the extent of the fluvial slope-area scaling; 

colluvial drainage density, equal to total minus fluvial drainage density; and mean 

colluvial slope, defined as the average slope of all colluvial channel segments weighted 

by length (Figure 3.8, Table 3.2). As noted above, because of uncertainties in defining the 

upper extent of the channel network in steep landscapes, total drainage density and thus 

colluvial drainage density is likely underestimated slightly. 

We find that fluvial drainage density decreases with increasing erosion rate, 

consistent with predictions by Howard [1997] and Tucker and Bras [1998] for threshold 

landscapes (Figure 3.9a). This decrease in fluvial drainage density, however, is offset by 

an increase in colluvial drainage density, such that the total valley density stays similar 

across the landscape (Figures 3.9b, c). It should be noted that although the total drainage 

density is highly sensitive to the choice of channel classification, our interpretation of 

colluvial channels growing downstream at the expense of the fluvial network is robust 

(Figure 3.8). 

The mean slope of colluvial channels is tightly correlated to, and slightly lower 

than, the mean catchment slope (Figure 3.10). Whether this is a signature of debris flow 

processes responding to increased base level fall, or simply a geometric necessity for 

convergent topography remains unclear. How distinct are the controls on mean hillslope 

angles and the mean slope of colluvial channels? Combined with the increase of colluvial 

drainage density, the increase of colluvial channel slopes with catchment averaged 
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erosion rate implies an increase of colluvial relief with erosion rate; the change in fluvial 

relief with erosion rate depends primarily on the scale of analysis, such that for small 

catchments fluvial relief actually decreases with increasing erosion rate due to a process 

transition from fluvial to debris flow incision. 

DISCUSSION 

LiDAR-derived slope distributions in the SGM vary systematically with mean 

slope, with notable changes in distribution shape occurring precisely at the point where 

we begin to see outcropping rock (mean slope ~30º, Figure 3.5c). Below mean slopes of 

28º, skewness and mean slope are inversely correlated, similar with findings by Wolinsky 

and Pratson [2005]. For mean slopes greater than 30º, modal slope becomes decoupled 

from mean slope and hovers between 35 and 37º (Figure 3.5b), which results in a strong 

positive relationship between skewness and mean slope. Wolinsky and Pratson [2005] 

used a simplified 2D landscape evolution model to argue that the transition from creep to 

failure dominated catchments is characterized by a decrease in skewness. Our data 

supports this interesting finding for soil-mantled landscapes with mean slopes less than 

30º. Additionally, they found a weak positive relationship between skewness and Smean at 

high mean slopes, which they attributed to glacial processes. While this may be a 

signature of glaciated terrain, the inflection point in Figure 3.5 is due not to glacial 

processes, which are absent in the SGM. Rather, we interpret this inflection as response 

to an increase in bedrock exposure on hillslopes as landslides become more common 

[e.g., Heimsath et al., in press]. In the SGM, modal slopes of 36-38º appear to be 

controlled by the angle-of-repose wedges of loose debris upslope of rocky outcrops, 

which we observed in the field (and from the 1 m DEM) to have a similar range in slope. 

Thus, as hillslopes become rockier, mean slopes increase, and slope distributions become 
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skewed increasingly towards higher slopes while the prevalence of loose debris holds 

modal slopes to values near the angle of repose (Figure 3.5a). The topographic signature 

of this transition from creep to failure emerges most clearly in 1 m data, where the onset 

of rocky hillslopes can be discerned clearly (Figure 3.5c). As highlighted by Figure 3.4b, 

slope distributions derived from 10 m resolution USGS data fail to reproduce important 

details present in steep catchments, and reinforce the importance of capturing fine scale 

texture for topographic analysis in mountainous topography. 

Why then does mean slope become insensitive to long term erosion rate, as 

shown in many studies [Binnie et al., 2007; Burbank et al., 1996; DiBiase et al., 2010; 

Montgomery and Brandon, 2002; Norton et al., 2010; Ouimet et al., 2009; Stock et al., 

2009]? For example, using 10 m resolution topography, DiBiase et al. [2010] argued that 

in the SGM, hillslopes fail to record changes in erosion rate above rates of ~300 m/Ma. 

Figure 3.6a suggests, however, that using 1 m LiDAR topography reveals a positive 

relationship between mean slope and erosion rate for “threshold” catchments. Although 

using higher resolution topographic data enables more precise measurements of hillslope 

angle, catchment mean slope depends primarily on the hillslope relief structure, which 

does not change significantly with measurement scale (as opposed to local measurements 

of slope and curvature). Rather, the positive relationship is likely due to the selection of 

small, homogeneous study catchments of similar size in the current analysis – there is a 

strong linear relationship between mean slope as measured with the LiDAR DEM and 

USGS 10 m DEM (r2 = 0.99 for catchments shown in Figure 3.4). The robust 

interrelations among topographic characteristics for these catchments strongly suggest 

that this positive relationship between mean slope and erosion rate is not an artifact of 

site selection bias. In contrast to typical assumptions about threshold hillslopes [e.g., 
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Burbank and Anderson, 2001], hillslopes in the SGM show systematic variation in 

morphology and texture with increasing mean slope across the full range of relief and 

erosion rates (Figure 3.7). Gabet et al. [2004] and Korup [2008] suggest that local 

variations in climate and/or rock strength control slope, rock exposure, and the surface 

expression of steep hillslopes. That is, as slopes steepen to the point where landsliding 

begins and rock becomes exposed, differences in meso-scale rock strength control the 

topographic expression of hillslopes, and decouple hillslope morphology from tectonic 

processes. While spatial variability in rock strength and local climate probably contribute 

to the significant scatter in the relationship between erosion rate and both REI and mean 

slope (Figure 3.6), the strong interrelationships observed between mean slope, rock 

exposure, and slope distributions demonstrates that steepland hillslopes are far more 

sensitive to tectonic processes than previously thought. 

One of the key linkages in the study of the climatic, tectonic, and geomorphic 

evolution of mountain ranges is the relationship between landscape relief and erosion 

rate. Total landscape relief for unglaciated terrain can be split into its components 

consisting of fluvial, colluvial, and hillslope relief [DiBiase et al., 2010; Whipple et al., 

1999]. While the fluvial network occupies only a small fraction of the areal extent of a 

typical mountainous landscape, it can account for more than 80% of the total relief 

structure – an observation that motivates much research into the details of bedrock river 

incision, and lies behind the strength of the channel steepness index as a topographic 

metric of erosion rate [DiBiase et al., 2010; Ouimet et al., 2009]. However, Figure 3.8 

implies that the relative contributions to total landscape relief vary with erosion rate as 

fluvial drainage density decreases. Hillslope relief can be quantified by multiplying mean 

hillslope length (estimated as one half the inverse of total drainage density and 
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approximately constant in the SGM) by the tangent of mean hillslope angle. Colluvial 

relief can be determined in a similar fashion using fluvial drainage density, and increases 

steadily with erosion rate because both the length and slope of colluvial channels increase 

with E (Figures 3.9b, 3.10). Lague and Davy [2003] note a similar increase in colluvial 

slopes with erosion rate in the Siwalik Hills of Nepal, and Stock and Dietrich [2003] note 

that a significant fraction of catchment relief in the Oregon Coast Range is occupied by 

colluvial channels. It appears then that partitioning relief into its individual process 

components becomes important for characterizing landscape response to external forcing. 

However, in the SGM, the total of hillslope and colluvial relief does not exceed 150 m, 

while local relief measured over a 5 km diameter window can be 1000 m or greater. 

Indeed, DiBiase et al. [2010] find a strong linear correlation between channel steepness 

and 5 km local relief in the SGM. Thus, while threshold hillslopes and colluvial channel 

networks encode tectonic information in their texture, extent, and slopes, it is the fluvial 

network that governs kilometer scale relief in steep landscapes. 

CONCLUSION 

Our results suggest that high-resolution LiDAR topography reveals complexity 

and textural details in threshold hillslopes not evident from coarser elevation data. We 

use detailed panoramic photographs to calibrate a Rock Exposure Index based on a slope 

map derived from a 1 m LiDAR-derived DEM. We find that the fraction of slopes greater 

than 45 degrees closely matches mapped bedrock exposure. While this index likely 

requires recalibration for use in other landscapes, it highlights the potential for using 

increasingly numerous LiDAR datasets to map the distribution of soil and bedrock at a 

previously unattainable scale. While previous studies suggest that hillslopes fail to record 

tectonic information in steep landscapes, we show strongly correlated, systematic 
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variations in rock exposure, mean slope, catchment slope skewness, and colluvial and 

fluvial drainage density as catchment averaged erosion rates increase from about 40 to 

about 1000 m/Ma. We find two distinct trends in hillslope gradient distributions. For 

mean slopes less than 30º, little rock is exposed, modal slopes track with mean slopes, 

and catchment slope skewness decreases with increasing mean slope. For mean slopes 

greater than 30º, rock exposure increases with mean slope, and the prevalence of angle-

of-repose debris slopes holds modal slopes at about 37º. As a result, skewness increases 

as mean slopes steepen up to 45º, which cannot be discerned in similar analysis of 10 m 

USGS topographic data. Our detailed analysis of the extent of the fluvial and colluvial 

channel network reveals that colluvial drainage density increases with average erosion 

rate at the expense of the fluvial network. This keeps total drainage density roughly 

constant and highlights the need for better quantifying the role of debris flow processes in 

threshold landscapes. 
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FIGURE CAPTIONS 

Figure 3.1. Shaded relief map of San Gabriel Mountains, California. Outlines of study 

catchments are shown as white lines, with labels corresponding to Table 3.2. Bold 

outlines indicate catchments used for drainage density analysis (Figure 3.8). White 

diamonds indicate sites where panoramic photos were used to calibrate the Rock 

Exposure Index. White grid highlights the block sampling scheme used for topographic 

analysis across the extent of the 1 m LiDAR DEM (dark gray). 

 

Figure 3.2. Example of rock exposure calibration from east slope of Mt. Baden-Powell. 

Top panel shows high-resolution (1 cm) photograph overlain by three mapping patches 

(black outlines, 1 hectare each). Purple polygons indicate mapped rock exposure, which 

is transferred to planview maps using shaded relief images tilted to the same perspective 

as the photograph (middle panel). The bottom panel highlights pixels with slope greater 

than 45 (red). 

 

Figure 3.3. Plot of percentage of slopes greater than S* against percent rock mapped from 

panoramic photographs. The best linear fit is for S* = 45, and we use this calibration to 

define our Rock Exposure Index. Dashed line indicates 1:1 relationship. 

 

Figure 3.4. Slope histograms generated from sample catchments using the 1 m LiDAR 

DEM (a) and the 10 m USGS DEM (b). Arrows indicate the mean slope for each of the 

catchments used (from left to right: basin 1, 17, 4, 16, 2, 15). While the mean slope 

generated from the two datasets is correlated, there are significant differences in 

histogram shape, including the sign of the skewness for steep catchments. 
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Figure 3.5. Slope statistics calculated using 2-3 km2 sample catchments (red circles) and 

across 750 m x 750 m square grid (gray crosses). Plotted against mean slope are modal 

slope (a), skewness (b), and Rock Exposure Index (c). Note the inflection at mean slopes 

of 30 present in all three plots, highlighting the onset of significant rock exposure and 

the prevalence of angle of repose debris wedges that hold modal slopes near 37. 

 

Figure 3.6. Plot of mean slope from 1m LiDAR (a) and Rock Exposure Index (b) against 

detrital CRN erosion rate for the 20 study catchments listed in Table 3.2. 

 

Figure 3.7. Channel network delineation for catchment 16 (Big Rock 3). Dinf contributing 

area shown over LiDAR shaded relief (a); black pixels highlight areas where contributing 

area increases rapidly (see text for details). White (colluvial) and gray (fluvial) lines show 

channel network resulting from hand-picked channel heads. Example slope-area plot and 

long profile (b) shown for bold channel, with star indicating transition from colluvial to 

fluvial scaling. 

 

Figure 3.8. Shaded relief maps of 9 study catchments used for drainage density analysis. 

Blue lines indicate channel network with fluvial slope-area scaling and red lines indicate 

colluvial channels. As erosion rates increase, colluvial drainage density increases at the 

expense of the fluvial network, while total drainage density remains roughly steady. 

 

Figure 3.9. Plots of drainage density against erosion rate for 9 catchments shown in 

Figure 3.8. Fluvial drainage density (a) is defined by channels following Flint’s law 
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scaling in slope-area space. Total drainage density (b) is determined from hand-picked 

channel heads in areas with rapid increase in contributing area (Figure 3.7). Colluvial 

drainage density (c) is calculated as the difference between total and fluvial drainage 

density. 

 

Figure 3.10. Mean colluvial slope plotted against catchment-mean slope for the 9 study 

catchments shown in Figure 3.8. Dashed line indicates 1:1 relationship. Colluvial slope is 

calculated as the slope of a linear fit to each colluvial channel, and the mean colluvial 

slope is the average of all such channels for each catchment, weighted by channel length. 
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Table 3.1. Catchment averaged erosion rates from cosmogenic    Be concentrations 10

Sample ID Eastinga Northinga
Area 
(km2)

10Be/SiO2 (x 103

atoms/g) N(z,I)b Erosion rate (m/Ma)c

SG160 429950 3795861 18.8 14.82 ± 2.44 4.16 907 ± 195 
SG0706 398469 3783358 17.3 10.79 ± 1.91 2.02 605 ± 137 
SG0708 399180 3794240 1.9 18.89 ± 1.99 2.54 435 ± 68 
SG0747 406053 3786078 7.3 11.81 ± 3.51 1.97 541 ± 188 
SG0748 406129 3785893 7.4 11.77 ± 2.61 1.97 541 ± 147 
SG0749 406010 3784661 6.1 10.53 ± 2.83 1.99 611 ± 195 
SG0818 391759 3790469 25.5 9.98 ± 1.33 2.19 711 ± 130 

a UTM coordinates (NAD 27 Datum) 
b Production rate latitude/elevation scaling factor (Dunai, 2000) 
c Erosion rates calculated using density of 2.6 g/cm3, attenuation length of 165 g/cm2, and high latitude 
production rate of 5.1 atoms/g/yr 
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CHAPTER 4 

THE INFLUENCE OF EROSION THRESHOLDS AND RUNOFF VARIABILITY ON 

THE RELATIONSHIPS AMONG TOPOGRAPHY, CLIMATE, AND EROSION RATE 

ABSTRACT 

Bedrock river incision occurs only during floods large enough to mobilize 

sediment and overcome substrate detachment thresholds. New data relating channel 

steepness and erosion rate provide the opportunity to evaluate the role of thresholds and 

discharge variability in landscape evolution. We augment an extensive erosion rate data 

set in the San Gabriel Mountains, CA with analysis of streamflow records and 

observations of channel width and sediment cover to evaluate the importance of climate 

and erosion thresholds on incision rates. We find the relationship between channel 

steepness and erosion rate in the San Gabriel Mountains can be explained using a simple 

stochastic-threshold incision model where the distribution of large floods follows an 

inverse power law, suggesting that details of incision mechanics, sediment effects, width 

adjustment, and debris flows do not significantly influence the steady-state relationship 

between steepness and erosion rate. Using parameters tuned to this case, we vary climate 

parameters to explore a range of behavior for the steepness-erosion relationship. Erosion 

is enhanced by both increases in mean runoff and discharge variability. We explore the 

implications of an empirical relationship between mean runoff and variability to test 

whether dry, variable climates can erode more efficiently than wet, stable climates. For 

channels with high thresholds or low steepness, modeled erosion rate peaks at a mean 

runoff of 200-400 mm/a. For much of the parameter space tested, erosion rates are 

predicted to be insensitive to increases in runoff above ~500mm/a, with important 

implications for the hypothesized influence of climate on tectonics.
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INTRODUCTION 

Understanding what controls erosion rate in mountainous terrain is critical to the 

study of a wide range of tectonic and geomorphic problems, such as exploring potential 

feedbacks between climate and uplift [Hilley and Strecker, 2004; Roe et al., 2008; Stolar 

et al., 2007; Whipple, 2009; Willett, 2010], determining the role of extreme versus 

frequent events in shaping the landscape [Hartshorn et al., 2002; Wolman, 1960], and 

distinguishing between climatic and tectonic signals in sedimentary basin deposits 

[Armitage et al., 2011; Paola et al., 1992]. Bedrock rivers define the relief structure of 

unglaciated ranges, set the pace of hillslope denudation, and transmit changes in 

baselevel throughout the landscape. Accordingly, bedrock rivers have been a focus of 

considerable research over the past decade [e.g., Cowie et al., 2008; Gasparini et al., 

2007; Tucker and Hancock, 2010; Whipple, 2004]. Existing models for bedrock river 

incision generally predict that erosion rate depends to first order on topographic relief, 

climate, lithology, and sediment caliber and flux; yet there is a dearth of field data that 

can be used to evaluate even the relative importance of these factors. For example, it was 

first recognized over a century ago that sediment in bedrock channels dually influences 

erosion by both providing tools to erode the bed and cover to protect it [Gilbert, 1877]. 

Sklar and Dietrich [1998; 2004] developed a bed-load saltation-abrasion model that 

accounted for these effects, and much recent work has focused on refining and calibrating 

the exact formulations for both “tools” and “cover” effects. These adjustments have been 

primarily theoretical [Lague, 2010; Lamb et al., 2008; Turowski, 2009], or based on 

laboratory flume experiments [Chatanantavet and Parker, 2008; Johnson and Whipple, 

2010; Sklar and Dietrich, 2001]. In addition, the potential influence of channel narrowing 

in response to increased incision rate has likewise been the focus of several theoretical 
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treatments [Finnegan et al., 2007; Finnegan et al., 2005; Stark, 2006; Turowski et al., 

2007; Turowski et al., 2009; Wobus et al., 2006b; Wobus et al., 2008; Yanites and Tucker, 

2010]. In this regard, theory is far ahead of observation; for example, there have been few 

field studies of the influence of tools and cover on bedrock incision rates [e.g., Cowie et 

al., 2008; Jansen, 2006; Jansen et al., 2011; Johnson et al., 2009; Tomkin et al., 2003; 

Valla et al., 2010]. Furthermore, the predicted steady-state channel profiles of 

detachment-limited and sediment-flux dependent channels mimic those of the simpler, 

transport-limited case, and only during transient conditions are the differences between 

these formulations observable [e.g., Attal et al., 2011; Gasparini et al., 2007; Valla et al., 

2010]. This result deemphasizes the influence of fully incorporating sediment flux 

relations into steady-state models. In this paper, we return to work done by Tucker and 

Bras [2000], Snyder et al. [2003b], Tucker [2004], and Lague et al. [2005], and argue that 

under steady-state conditions and spatially uniform erosion rate, the effects of dynamic 

width adjustment and sediment cover are subordinate to the role of erosion thresholds and 

discharge variability in controlling the relation between topography and bedrock channel 

incision rate.  Specifically our field data show no evidence that width and sediment cover 

differ as a function of erosion rate under steady-state, uniform rock uplift conditions and 

we demonstrate that a simple stochastic-threshold model [Lague et al., 2005] can explain 

the observed relationship between channel steepness and erosion rate without appeal to a 

tools/cover effect or dynamic channel width adjustment. 

A number of recent studies attempted to isolate the topographic controls on 

erosion rates by investigating landscapes where climate and lithology are nearly uniform. 

DiBiase et al. [2010] and Ouimet et al. [2009] used cosmogenic 10Be concentrations in 

active stream sediments to quantify millennial erosion rates for comparison with the 
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channel steepness index, a metric of fluvial relief that normalizes local channel slope for 

its expected dependence on drainage area [Wobus et al., 2006a]. They found that the 

channel steepness index increases monotonically with catchment-averaged erosion rate 

for equilibrium channels (those lacking distinct knickpoints) in the San Gabriel 

Mountains [DiBiase et al., 2010] and along the eastern margin of the Tibetan plateau 

[Ouimet et al., 2009]. The channel steepness index emerges as a robust metric of 

topographic relief that reflects the influence of tectonics, climate, and lithology and that 

can furthermore be directly tied to bedrock incision models. 

While the distinction between specific transport-limited, detachment-limited, and 

sediment-flux dependent models of fluvial incision is often only expressed during 

transient landscape response [Attal et al., 2011; Gasparini et al., 2007; Valla et al., 2010; 

Whipple and Tucker, 2002], the relief-erosion rate relationships for steady-state 

conditions determined in the above studies allows for an examination of first order 

controls on channel steepness common to all incision models. For example, channel 

width variation, the presence of erosion thresholds, and water discharge magnitude and 

variability will all influence the shape of the relationship between relief and landscape-

averaged erosion rate predicted by all variants of river incision models. Both Ouimet et 

al. [2009] and DiBiase et al. [2010] found a power-law relation between channel 

steepness and erosion rate: 

 ,Ek s   (4.1) 

where ks is the channel steepness index, E is long-term erosion rate, and ϕ ~ 0.5. The 

dimension of ks depends on the assumed reference concavity, which we fix to 0.45, 

resulting in units of m0.9[Wobus et al., 2006a]. In every studied region, channel steepness 

increases monotonically with increasing rates of base-level fall, as quantified by either 
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erosion or rock uplift rate [Cyr et al., 2010; DiBiase et al., 2010; Duvall et al., 2004; 

Harkins et al., 2007; Kirby and Whipple, 2001; Ouimet et al., 2009; Safran et al., 2005; 

Snyder et al., 2003b; Wobus et al., 2006a]. However, the magnitude and shape of this 

relationship varies widely among different field sites. For example, while a channel 

steepness index of 60 m0.9 is sufficient to erode at 10 mm/a in the Siwalik Hills of Nepal, 

one tenth that erosion rate requires a channel steepness of 500 m0.9 along the eastern 

margin of the Tibetan plateau [Ouimet et al., 2009; Wobus et al., 2006a]. Furthermore, 

the shape of this relationship varies; studies have fit data to equation (4.1) with ϕ ~0.25 

[Snyder et al., 2003b], ϕ ~0.5 [DiBiase et al., 2010; Harkins et al., 2007; Ouimet et al., 

2009], and ϕ ~ 1 [Kirby and Whipple, 2001; Safran et al., 2005; Wobus et al., 2006a]. For 

the cases where ϕ <1, the erosional efficiency of a channel, or its capacity to incise for a 

given slope, increases with erosion rate (or equivalently, slope).  

A non-linear (i.e., ϕ <1) relationship between channel steepness and erosion rate 

may arise for a number of reasons. For example, the relationship between erosion and bed 

shear stress may be non-linear, as in the case of suspended-load abrasion or plucking 

[Whipple et al., 2000]; bedrock exposure may change with channel slope, either 

decreasing available sediment cover or increasing the amount of tools available to abrade 

the bed [Sklar and Dietrich, 2006]; orographic precipitation gradients may intensify 

rainfall in steeper catchments [Roe et al., 2002]; channels may narrow as they steepen 

[Finnegan et al., 2005; Lavé and Avouac, 2001; Whittaker et al., 2007; Wobus et al., 

2006b; Yanites and Tucker, 2010]; or an erosion threshold may preferentially retard 

incision of low gradient channels [Lague et al., 2005; Snyder et al., 2003b; Tucker, 2004; 

Tucker and Bras, 2000]. Other factors, including the role of debris flows and varying bed 

roughness, may also contribute to steep channels becoming more efficient. The relative 
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importance of all the factors listed above on the relation between channel steepness and 

erosion rate is, however, unclear. 

A successful model must include at least thresholds of motion and/or detachment 

and a representation of the stochastic distribution of floods, as these are known to operate 

in all channels, whether transport- or detachment-limited [Lague et al., 2005; Sklar and 

Dietrich, 2006; Snyder et al., 2003b; Tucker, 2004]. In this contribution, we ask whether 

a simple model incorporating these factors alone can explain the range of behavior 

observed in relationships between channel steepness and erosion rate under steady-state 

and uniform rock uplift conditions. We begin with a review of the theoretical framework 

of published stochastic-threshold models that predict a non-linear relationship between 

channel steepness (ks) and erosion rate (E) consistent with equation (4.1), and then use 

these models and the erosion rate dataset of DiBiase et al. [2010], along with detailed 

field surveys and discharge records, to explore the controls on  in the San Gabriel 

Mountains of California. Finally, we combine the model of Lague et al. [2005] with an 

empirical relationship between discharge variability and mean runoff [Molnar et al., 

2006] to explore the influence of climate on erosion rate as a function of channel 

steepness and erosion threshold magnitude. 

THEORETICAL FRAMEWORK 

Overview of Stream Power Model 

We begin by reviewing the formulation of a generalized stream power incision 

model that incorporates both a threshold term and a stochastic distribution of flood 

discharges [Lague et al., 2005; Tucker and Bras, 2000]. As we will discuss later, graded 

rivers in the San Gabriel Mountains are actively incising bedrock (at rates from 0.1 – 1 

mm/yr), but tend to be mantled with a thin layer of alluvium. Here we follow Lague et al. 
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[2005] in employing a detachment-limited model for simplicity. We acknowledge this as 

a limitation, but emphasize that at steady state under uniform rock uplift rate conditions 

the relationship between ks and E predicted by detachment-limited, transport-limited, and 

sediment-flux dependent incision models are broadly similar, as shown by Whipple and 

Tucker [2002],  Tucker [2004], Sklar and Dietrich [2006], and Gasparini et al. [2007]. In 

particular, Tucker [2004] showed that when the effects of thresholds for detachment or 

sediment mobilization and a stochastic distribution of floods are incorporated, end 

member detachment- and transport-limited models predict nearly identical steady-state 

relationships between ks and E (see Figures 7a and 7c in [Tucker, 2004]); we surmise that 

steady-state relationships among topography, thresholds, mean runoff, runoff variability, 

and erosion rate predicted by a detachment-limited model, as used here, will be broadly 

applicable. Thus, we will adopt the commonly used stream power model of detachment-

limited channel incision, which postulates that instantaneous vertical channel incision I is 

proportional to a power law of bed shear stress , commonly approximated as 

 ),( a
c

a
ekI    (4.2) 

where ke and a are parameters that depend on substrate properties and erosion process, 

respectively [Howard and Kerby, 1983; Lague et al., 2005; Snyder et al., 2003b; Tucker, 

2004]. The threshold term τc represents a critical shear stress which must be overcome 

before erosion occurs. At a minimum, τc must be large enough to mobilize detached 

particles or bed load material, and may be much larger in channels where plucking of 

fractured blocks is the dominant incision process [Snyder et al., 2003b]. 

Next we must describe how shear stress depends on water discharge both due to 

at-a-station variability and downstream increases. A common formulation involves 

combining a steady, uniform flow approximation for a wide channel (i.e., negligible bank 
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friction) with a frictional resistance relationship (e.g., Manning, Darcy-Weisbach 

equations), to express bed shear stress as 

 ,


 S
w

Q
kt 






  (4.3) 

where kt is a constant that incorporates gravitational and frictional terms, Q is water 

discharge, w is channel width, S is water surface slope (usually approximated by the 

channel bed gradient), and α and β are exponents that depend on the frictional 

relationship used (for a Manning relation, α = 3/5 and β = 7/10, and for a Darcy-

Weisbach relation, α = β = 2/3; see Howard [1994] for full derivation). To close equation 

(4.3), we must explicitly model how channel width varies across the landscape.  In lieu of 

a more rigorous and direct treatment, bedrock channel width is often modeled using 

classical hydraulic geometry relations originally developed for alluvial rivers and found 

to be good descriptors in bedrock rivers as well [e.g., Montgomery and Gran, 2001; Wohl 

and David, 2008] 
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where the subscript b indicates a reference condition such as mean daily or bankfull flow, 

and kw, ωb, and ωs are typically empirically derived constants for downstream (equation 

(4a)) and at-a-station (equation (4.4b)) variations in channel width [Tucker, 2004]).  

Combining equations (4.3) and (4.4), we can write bed shear stress as: 
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with the dependence on water discharge partitioned into at-a-station variation (Q/Qb term) 

and downstream variation (Qb term). Although ωs is defined in equation (4.4b) as a 

function of channel cross-sectional geometry alone [e.g., Turowski et al., 2008], it enters 

the bedrock channel erosion problem through its influence on the exponent on the at-a-

station discharge variability term (α(1- ωs)) after being combined with a resistance 

relationship that ignores bank friction.  We show in Appendix A that although ωs, as 

defined in equation (4.4b), varies significantly as a function of channel cross-sectional 

geometry [Turowski et al., 2008], tradeoffs between the increase in width with discharge 

in channels with gentle banks, and an increase in sidewall friction with discharge in 

channels with steep banks, conspire to hold the at-a-station discharge exponent (α(1- ωs))  

approximately constant at ~0.5 under a wide range of channel cross-sectional forms (see 

Appendix A).  Given that 0.6 < α < 0.7 holds for standard resistance relationships and the 

cross-sectional flow model we use in Appendix A [Kean and Smith, 2004], we implement 

this constraint in our analyses by holding α fixed at 2/3 and ωs fixed at 0.25, but 

acknowledge that this aspect of the problem merits further work. 

In many landscapes, it is reasonable to substitute a power-law relationship 

between a characteristic discharge (such as the mean daily or bankfull) and upstream 

drainage area A, such that 

 ,c
bb ARQ   (4.6) 

where Rb and c are again empirically derived constants. We define this characteristic 

discharge based solely on streamflow data, rather than channel form, and for our case in 

the San Gabriel Mountains, we find that c ~ 1, for both mean daily discharges (see 
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section 3.2) and for decadal maximum flood events [Lavé and Burbank, 2004]. Thus Rb 

can be thought of as a characteristic runoff with dimensions of L/T [Tucker, 2004]. We 

use mean daily discharge as the reference discharge Qb in all our analyses and thus Rb 

represents mean daily runoff. Finally, we can use a representation of the channel 

steepness index consistent with steady-state channels and the stream power river incision 

model, 

 ,/ nm
s SAk    (4.7) 

where m = αa(1-ωb) and n = βa to incorporate the topographic variables into a single 

term. The channel steepness index ks, can be readily derived from digital elevation 

models, and for steady state landscapes serves as a scale-independent metric of fluvial 

relief [DiBiase et al., 2010; Wobus et al., 2006a]. Using equations (4.5) and (4.7), 

instantaneous channel incision (equation (4.2)) can be written as 
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where K = kekt
akw

-αaRb
m, γ = αa(1-ωs), and Ψ = keτc

a. Equation (4.8) represents the 

simplest formulation that, when combined with a probability distribution of flood 

discharges, allows for the study of climatic influences on fluvial incision as a function of 

topography. Versions of equation (4.8) are used by Tucker and Bras [2000], Snyder et al. 

[2003b], Tucker [2004], and Lague et al. [2005]. 

Discharge Variability and Long-term Erosion Rate 

For a given channel reach, equation (4.8) predicts a power-law relationship 

between instantaneous bedrock incision rate and water discharge. A similar power-law 

relationship is commonly used to model bed-load transport [e.g., Bagnold, 1977; Meyer-
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Peter and Müller, 1948]. Wolman and Miller [1960] combined such a relationship with 

an assumed log-normal distribution of annual peak flows to introduce the concept of an 

effective discharge that defines channel morphology; small flows do not perform enough 

work, and large floods are too infrequent. Often the effective discharge in alluvial 

channels is assumed to be roughly equivalent to the bankfull flood (recurrence interval 

~1-2 years). This conceptual framework has transferred to studies of bedrock rivers, 

where in most studies Q in equation (4.7) is set to a reference discharge Qb, and c is 

assumed to be insignificant during such flows. This gives the familiar expression for 

long-term channel erosion E [Whipple and Tucker, 1999], 

 .' nm SAKE   (4.9) 

If using the assumption of Q = Qb, as done in the standard stream power model, the 

dynamic impact of including the threshold term Ψ becomes absorbed into the constant 

K’. However, in order to appreciate the influence of the threshold term Ψ, equation (8) 

must be paired with a model of temporal variability of flood discharge because the 

fraction of time that flows exceed the threshold is a key factor in long-term erosion 

[Lague et al., 2005; Snyder et al., 2003b; Tucker, 2004]. 

Tucker and Bras [2000], Tucker [2004], and Lague et al. [2005] instead define Q 

as a probability density function pdf(Q), and show that the long-term erosion rate E is 

given by the product of instantaneous incision rate for a given discharge and the 

probability of a flood of that magnitude, integrated over the full distribution of floods, 
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where Qc is the discharge needed to overcome the threshold shear stress and Qm is the 

maximum discharge considered. Lague et al. [2005] showed that for most of parameter 

space (and for all cases considered in this study), the integral in equation (4.10) 

converges quickly and the choice of Qm is insignificant. Qc can be determined by setting I 

in equation (4.8) to zero and solving for Q. Importantly, Qc varies with the channel 

steepness index, ks (gentler channels require larger flows to overcome erosion 

thresholds), introducing complexity to the relationship between E and ks. The nature of 

the resulting relationship depends on the nature of the probability density function pdf(Q) 

in equation (4.10). Tucker and Bras [2000] and Tucker [2004] used the Poisson pulse 

storm rainfall model of Eagleson [1978], along with a simple hydrologic model (spatially 

uniform Horton overland flow), which together result in an exponential distribution of 

discharges (Figure 4.1a). In contrast, Lague et al. [2005] modeled mean daily discharge 

following Crave and Davy [2001], and define the pdf of discharge normalized by the 

mean daily discharge (Q/Qb = Q*) as 
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where Γ is the gamma function, and k is a variability parameter that varies from 0.1 (high 

variability) to 3 (low variability). Equation (4.11) is an inverse gamma distribution with a 

scale parameter k and shape parameter (k+1) [Evans et al., 2000]. Essentially, the inverse 

gamma distribution combines an exponential tail for low discharges with a power-law 

distribution of large floods, where the tail of large events is heavy relative to an 

exponential distribution (Figure 4.1b). To avoid binning issues when comparing actual 

discharge data (section 3.2), we plot the complementary cumulative distribution function 

(ccdf) instead of equation (4.11), which is defined as 
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where Γ(a,x) is the regularized gamma function  

 

   




x
ya dyey

a
xa

0

1

)(

1
,

. (4.13) 

While the Poisson pulse model used by Tucker and Bras [2000] and Tucker 

[2004] has been shown to match rainfall data well using independent exponential 

distributions of storm interval, duration, and intensity, the conversion from rainfall to 

discharge is of course more complex than represented in the simplified hydrologic model 

used by Tucker and Bras [2000]; adequately modeling runoff distributions based on 

rainfall distributions requires more sophisticated treatment of catchment-scale infiltration, 

evapo-transpiration, soil moisture response, non-linear runoff processes, and flood 

routing through the channel network. Alternatively, stream gage records can be studied 

directly. Turcotte and Greene [1993] suggested that peak flow distributions follow a 

power-law scaling, where the ratio of the ten-year peak discharge to the one-year peak 

discharge defines a variability factor that depends on climate. Malamud and Turcotte 

[2006] tested the predictions of a power-law flood scaling and found good agreement 

with paleo-flood records on the Colorado River in the Grand Canyon. Molnar et al. 

[2006] expanded on the analysis of Turcotte and Greene [1993] to incorporate gaging 

stations across the United States, and analyzed both peak flow records and records of 

mean daily discharge, finding that both sets of records tend to have power-law tails for 

the range of climate zones and catchment sizes tested. Indeed, only 3% of the 144 gaging 

stations analyzed by Molnar et al. [2006] exhibited exponential tails. Lague et al. [2005] 

also defined the slope of the power-law tail, expressed as 2 + k in equation (4.11), as a 
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climate variability factor analogous to that developed by Turcotte and Greene [1993]. 

Following these studies, we assume that equation (4.11) is broadly applicable for upland 

catchments, as supported by our own analyses of discharge records in the San Gabriel 

Mountains (section 3.2). Although not intuitively obvious, the difference between an 

exponential and power-law tail to the discharge probability distribution significantly 

influences the predicted relation between channel steepness and erosion rate, as 

developed by Tucker [2004] (exponential tail) and Lague et al. [2005] (power-law tail) 

and illustrated below. 

APPLICATION: SAN GABRIEL MOUNTAINS 

We use the San Gabriel Mountains of California to evaluate the controls on 

steady-state channel steepness using (1) an extensive dataset of catchment-averaged 

cosmogenic radionuclide (CRN) derived erosion rates [DiBiase et al., 2010], (2) an 

analysis of long time series of hydrologic data, and (3) detailed field observations of 

channel morphology and bed state. 

Prior Work 

The San Gabriel Mountains (SGM) lie along a large restraining bend in the San 

Andreas Fault, just north of Los Angeles, California (Figure 4.2). A series of north-

dipping thrust faults along the southern range front accommodates most of the 

convergence, and sets up a strong W-E gradient in uplift rate and topographic relief 

[Spotila et al., 2002]. Additionally, this gradient in uplift rate has been sustained long 

enough such that we can investigate a number of moderately sized (~1-100 km2) 

catchments developed in similar lithologies and experiencing similar climate forcing that 

have adjusted to differing rates of relative base level fall. DiBiase et al. [2010] measured 

in situ produced cosmogenic 10Be concentrations in active stream sands from 50 basins 
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spanning the range to quantify millennial erosion rates ranging from 35-1100 m/Ma 

(Figure 4.2). The basins range in size from 0.1-175 km2, and were chosen to sample a 

wide range of relief. For each basin larger than 3 km2, a representative channel steepness 

index was determined from freely available 10 m resolution digital elevation models 

following the methodology of Ouimet et al. [2009] and Wobus et al. [2006a]. Channel 

steepness ranges from 30-180 m0.9, and increases monotonically with erosion rate 

[DiBiase et al., 2010]. Mean annual precipitation (MAP) varies with elevation from 500 

mm/a in the Los Angeles basin to over 1000 mm/a along the range crest, and decreases 

again to 200 mm/a in the rain shadow to the north; MAP in sampled catchments spans a 

range of 600-1000 mm/a. The range lithology is composed mainly of crystalline 

basement rocks and Mesozoic granitic intrusions, and rock type appears to play a minor 

role, with no measureable difference between end-member cases of anorthosite, schist, 

and granite expressed in the ks-E relationship [DiBiase et al., 2010]. 

Climate and Discharge Records 

Streamflow in the San Gabriel Mountains has historically been heavily 

monitored. While only two basins are actively gaged by the USGS at present (Arroyo 

Seco and Big Rock Creek), twentieth century records for dozens more can be easily 

obtained. For this study, we selected 9 gages that have records spanning at least 40 years, 

and have minimal anthropogenic impact (e.g. dams, diversions) (Table 4.1). Mean daily 

discharge scales linearly with drainage area across 3 orders of magnitude, corresponding 

to a mean annual runoff of ~280 mm/a, about 30% of average rainfall as expected for 

losses to infiltration and evapotranspiration (Figure 4.3). 

To test the applicability of the inverse gamma distribution (equations (4.11-4.12)) 

[Crave and Davy, 2001; Lague et al., 2005], we normalized flows by the mean of all 
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daily flows for each respective gage, and generated a rank-frequency plot of all values 

(equivalent to the ccdf) [Newman, 2005]. Equation (4.12) fits the SGM discharge data 

well using a variability factor k ~0.4-0.6 (Figure 4.4) – much better than the best-fit 

exponential distribution, but not perfectly. As shown in Figure 4.4, there is a slight 

separation between two groups of gages; small catchments along the southern range front 

appear to experience slightly more frequent moderate floods (10 < Q* < 100). We 

emphasize that while the inverse gamma distribution, with only one free parameter (k), 

cannot capture such subtle differences between individual gages, most of the discharge 

data lie within k = 0.5 ± 0.1, and we make the assumption that flood distributions across 

the SGM are similar and adequately described by this range of k. For comparison with the 

approach of Tucker [2004], we also used hourly rainfall station data in the SGM to 

calibrate the Poisson pulse model of Eagleson [1978] similar to DiBiase et al. [2010]. We 

assume spatially uniform Horton overland flow, and scale mean runoff to equal 280 

mm/a for direct comparison to discharge data. Specific model parameters are given in 

Table 4.2. 

Channel Width and Sediment Cover Surveys 

We conducted field surveys of over 40 km of river channels to produce an 

extensive dataset detailing the distribution of channel width and sediment cover across 

the range. Many, but not all of these reaches lie within basins sampled for detrital CRN-

derived erosion rates. For the context of this paper, we focus on channel segments that 

can be considered equilibrated; that is, the long profile lacks prominent knickpoints in or 

above the surveyed section, and the upstream extent of the drainage network can be fit 

with a single channel steepness index and concavity [Wobus et al., 2006a]. We 
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characterize channel segments as either low relief (ks = 30-100) or high relief (ks = 100-

180). 

For each of our field surveys, we used a laser rangefinder and electronic data 

logger to record measurements of bankfull channel width and percent exposed bedrock 

(estimated visually to the nearest 10%) in the channel bed at intervals of approximately 

20-40 m, over channel lengths ranging from 700 m to 4 km. We measured channel width 

using a laser rangefinder, based on vegetation lines and slope breaks in channel cross 

sections. We supplemented our surveys with point measurements of channel width taken 

along streams we did not survey in detail. In order to avoid biasing width measurements 

toward the high-resolution surveys, we averaged the logarithm of width and drainage area 

between major tributary junctions for each survey. Figure 4.5 shows the results of our 

width measurements plotted against upstream drainage area. The widths of both high and 

low relief channel reaches follow similar scaling with drainage area, and furthermore lie 

on the same general trend as a world-wide compilation of similar data for bedrock 

channels [Whipple, 2004; Wohl and David, 2008]. While some authors argue for channel 

narrowing as a means to increase erosional efficiency in steep landscapes [Duvall et al., 

2004; Whittaker et al., 2007; Yanites and Tucker, 2010], this appears to not be the case 

for graded streams in the San Gabriel Mountains, consistent with earlier findings in the 

King Range, CA [Snyder et al., 2003a]. As discussed by Whipple [2004] and consistent 

with analysis by Yanites and Tucker [2010] and observations by Whittaker et al. [2007], 

channel width response is likely strongest during transient adjustment and where rock 

uplift is localized along a downstream segment of a river profile [e.g., Lavé and Avouac, 

2001]. Thus we can rule out channel width as a cause for increasing erosional efficiency 
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with relief for steady-state channels in the San Gabriel Mountains, and possibly in 

general. 

At each survey point, we also estimated the percent of exposed bedrock on the 

channel bed. As shown in Figure 4.6, bare bedrock channels are rare in the San Gabriel 

Mountains, and the mean of all reaches, both high and low uplift, is ~4% exposure. Most 

importantly, while our observations of bed conditions at low flow are unlikely to reflect 

conditions during floods, we see no trend in percent bed exposure across the range. 

Additionally, many range front channels grade smoothly into fan deposits, suggesting 

that the shear stress exponent for detachment-limited incision is similar to that of 

transport-limited rivers (n~1 for bedload transport [Meyer-Peter and Müller, 1948]). 

Moreover, as shown by Whipple and Tucker (2002), if the shear stress exponent for 

detachment-limited incision is greater than that for bedload transport (n > 1), channels 

must become increasingly buried in sediment as relief and erosion rate increase – a 

process that will tend to force channels into a transport-limited condition in which n ~ 1 

pertains. Because of this tendency and because our observations do not support an 

increase in the degree of bed cover with erosion rate, we can rule out non-linear bedrock 

incision processes (n > 1) as a means of increasing erosional efficiency as relief increases 

in the San Gabriel Mountains. 

Lastly, while we did not quantify the threshold shear stress in the SGM directly, 

we can use a Shields criterion to approximate a minimum required shear stress based on 

that needed to mobilize the alluvial bed material, 

   5003.0 Dwsc   , (4.14) 

where 0.03 is a conservative estimate of the critical Shields stress for initiation of motion 

in mixed grain-size beds [Buffington and Montgomery, 1997], D50 is the median grain 
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size, and ρs and ρw are sediment (~2700 kg/m3) and water (1000 kg/m3) densities, 

respectively. We conducted pebble counts of bed surface material at 44 locations across 

the SGM, consisting of ~100 grains each. Additionally, we estimated median grain size 

by eye along each of our channel surveys, with periodic calibration by more detailed 

point counts. We find that at the reach scale (ca. 100 m), D50 varies widely, from 22 – 

180 mm (Figure 4.6 inset, gray lines). There is no systematic variation with relief. For 

simplicity, we assume a D50 of 90 mm, corresponding to τc = 45 Pa, based on the median 

of all point counts combined (Figure 4.6 inset, black line), and consistent with the median 

of all estimated values from channel surveys (not shown). 

Comparing Model Predictions and Data in the SGM 

Using the above field observations and discharge records as constraints, we tuned 

the model of Lague et al. [2005] (combination of equations (4.8), (4.10), and (4.11)) to fit 

the relationship between channel steepness and erosion rate quantified in the SGM by 

DiBiase et al. [2010]. While Tucker [2004] and  Lague et al. [2005] provided analytical 

solutions to end-member cases for exponential and inverse gamma flood distributions, 

respectively, we opted to numerically integrate equation (4.10) using an adaptive 

Simpson’s method [Gander and Gautschi, 2000] in all our analyses to smoothly capture 

the full range of model behavior. We used a generalized Darcy-Weisbach friction relation 

(α = β = 2/3; kt = ρwg2/3Cf
1/3) with non-dimensional friction coefficient Cf = 0.01, 

following Tucker [2004]. As mentioned above, we find no evidence that the degree of 

rock exposure varies with channel steepness or erosion rate in steady-state channels in the 

SGM, so we make the assumption that the shear stress exponent is equal to that of 

common bedload transport formulae [e.g., Meyer-Peter and Müller, 1948], giving n = aβ 

= 1 in equation (4.8).  
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Assumptions regarding channel width scaling are somewhat more complicated. 

In order to equate the channel steepness index measured from field data (reference 

concavity = 0.45) with that in equation (4.8), we must fix the ratio m/n to 0.45, which 

implies a width-discharge exponent value of 0.55 (ωb in equation (4.4a)). The regressed 

value of ωb from SGM channels is much lower (Figure 4.5), so for internal consistency 

here we determine kw by regressing the width data in the SGM using a fixed value of ωb = 

0.55. Although a bit awkward and suggestive that the controls on channel profile 

concavity in the SGM are not fully understood [Snyder et al., 2003a], these adjustments 

have little impact because the width scaling holds constant across the landscape (Figure 

4.5). Only a systematic change in width-area scaling with channel steepness will 

influence the shape of the ks-E relationship. We fix ωs to 0.25, based on general results 

from a 2D cross-sectional flow model as mentioned earlier (Appendix A; Figures A1, 

A2). As noted earlier, mean runoff and discharge variability (Rb = 280 mm/a; k = 0.5 ± 

0.1) are calibrated against USGS gaging records, and we use field estimates of D50 to 

determine a value of 45 Pa for τc.   

Given these constraints, there is only one free parameter, ke, a measure of rock 

strength, which we tune to fit the model to our data, minimizing the RMS error in erosion 

rate for each of our CRN data points (black line, Figure 4.7). We also show two fits 

(dashed lines, Figure 7) reflecting the range of uncertainty in k (0.4-0.6) and the quantity 

α(1- ωs) (0.45-0.55, Figure A2). To highlight the influence of the choice of pdf(Q) in 

equation (4.10), we also fit the Tucker [2004] model to the SGM data using a similar 

approach (gray line, Figure 4.7). We use Poisson rainfall parameters as described above, 

and hold all other parameters equal to the Lague et al. [2005] case except for ke, which 

we again vary to minimize RMS error in erosion rate. While both the Tucker [2004] and 
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the Lague et al. [2005] model capture the rollover of the ks-E relationship at high erosion 

rates, the Tucker [2004] model deviates from a power law at low erosion rates, precisely 

where the influence of an erosion threshold is most important (Figure 7 inset).  

Discussion of Model Application to the SGM 

Whereas the Lague et al. [2005] model explains much of the variability in the 

SGM data, there are two notable deviations. Channels with ks < 40 erode more rapidly 

than predicted by the model, which by definition assumes that hillslope erosion is set by 

the channel incision rate (i.e., steady-state) and thus that erosion rate goes to zero for ks = 

0. One plausible explanaton is that these slowly eroding, low-relief catchments are not in 

steady state, but rather in a state of slowly declining relief. Under such a scenario it 

would be likely that catchment-mean erosion rate would exceed the channel incision rate 

– hillslope erosion will continue as long as some local relief persists even where channel 

incision has ceased. A second misfit is noted in that rapidly eroding catchments (E > 500 

m/Ma) tend to be less steep than predicted (Figure 4.7). Potential reasons for this misfit 

include an increased influence of debris flows in the high relief landscapes of the SGM, 

inaccuracies of the detrital CRN method at high erosion rates, changes in bed roughness, 

or differences in the flood frequency probability distribution not resolved by equation 

(4.11).  

The Tucker [2004] model appears to better capture the behavior of rapidly 

eroding catchments, but at the cost of significant misfit at low erosion rates due to the 

thinner tail of the exponential flood distribution. Whereas the considerable scatter in the 

SGM erosion rate data prevents discriminating between the Tucker [2004] and Lague et 

al. [2005] models, we note that the power-law tail exhibited by SGM discharge data 

strongly supports the Lague et al. [2005] model. Indeed, it is at low erosion rates where 
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differences in the tail of the flood distribution becomes most important, as the critical 

flow needed to overcome the erosion threshold, Qc, increases with decreasing channel 

steepness because deeper flows are required to exceed the threshold shear stress in 

channels with gentler slopes. It is therefore quite satisfying that the model that includes 

the fatter power-law tail to the flood distribution fits the data at low to moderate channel 

steepness considerably better (Figure 4.7). The ability of this simple model, which 

includes no treatment of bed cover and dynamic width adjustment, to explain the shape of 

the ks-E relationship reinforces our field observations that indicate that these factors are 

not important in the SGM.   

We speculate, but cannot yet definitively demonstrate, that this finding has 

general implications and is not unique to the SGM – that under steady-state conditions 

and uniform rock uplift rate in general, the effects of bed cover variations and dynamic 

width adjustment tend to be negligible compared to the effects of a probability 

distribution of floods acting in the presence of significant detachment or mobilization 

thresholds. If true, this implies that much can be learned about the relationships among 

climate, topography and erosion rate from further study of the behavior of the stochastic-

threshold model of Lague et al. [2005], which we undertake in the following section. 

APPLICATION: CLIMATIC CONTROLS ON THE RELIEF-EROSION RATE 

RELATIONSHIP 

General Model Behavior 

The relationship between steady state erosion rate and relief (as quantified by the 

channel steepness index, ks) is both a critical input for landscape evolution and coupled 

climate-landscape-tectonics models, and directly measureable. With the widespread 

availability of digital elevation models, and an increasing number of studies quantifying 
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catchment-averaged erosion rates using cosmogenic radionuclides, we are able to begin 

untangling the first-order effects of topography, climate, and rock strength in controlling 

bedrock incision rate. In the previous section, we showed that a non-linear (ϕ~ 0.5; 

equation (4.1)) relationship between erosion rate and channel steepness in the San 

Gabriel Mountains could be explained well using the stochastic-threshold model of 

Lague et al. [2005]. Other regions with similar data suggest that ϕ ranges from 0.25 to 1 

[Kirby and Whipple, 2001; Ouimet et al., 2009; Snyder et al., 2003b; Wobus et al., 

2006a]. In this section, we will summarize some of the key points of Lague et al. [2005] 

within the context provided by the San Gabriel Mountains example. We focus here on the 

controls on the shape of the relationship between channel steepness and erosion rate – 

differences that are most clearly manifest by the power-law exponent (ϕ) of equation 

(4.1). The power-law form of the predicted relationship is directly a result of combing a 

power-law relationship between I and Q* (equation (4.8)) with a power-law distribution 

of floods (equation (4.11)). Following a discussion of the controls on the power-law 

exponent (ϕ), we explore how changing climate mean and variability influence the 

relationship between channel steepness and erosion rate. 

A convenient way to show the variations in the relationship between channel 

steepness and erosion rate is to plot the power-law exponent, , against erosion rate 

normalized by the threshold term Ψ(Figure 4.8). As discussed by Lague et al. [2005], 

there are 3 regimes expressed in Figure 4.8, depending on the relative importance of the 

threshold parameter Ψ (or equivalently, the return time of the critical discharge, Q*c). At 

high incision rate (or negligible threshold, Regime III), the relation approaches the 

approximation of equation (4.9), and ks is proportional to E1/n (equation 1 with ϕ = 1/n), 

where n reflects process mechanics [Whipple et al., 2000], for any flood distribution. On 
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the other hand, when the threshold is large compared to the incision rate (Regime I), the 

exponent  in equation (4.1) is independent of n (or a in equation (4.2) and thus erosion 

process mechanics), and rather depends primarily on k (discharge variability) and the at-

a-station shear stress-discharge exponent,  α(1-s), in equation (4.5)) according to the 

following relation [Lague et al., 2005]: 

 .
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where β is from the flow resistance relationship and takes values of 7/10 for the Manning 

relation and 2/3 for the generalized Darcy-Weisbach relation (equation (4.3)). Between 

the end-member cases of Regime I and III lies a transitional zone (Regime II). The San 

Gabriel Mountains lie entirely within the threshold-dominated regime, with the critical 

flow return time [Lague et al., 2005] ranging from 500 days (low relief) to 50 days (high 

relief) (Figure 4.8). Thus uncertainty in most parameters (especially τc) can be subsumed 

into the high uncertainty in ke, which we varied to fit the model to the SGM data. The 

predicted ϕ of 0.5 for the SGM (from equation (4.15)) matches well with a simple error-

weighted least squares power-law fit to the erosion rate data, which results in a fitted 

exponent of 0.48 (95% confidence range = 0.36-0.75; R2 = 0.64).  

We use this well-constrained case to fix all parameters except mean runoff (kq) 

and climate variability (k) to explore the role of climate alone in controlling incision 

rates. Figure 4.9a shows the effect of changing mean runoff (Rb) by an order of 

magnitude in either direction from the SGM case. As Rb does not factor into ϕ or Ψ, the 

shape of the ks-E relationship stays the same; however, increasing mean runoff increases 

erosion rate for a given channel steepness and decreasing mean runoff does the opposite 

[Lague et al., 2005]. It should also be noted that the influence of changing mean runoff is 
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partially offset by corresponding changes in channel width (i.e., equation (4.4a)). 

Changing climate variability (k) induces a more complex response. As shown in Figure 

4.9b, the power-law exponent in the ks-E relationship (ϕ) decreases with decreasing 

variability (large k). Thus the ks-E relationship becomes increasingly non-linear as 

discharge variability decreases (large k, Figure 4.9b). Indeed, for an exponential flood 

distribution tail [Tucker, 2004], the ks-E relationship becomes too strongly non-linear at 

low channel steepness (in Regime I) to be described by a power-law (Figure 4.7).  

Additionally, when in the threshold-dominated regime, increasing climate variability, 

while holding all else equal, increases erosion rate for a given ks, (Figure 4.9b). The 

opposite is true for channels in regime III [Lague et al., 2005]. 

Co-variation of Mean Runoff and Climate Variability 

The above analysis indicates that all else equal, wetter and more variable 

climates increase erosional efficiency, while dry and steady climates are less efficient – a 

fairly intuitive result and one familiar from previous work [Lague et al., 2005; Tucker, 

2004]. A more challenging question, and one often postulated by workers interested in 

global climate change and climate/tectonics feedbacks, is whether dry and variable 

climates can be more efficient than stable, wet climates [Molnar, 2001; Molnar et al., 

2006; Zhang et al., 2001]. While Istanbulluoglu and Bras [2006] explicitly modeled the 

catchment-scale response of soil moisture and vegetation cover to changes in rainfall 

intensity, such field data are scarce, and we focus instead on exploring only the observed 

relationships between mean runoff and variability from gaged streams. Turcotte and 

Greene [1993] argued that discharge variability was highest in arid environments, and 

lowest in humid environments. Molnar et al. [2006] extended this analysis and found 

that, at least for gages within the United States, there is a roughly inverse relationship, 
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albeit with much scatter, between mean annual runoff and variability expressed by k (Rb ~ 

k1.6). Using precipitation records compiled by Hawk [1992], Tucker [2004] and 

Istanbulluoglu and Bras [2006] found a similar relationship between a metric of storm 

variability and mean annual precipitation across the United States. 

Here we extend the analyses of Lague et al. [2005] and Molnar et al. [2006] to 

explore quantitatively the competition between the influence of mean runoff and 

variability on channel incision when the two are inversely related according to the 

relationship 

 ,
C

b

B

R
k 






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where B and C are empirically derived constants [Molnar et al., 2006]. B and C values of 

850 mm/a and 0.625, respectively, describe the central tendency in the discharge data 

compiled by Molnar et al. [2006], but we emphasize that there is significant scatter in the 

data (B ranges from ~20-1000; C ranges from ~0.5-1.0), which in addition covers only 

the continental United States and does not apply across all climate zones. Indeed some 

tropical climates, where heavy rainfall is dominated by tropical cyclones, can be both wet 

and variable (e.g., Taiwan [Lague et al., 2005]).  

Figure 4.9c shows the effect of varying mean annual runoff from 0.03 to 2.8 m 

(corresponding to a range in k from 0.12 to 2.1 using equation (4.16) with the B and C 

values given above), while holding all other parameters equal to the SGM case. The 

crossing of curves at low erosion rates (< 200 m/Ma) represents a transition in climate 

sensitivity; low-steepness channels are more sensitive to changes in climate variability 

than mean runoff, while the opposite is true for steep channels (see also Figures 4.9, 

4.10). Channels with low steepness require larger floods to overcome thresholds of 
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erosion – floods that can actually be more common in dry, but variable environments (see 

Figure 4.6 in Molnar et al., [2006]). 

Plotting erosion rate against mean runoff highlights this behavior. Figure 4.10a 

shows the relationship between erosion rate and mean runoff for a range of channel 

steepness index values, using the parameters in Table 4.2 and values for B and C given 

above. For channels with low channel steepness (ks < 100), there is a hump in the 

erosion-runoff relationship between mean runoff (Rb) of 100 and 400 mm/a, indicated by 

the white diamonds. For channels with high channel steepness (ks ≥100) the relationship 

between erosion and runoff is monotonic (dashed lines), though there is still a significant 

flattening of the relationship for Rb > ~200 mm/a. We emphasize that while this peak in 

erosional efficiency (erosion rate for a given channel steepness) roughly matches that 

observed by Langbein and Schumm [1958], and predicted by Istanbulluoglu and Bras 

[2006], it arises here solely because of trade-offs between variability and mean runoff in 

bedrock channel incision, factors not considered in these other works. 

The existence and location of a peak erosional efficiency depend not only on the 

channel steepness index, but also on the magnitude of the threshold, τc, and the strength 

of the runoff-variability relationship (controlled by C in equation (4.16)), as shown in 

Figure 4.10 (b-e). Increasing τc has a similar effect on the relationship between erosion 

and runoff as decreasing channel steepness – by increasing Q*
c, discharge variability 

becomes more important, and the peak is enhanced (Figure 4.10c). Conversely, for small 

c, large floods are less important, and the peak is diminished (Figure 4.10b). Changing C 

varies the strength of the runoff-variability relationship and thus illustrates the 

uncertainty associated with the scatter in the data. When C is large, variability increases 

rapidly with decreasing mean runoff, and the peak in erosional efficiency is enhanced 
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(Figure 4.10d); when C is small, variability and mean runoff are but weakly related and 

thus the peak is subdued (Figure 4.10e). Naturally, Figures 9a and 9b illustrate the model 

behavior when Rb and k are independent. 

The results shown in Figure 4.10 suggest that the relationship between climate 

and erosion rate is complex, and changes depending on the ratio of channel steepness to 

the erosion threshold. While Molnar et al. [2006] suggested that change to drier, more 

variable conditions would rarely increase erosion rate, we show here that such a trend is 

possible over a wide range of conditions (solid lines in Figure 4.10). Furthermore, there is 

a range of parameter space where changing climate does not influence erosional 

efficiency – that is, the competing effects of decreased variability and increased runoff 

are in balance. We emphasize again that the relationship between mean runoff and 

discharge variability expressed by equation (4.16) only applies to a narrow band of 

potential climate scenarios (those analyzed by Molnar et al. [2006] in the continental 

US). Even so, Figures 4.9 and 4.10 highlight both the potential implications of co-

variance between Rb and k and the need for careful site selection when trying to quantify 

the relationship between climate and erosion rate in the field. These results suggest one 

plausible explanation for the diversity of published relationships summarized by Riebe et 

al. [2001]. 

DISCUSSION 

Implications for Climate-Tectonic Interactions 

The finding that the relationship between channel steepness and erosion rate in 

the SGM is highly non-linear (ϕ = 0.5; Figure 4.7) and the model implication that this 

may be a common circumstance (Figure 8) carry important implications for the strength 

of the hypothesized influence of climate on rock uplift rates and deformation patterns in 
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compressional orogens [e.g. , Hilley and Strecker, 2004; Whipple, 2009; Whipple and 

Meade, 2004; Willett, 1999].  Whipple and Meade [2004] show that steady-state rock 

uplift rate in a compressional orogen, U, scales with the tectonic accretionary flux (Fa) 

and coefficient of erosional efficiency (Ce) according to: 

 1

1

1  p
e

p

p

a CFU  (4.17a)  

 /8.0p , (4.17b) 

where the 0.8 arises from the product of the channel concavity index (~0.5) and the 

inverse of the Hack’s law exponent (~1.7). A value of  = 0.5, as found for the SGM and 

the eastern margin of the Tibetan Plateau [Ouimet et al., 2009], implies U  Fa
0.6 Ce

0.4 – 

the weakest dependence of rock uplift rate on erosional efficiency considered to be within 

the range of likely conditions by Whipple and Meade [2004].   

The analyses illustrated in Figures 4.9 and 4.10 exacerbate this apparent 

weakening of theoretical predictions of the strength of the potential influence of 

precipitation rate on steady state rock uplift. As discussed by Stolar et al. [2006], in the 

standard stream power river incision models (which ignore the threshold-stochastic 

effects and potential inverse relationship between mean annual runoff and discharge 

variability emphasized here) the coefficient of erosional efficiency, C, scales 

approximately with the square root of mean annual runoff. Combined with the above 

result, this implies that steady state rock uplift rate varies only weakly with mean annual 

runoff, U  Fa
0.6 Rb

0.2. As illustrated in Figure 4.10, when thresholds of erosion and the 

potential co-variation of discharge variability and mean annual runoff are considered, the 

relation between erosional efficiency and mean annual runoff can be much weaker as 

cautioned by Whipple and Meade [2006] and Whipple [2009]. Although we can only 
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speculate for now, this could be one reason why clear field evidence for a strong coupling 

between climate and tectonics has been difficult to find [e.g., Whipple, 2009]. That said, 

model predictions also indicate that the strongest influence of climate on tectonics will 

likely be found where channels are steep (Figure 4.10), where flood discharges are highly 

variable (Figure 4.8), and where increases in mean annual runoff are not offset by 

decreases in discharge variability, such as orogens frequently struck by tropical cyclones 

like the Central Range of Taiwan [Lague et al., 2005]. Moreover, glaciated mountain 

ranges may be more sensitive to climate changes and tectonics more responsive to glacial 

erosion [e.g., Tomkin and Roe, 2007].   

Limitations and Future Research Needs 

Whereas the simple stochastic-threshold incision model described above is 

consistent with channel steepness (ks) and erosion rate (E) data in the SGM, suggesting 

that the presence of erosion thresholds and discharge variability may be primarily 

responsible for the strong non-linearity in the ks-E relationship (equations 4.1 and 4.15), 

we cannot yet determine whether climatic effects alone provide a full explanation for the 

steady-state channels in the SGM, nor whether they can potentially explain differences in 

the relief-erosion rate relationships observed in other landscapes. There are few studies in 

the literature that provide the range of relief and erosion rates necessary to evaluate this 

possibility, and even fewer that also have long-term discharge records and field 

observations to constrain the parameters listed in Table 4.2. Moreover, the use of decadal 

to centennial hydrologic records must be used to extrapolate climate conditions over the 

timescale of erosion rate measurements, which must in turn be long enough to 

incorporate the influence of large events. Finally, the challenge of quantifying rock 

strength and erosion thresholds directly makes inter-site comparison difficult. However, 

117



given careful site selection, the relationships shown in Figures 4.9 and 4.10 serve as a set 

of testable hypotheses that have the potential to illuminate the currently cloudy empirical 

relationships between climate and erosion rate. 

In particular, detecting a climatic control on erosion rate (i.e., determining the 

dependence of erosional efficiency on mean annual runoff and discharge variability) 

requires a suite of field sites in different climate regimes, each covering a range of relief, 

but having similar lithology. It is only through the lens of topography that we will be able 

to resolve the role of mean runoff and discharge variability in controlling erosion rate. An 

exacting test of the Lague et al. [2005] model will require data from field sites chosen to 

explore independently the roles of mean runoff and runoff variability and their 

dependences on channel steepness. In addition, there is a need to further explore the 

controls on ke and its dependence on substrate properties [e.g., Sklar and Dietrich, 2001; 

Tressler et al., 2010]. Though it is unlikely that this simple model captures the full range 

of behavior in steady-state channels, the fit to the SGM data suggests that the first-order 

implications of this model may apply to many landscapes. Of course, under transient 

conditions, a broader suite of controls (sediment tools and cover, process mechanics, 

channel width) will likely emerge [e.g., Attal et al., 2008; Attal et al., 2011; Valla et al., 

2010] – it is channel evolution during periods of transience that will provide the most 

exacting tests of channel incision models. Whether or not these transient effects need to 

be accounted for, however, depends on the time scale of the geologic problem. For 

example, in million-year, orogen-scale studies of climate-tectonic interactions, an 

assumption of quasi-steady-state river incision is probably sufficient to develop 

relationships among climate, rock type, topography, erosion rate, and tectonic style, even 

when the landscape is changing over long time periods [Stolar et al., 2006; Whipple and 

118



Meade, 2006]; the stochastic-threshold model may be sufficient for quantitative analyses 

at these long time scales as discussed above for steady-state conditions. Conversely, in 

studies directed at extracting the tectonic or climatic history of a specific field area 

recorded in landscape morphology or sedimentary records, an appreciation for the rich 

behavior in fluvial systems during periods of adjustment to changing climatic or tectonic 

conditions is paramount, and a simple stochastic-threshold model is likely inadequate 

[Attal et al., 2008; Crosby et al., 2007; Gasparini et al., 2007; Valla et al., 2010].  

CONCLUSIONS 

We have shown here that a non-linear relationship between channel steepness 

index and erosion rate in the San Gabriel Mountains, CA can be explained by a simple 

bedrock incision model that incorporates a stochastic distribution of discharge events 

coupled with an erosion threshold [Lague et al., 2005], but does not include the 

complexities of recent modeling efforts regarding dynamic cross sectional evolution 

[Turowski et al., 2009; Wobus et al., 2006b] or detailed accounting for sediment tools and 

cover effects [Lague, 2010; Sklar and Dietrich, 2004]. We constrained the relationship 

using field observations of channel geometry and bed state, along with an analysis of 

discharge records from throughout the range. We found that for graded channels, in the 

SGM at least, possibly in general, the role of sediment tools and cover, channel width 

adjustment, and changes in incision process appear to play a subordinate role to the 

influence of erosion thresholds and discharge variability. We showed explicitly that the 

choice of discharge distribution strongly influences the modeled relationship between 

channel steepness and erosion rate, particularly for low channel slopes, where the 

heaviness of the flood distribution tail strongly controls the frequency of erosive events. 
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Based on parameters calibrated from the SGM, we evaluated the implications of 

the Lague et al. [2005] model for the relationship between channel steepness and erosion 

rate. Bedrock channels in the SGM lie well within the “threshold dominated” regime of 

Lague et al. [2005], which surprisingly implies that the shape of the ks-E relationship is 

governed by discharge variability k and the at-a-station discharge exponent α(1-ωs) rather 

than erosion process, as is almost universally assumed. For threshold dominated 

channels, erosion is enhanced by increasing mean runoff as well as increasing variability. 

We imposed an empirical relationship between mean runoff and variability to test if dry, 

variable climates can be more efficient than wet, stable climates. We extended the 

analysis of Molnar et al. [2006] and found that for channels with a high erosion threshold 

(or alternatively, low steepness) there exists a peak in erosional efficiency that lies near a 

mean runoff of 200-400 mm/a, similar to the relationship observed by Langbein and 

Schumm [1958]. Furthermore, for a large range of parameter space (but excluding 

tropical climates), erosion rate is predicted by this model to be insensitive to increases in 

runoff above 500 mm/a, suggesting that any climatic influence on tectonics in 

unglaciated landscapes may be restricted to subhumid or drier climates and climates 

where higher mean annual runoff is not offset by a decrease in discharge variability. The 

relationships among channel steepness index, erosion rate, and climate variables 

developed here thus form a set of critical, testable hypotheses that should be explored 

further to elucidate the complex relationships among climate, topography, and erosion 

rate. 
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FIGURE CAPTIONS 

Figure 4.1. Plots of predicted exceedence frequency as a function of non-dimensional 

daily discharge for the Poisson rainfall model (a) and the inverse gamma distribution 

discharge model (b). Poisson discharge distribution was calculated using a Monte Carlo 

approach to model individual storms and assumes simple Horton overland flow with 

negligible infiltration. 

 

Figure 4.2. Map of San Gabriel Mountains, California, showing elevation over shaded 

relief. Catchments with detrital CRN erosion rates measured by DiBiase et al. [2010] 

highlighted in blue according to erosion rate. The stream network (drainage area > 2 km2) 

is color coded by channel steepness index, which increases with erosion rate from west to 

east. USGS stream gages listed in Table 1 are shown by numbered circles. 

 

Figure 4.3. Mean daily discharge plotted against drainage area for USGS stream gages 

listed in Table 4.1, with linear least squares fit forced through origin. 

 

Figure 4.4. Plot of exceedence frequency as a function of non-dimensional daily 

discharge (Q* = Q/Qb) for Cucamonga Creek gage, showing inverse gamma distribution 

with k = 0.5. Gray dashed lines show inverse gamma distribution with k = 0.4 and k = 0.6. 

Poisson model in gray is generated using parameters calibrated from rainfall station data 

at Mt. Baldy (Table 4.2). Inset shows Cucamonga Creek discharge distribution (red) in 

comparison to other gages in Table 4.1 (blue). 
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Figure 4.5. Bankfull channel width plotted against drainage area for SGM channels, 

showing the similarity of power-law fits through low relief (ks < 100) and high relief (ks ≥ 

100) channels. For channels surveyed in detail, we show the log-averaged value of widths 

measured between major tributary junctions (typically 5-50 measurements), with error 

bars indicate the inner quartile range. No error bars are shown for individual width 

measurements (those not associated with detailed surveys). 

 

Figure 4.6. Histogram of bedrock exposure measured in surveys of SGM channels 

comparing low relief (ks < 100) and high relief (ks ≥ 100) channels. Inset plot shows grain 

size distributions for 44 pebble counts across the range (gray lines), with D50 values 

ranging from ~22-180 mm. Black line indicates the grain size distribution of all pebble 

count data taken together. 

 

Figure 4.7. Plot of channel steepness index against catchment-average erosion rate for 

the San Gabriel Mountains (gray and hollow symbols). Erosion rates are derived from 

10Be concentrations in stream sands measured by DiBiase et al. [2010], with error bars 

showing 1σ analytical uncertainty in erosion rate and uncertainty in ks as described by 

DiBiase et al. [2010]. Black line shows best fit of equation (10) through erosion rate data 

using the inverse gamma distribution (equation (11); parameters given in Table 4.2). 

Dashed lines show fits reflecting range of plausible ϕ values. Gray line shows similar fit 

using an exponential discharge distribution [e.g., Tucker, 2004]. Hollow symbols indicate 

two outliers not included in fit calculation. Square symbols indicate repeat measurements 

from DiBiase et al. [2010] that have been combined into single points. 
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Figure 4.8. Plot of power-law exponent from equation (1) against erosion rate 

normalized by the threshold term Ψ from equation (7), assuming a constant threshold 

shear stress (τc = 45 Pa). Vertical gray bars separate 3 regimes described by Lague et al. 

[2005]. Regime I (low E/ Ψ) is dominated by the threshold term, and the shape of the ks-E 

relationship (dictated by ϕ) is controlled by the at-a-station shear stress-discharge 

exponent, α(1-ωs), and discharge variability (k, equation (4.11)). Regime III (high E/ Ψ) 

approaches the effective discharge approximation (equation (4.8)), where ϕ is set by the 

exponent n in the instantaneous incision rule (equation (4.7)). We use n = 1 in all 

calculations. Regime II is transitional. Gray box shows conditions in the SGM, indicating 

the range of erosion rates and uncertainty in discharge variability. 

 

Figure 4.9. Plot of channel steepness index against erosion rate showing the influence of 

(a) changing mean runoff only, (b) changing discharge variability only, and (c) co-

varying mean runoff and discharge variability according to the relationship given by 

equation (4.16). Gray symbols and black line indicate SGM data and fit from Figure 4.7 

(Rb = 280 mm/a; k = 0.5). 

 

Figure 4.10. Plot of erosion rate vs. mean runoff as a function of channel steepness index 

when discharge variability and mean runoff vary according to equation (4.16). Solid lines 

and diamonds indicate the presence and location of a peak erosional efficiency, while 

dashed lines indicate a monotonic relationship between erosion rate and mean runoff. A 

peak in erosional efficiency is enhanced by decreasing channel steepness (a-e), increasing 

erosion threshold magnitude (c), or strengthening the relationship between mean runoff 

and discharge variability (d). 
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Table 4.2. Model parameters used for fit to SGM erosion rate data
parameter value units

k e 4.3 x 10-12 m2.5 s2 kg-1.5

τ c 45 Pa

k q 9 x 10-9 m s-1

k w 15 m-0.65 s0.55

k t 1000 m-7/3 s-4/3 kg

k 0.5 dimensionless
ωs 0.25 dimensionless

ωb 0.55 dimensionless

a 3/2 dimensionless
α 2/3 dimensionless
β 2/3 dimensionless

P a 9.94 m/a

T r
a 7 h

T b
a 238 h

aPoisson pulse rainfall parameters [Tucker , 2004]
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Figure 4.9
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CHAPTER 5 

INVESTIGATION OF A TRANSIENT LANDSCAPE IN THE WESTERN SAN 

GABRIEL MOUNTAINS, CALIFORNIA: IMPLICATIONS FOR KNICKPOINT 

MIGRATION AND TECTONIC HISTORY 

ABSTRACT 

Transient landscapes serve an important role in tectonic geomorphology, both by 

recording the temporal changes of driving climatic or tectonic forces, and by aiding in the  

discrimination among different surface process models that exhibit otherwise similar 

behaviors at steady-state. Here we investigate the surface expression of a two-staged 

transient signal in the 300 km2 catchment of Big Tujunga Creek in the western San 

Gabriel Mountains using a combination of DEM analysis, detailed field surveys of stream 

channels, and an extensive erosion rate dataset. 

The upper (earlier) transient in the Big Tujunga catchment has nearly propagated 

through the entire fluvial network, with only isolated patches of an elevated low-relief 

weathering surface remaining. The lower transient, however, is characterized by a 

dramatic inner gorge with over-steepened valley walls and fluvial hanging valleys. In 

both cases, an increase in the rate of local baselevel fall resulted in the propagation of a 

wave of incision upstream through the landscape, with discrete knickpoints separating 

adjusting from relict portions of the landscape. We use a 10 m digital elevation model to 

identify knickpoints and extract channel long profiles and hillslope angles. Combining 

erosion rate estimates with elevation differences between projected long profiles allows 

for the estimation of the timing of increases in baselevel fall rate. We find the age of the 

upper transient to be ca. 7-9 Ma, which likely corresponds to the initiation of uplift in the 

San Gabriel Mountains associated with the transfer of slip from the San Gabriel Fault to 
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the current trace of the San Andreas Fault. The younger transient dates to ca. 0.5-2.5 Ma, 

which overlaps with estimates of activation of the San Jacinto Fault Zone, whose 

inception has been linked to increases in rock uplift rate in both the eastern San Gabriel 

Mountains and in the nearby San Bernardino Mountains. 

The lower Big Tujunga Creek transient also affords us the opportunity to 

investigate the nature of bedrock channel response to temporal forcing in a relatively 

homogenous lithology (massive crystalline rocks). Supplementing detailed field surveys 

with 160 km2 of airborne LiDAR-derived topography (1 m resolution), we mapped 

channel width, valley width, and the extent of bedrock steps greater than 3 m throughout 

the channel network. We also mapped the extent of bedrock exposure in 20 km of 

channels both above and below the main knickpoint. We find, as observed in other 

landscapes, that channels respond to the transient signal by narrowing and steepening. 

Additionally, much of the increase in slope (up to 60 percent) tends to be in the form of 

discrete bedrock steps separating channel reaches that maintain slopes just necessary to 

transport available sediment. The prevalence of large bedrock steps, as well as the 

preservation of a continuous strath terrace 60 m above the current channel profile in the 

lower gorge of Big Tujunga Creek strongly contrasts the channel morphology upstream, 

suggesting that the style, in addition to the pace, of baselevel fall has changed in the past 

1-2 Ma. 
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INTRODUCTION 

Changes in prevailing climatic or tectonic conditions can trigger periods of 

landscape adjustment that may last thousands to millions of years [e.g., Hilley and 

Arrowsmith, 2008; Snyder et al., 2002; Whittaker et al., 2007]. These transient landscapes 

serve an important role for tectonic geomorphologists; transient landscapes both record 

tectonic or climatic history [Clark et al., 2006; Schoenbohm et al., 2004], and provide the 

most discriminating tests of landscape evolution models that often predict similar steady-

state behavior [Attal et al., 2011; Cowie et al., 2008; Crosby et al., 2007]. For example, 

the preservation of a pervasive low relief surface throughout the eastern Tibetan Plateau 

above a series of dramatically incised fluvial gorges allows for quantitative estimates of 

Cenozoic surface uplift when appropriate geochronologic tools are applied [Clark et al., 

2006; Clark et al., 2005b; Ouimet, 2007]. Furthermore, the nature of the relict landscape 

gives clues to past climatic and tectonic conditions, and provides valuable constraints to 

regional tectonic interpretations [e.g., Harkins et al., 2007; Reinhardt et al., 2007a; 

Schoenbohm et al., 2004]. In addition, transient landscapes are the ultimate test of fluvial 

incision models. Under steady-state conditions and uniform uplift, the predicted 

longitudinal profile forms of transport-limited, detachment-limited, and sediment-flux 

dependent bedrock river models can be similar [Whipple and Tucker, 2002]. Following 

changes in erosional efficiency or the rate of baselevel fall, however, the nature and 

timing of transient adjustment varies significantly, depending on the processes involved 

[Gasparini et al., 2007; Whipple and Tucker, 2002].  

Here we combine stream profile analysis with detailed field surveys and an 

extensive data set of catchment-averaged erosion rates to investigate a 300 km2 

catchment in the western San Gabriel Mountains, CA which we interpret to reflect a two-
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staged increase in erosion rate. We use a 10 m digital elevation model (DEM) to generate 

channel profiles and identify large scale knickpoints; a 1 m LiDAR DEM to map the 

distribution of strath terrace levels along the mainstem and to identify channel-spanning 

bedrock steps larger than 3 m in height; and we use detailed field surveys to highlight 

reductions in valley width and bed sediment cover near and below knickpoints. 

Additionally, we supplement an already extensive erosion rate dataset with 20 new 

catchment-averaged erosion rates derived from 10Be concentrations in alluvial sands 

throughout the San Gabriel Mountains. We use direct and indirect estimates of erosion 

rates together with projections of relict stream profiles to interpret the tectonic history of 

the western San Gabriel Mountains and compare the results to independent studies of 

regional tectonics. 

STUDY AREA 

The San Gabriel Mountains (SGM) lie in the central Transverse Ranges of 

southern California (Figure 5.1), bounded by the right-lateral San Andreas Fault (SAF) to 

the north, and a series of north dipping thrust faults (Sierra Madre Fault Zone – SMFZ, 

Cucamonga Fault Zone – CFZ) to the south, which accommodate contraction 

necessitated by a large restraining bend in the SAF. Uplift of the SGM began ca. 5-7 Ma, 

with the transfer of dextral slip from the San Gabriel Fault to the current trace of the SAF 

[Matti and Morton, 1993]. Vertical components of Holocene slip rates along the SMFZ 

and CFZ increase from west to east [Lindvall and Rubin, 2008; Peterson and Wesnousky, 

1994], along with topographic relief, decadal sediment flux [Lavé and Burbank, 2004], 

millennial erosion rates [DiBiase et al., 2010], and long-term (million-year timescale) 

exhumation rates [Spotila et al., 2002]. Combined with the surprising agreement between 

measures of uplift and erosion spanning decadal, millennial, and million year timescales, 
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these studies suggest that the position of the SGM along the SAF has sustained an E-W 

gradient in tectonic forcing for at least the past 5 Ma. Palinspastic reconstructions of the 

Transverse Ranges by Blythe et al. [2002] constrained by apatite fission track and (U-

Th)/He thermochronology support this interpretation. 

In contrast to the strong E-W gradient in tectonic forcing, runoff and lithology do 

not vary systematically across the SGM. Mean annual precipitation (MAP) varies with 

elevation, with the highest elevations (2000-3000 m) receiving in excess of 1 m/a 

(PRISM). The northern flank of the SGM borders the Mojave Desert and lies in a rain 

shadow (MAP as low as 0.2 m/a). However, the majority of the SGM receives ~0.6-1.0 

m/a. Decadal runoff records from throughout the SGM suggest that discharge 

characteristics are similar across the range with respect to mean daily runoff, decadal 

maximum runoff, and flood variability [DiBiase and Whipple, in review; Lavé and 

Burbank, 2004]. Variations in rock strength are more difficult to quantify. In general, the 

SGM consist of highly fractured Precambrian and Mesozoic crystalline rock. Extensive 

decimeter-scale weaknesses tend to minimize differences in lithologic strength among 

rock types, and while exposed rock is common across the SGM, outcrops tend to be 

blocky (fractured at the decimeter to meter scale), rather than massive. Overall, there 

appears to be little dependence of erosion rate on rock strength at the catchment scale 

[DiBiase et al., 2010], though as detailed below, smaller scale heterogeneities in 

erosional resistance likely play a crucial role in modulating the retreat rate of knickpoints 

and the preservation of relict topography. 

For this study, we focus on the 300 km2 watershed of Big Tujunga Creek (BTC), 

which drains much of the western SGM (black polygon, Figure 1). The lower gorge of 

BTC is the most dramatic transient feature in the SGM, and features the highest 
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concentration of fluvial hanging valleys and large (>20 m) waterfalls in the range. Wobus 

et al. [2006b] used the concordance of knickpoint elevations along tributaries to BTC as a 

type example of constant vertical knickpoint migration in response to an increase in uplift 

rate along a northern strand of the Sierra Madre Fault Zone that merges with the now 

inactive San Gabriel Fault north of Mount Lukens. We revisit this approach here with the 

aid of a new 1 m resolution LiDAR DEM flown shortly after the 2009 Station Fire, which 

burned much of the drainage.  

APPROACH AND BACKGROUND 

The scope of this study is twofold: we aim to 1) use topographic and geomorphic 

information to learn about the processes controlling knickpoint migration rates, and 2) 

use our understanding of topography and erosion rates in the SGM to reconstruct the 

uplift history of the western SGM using relict stream profiles of Big Tujunga Creek and 

its tributaries. 

Modeling Knickpoint and Waterfall Migration 

To avoid confusion in terminology, it is necessary to first emphasize the 

difference between knickpoints and discrete bedrock steps. We define knickpoints as 

regional slope breaks in channel long profiles that separate channel segments with 

differing steepness; in transient landscapes these knickpoints often separate relict from 

adjusting portions of the landscape [e.g., Whipple et al., in press]. Discrete bedrock steps, 

or waterfalls, are identified where locally extreme slopes over length scales greater than 

water flow depth cause flow separation and a general breakdown of the assumptions 

inherent in fluvial incision models (i.e., steady, uniform flow and low channel slope). 

Regional knickpoints are often associated with the presence of waterfalls, which 

complicates attempts to characterize the transient evolution of fluvial systems. For 
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simplicity, we focus on knickpoint and waterfall retreat in generally homogeneous 

substrates (as opposed to bedded material with a resistant caprock). 

The simplest approach to modeling knickpoint migration follows the classical 

stream power model for detachment-limited bedrock channels, where channel incision 

can be approximated as a power-law function of slope and drainage area [e.g., Berlin and 

Anderson, 2007; Bishop et al., 2005]. This convenient formulation predicts that 

knickpoints propagate as kinematic waves whose celerity is a power-law function of 

upstream drainage area [Rosenbloom and Anderson, 1994]. Additionally, if the 

assumption is made that slope S and drainage area A are related according to Flint’s Law: 

 AkS s   (5.1) 

where ks is the channel steepness index, and θ is the concavity index which does not vary 

with uplift rate, then the vertical migration rate of knickpoints is constant, and the 

boundary between relict and adjusting landscapes is predicted to lie along a single 

topographic contour [Niemann et al., 2001]. The timing of landscape response and the 

persistence of knickpoints within the fluvial network additionally depends on the 

presence of erosion thresholds [e.g., Tucker, 2004] and the degree of channel narrowing 

across knickpoints [e.g., Whittaker et al., 2008]. 

The presence in many rapidly eroding landscapes of fluvial hanging valleys, 

where waterfalls or dramatic steepenings insulate tributaries from mainstem incision, 

highlights the shortcomings of the classic stream power model [Crosby and Whipple, 

2006; Goode and Burbank, 2009; Wobus et al., 2006b]. In order to generate runaway 

steepenings at tributary junctions, bedrock incision models that incorporate a (somewhat 

counter-intuitive) negative feedback between slope and incision must be invoked. Crosby 

et al. [2007] showed that a sediment-flux dependent incision model where saltation hop 
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length increases with slope [Sklar and Dietrich, 2004], thereby limiting incision of 

oversteepened reaches, is capable of generating fluvial hanging valleys. Using this model, 

Crosby et al. [2007] showed that whether or not hanging valleys form depends on the 

ratio of tributary to mainstem drainage area and the magnitude of baselevel fall increase, 

consistent with field observations of hanging valleys in Taiwan [Wobus et al., 2006b]. 

 In contrast to modeling knickpoint migration and transient landscape 

development within the context of a single erosion law, some authors model waterfall 

retreat rate directly. Whereas Crosby et al. [2007] focused on when and where waterfalls 

would form, Lamb et al. [2007] develop physical scaling relations for waterfall retreat by 

plunge-pool scour to explain the distributions of large waterfalls in Kohala, Hawaii. 

Similarly, Haviv et al. [2010] developed a physical model for waterfall retreat rate that 

combined the effects of mass wasting, amplified erosion above the waterfall lip due to 

flow acceleration [e.g., Haviv et al., 2006], and the deposition and removal of coarse 

debris below the waterfall. Alternatively, Crosby and Whipple [2006] posit a waterfall 

retreat rate similar to the knickpoint celerity model of Rosenbloom and Anderson [1994], 

but with a critical drainage area, to explain the distribution of waterfalls in the Waipoa 

River of New Zealand. 

 The wide range of approaches described above highlights both the interest in 

characterizing the timing of landscape response to changes in external forcing, and the 

need for further field observations to constrain fluvial incision models in these 

discriminating settings. In this study, we start with the simplified premise of constant 

vertical migration, which has previously been used to explain the distribution of 

knickpoints in BTC [Wobus et al., 2006b], and use DEM analysis and detailed field 

surveys to explore the deviations from this case, implications for the preservation of relict 
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landscapes, and for extracting quantitative information about tectonic (or climatic) 

history from river profiles. 

Inferring Tectonic History 

Independent of the nature of knickpoint retreat, it is possible to use the present 

configuration of relict topography in transient landscapes to reconstruct stream profiles 

and make interpretations about differential uplift and erosion. By projecting stream 

profiles and either directly measuring or inferring erosion rates for each channel segment, 

the timing of changes in rates of baselevel fall can be estimated [Kirby and Whipple, in 

review]. In some cases the magnitude of baselevel fall is high enough that relict 

landscapes act similarly to passive geomorphic markers [Clark et al., 2006]. In other 

cases, measurements of erosion rates from either low-temperature thermochronometers 

[Clark et al., 2005a; Clark et al., 2005b] or cosmogenic radionuclides [Reinhardt et al., 

2007a] are necessary to constrain the geomorphic evolution of relict landscapes. 

In this study, we follow the approach of Schoenbohm et al. [2004] and Clark et 

al. [2005a] to reconstruct the timing of uplift history in the SGM. As shown by DiBiase 

et al. [2010] and Wobus et al. [2006a], channel segments above and below knickpoints in 

the SGM follow the scaling relation between slope and area expressed by equation (5.1). 

Based on this, we can formulate the following relations to estimate the timing of two-

staged increase in baselevel fall (Figure 5.2). The time since the most recent increase in 

baselevel fall (lower-most knickpoint) can be defined as 

)( 23

32
2 EE

Z
T




  ,  (5.2) 

where ΔZ2-3 is the difference in elevation between the current stream and the intermediate 

projected profile at the location of the baselevel fall (assumed here to be an active fault), 
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and E3 and E2 are the erosion rates of the lowermost and intermediate channel segments, 

respectively (Figure 5.2). The time since the prior increase in baselevel fall (upper-most 

knickpoint) can be defined using similar notation as: 

)( 12

21
21 EE

Z
TT




  .  (5.3) 

We can then compare these geomorphic estimates of tectonic history to independent 

reconstructions of fault activity and block motion in the Transverse Ranges [Blythe et al., 

2002; Matti and Morton, 1993; Morton and Matti, 1993]. 

METHODS 

DEM Analysis 

We used two data sets for our topographic analysis: a 1 m resolution digital 

elevation model (DEM) derived from airborne LiDAR (red polygons, Figure 5.3a), and a 

10 m DEM derived from the USGS National Elevation Dataset. We extracted channel 

long profiles from the 10 m DEM using the freely available channel profile toolbar for 

ArcMap and Matlab (www.geomorphtools.org). Using these channel profiles, we 

identified knickpoints and fit different channel segments by hand using a reference 

concavity of 0.45, following Wobus et al. [2006a]. We also generated slope maps using 

the 10 m DEM by calculating the dip of a 3x3 plane fit to each pixel. To quantify the 

large-scale hillslope response to upstream-propagating baselevel fall, we binned the 

landscape into 50 m elevation bins and calculated the mean slope of each. 

We used the 1 m LiDAR DEM for three tasks: we identified bedrock steps 

greater than 3 m in channel profiles; we mapped the extent of strath terrace surfaces; and 

we measured valley width for select channels. For visualization, we generated a slope 

map from the 1 m DEM as described above (Figure 5.4). By inspection, we identified 
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bedrock steps along all channels draining areas greater than 0.5 km2. For each identified 

step, we extracted a short channel profile to determine step height as shown in Figure 

5.4a. For surveyed channels that lie within the LiDAR coverage, we calibrated this 

method based on field observations of channel spanning bedrock steps, giving confidence 

that these steep sections represent exposed rock rather than steep boulder reaches. We 

then transferred this map of bedrock steps to the channel long profiles determined earlier 

to quantify the elevation drop composed of discrete steps compared to that from smoothly 

graded channels. 

We also used this slope map to identify regions of low (< 10°) slope, which tend 

to correspond to valley flats and terrace surfaces. Terrace surfaces are readily identifiable 

along the lower reaches of BTC, but are rarely preserved in tributaries or in the upper 

reaches of the catchment (elevations > 1000 m). We interpret these surfaces to be strath 

terraces thinly mantled (order 1 m) with alluvium, based on numerous field observations 

of at least two distinct terrace levels (Figure 5.4c). We then transferred the mapped 

surfaces to the channel long profiles based on along-stream position. 

Channel Surveys 

To supplement our DEM analysis, we surveyed ~20 km of 9 channels in the BTC 

watershed, including the main stem across both major knickpoints, and multiple smaller 

side tributaries that enter the lower gorge (blue lines, Figure 5.3a). We used a laser range-

finder and electronic data logger to geo-locate measurements of bed cover and channel 

geometry at intervals of 20-50 m. We estimated the percent of bedrock exposed in 

channel bed and banks to the nearest 10%, and measured bankfull width based on 

vegetation lines and high flow marks. In reaches with extensive valley flats (> 20 m), we 

supplemented our field surveys with measurements of valley width from the 1 m LiDAR 
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DEM (Figure 5.3a). Additionally, we noted all channel-spanning bedrock steps greater 

than 3 m, and identified strath and fill terrace surfaces where visible from the channel. 

Erosion Rates 

Detrital cosmogenic radionuclide (CRN) methods have proven to be effective for 

quantifying catchment-averaged rates of erosion over the intermediate spatial (1-100 

km2) and temporal (102-105 a) scales critical for identifying and interpreting transient 

landscapes. However, transient catchments where erosion is highly non-uniform present 

difficulties when interpreting alluvial CRN concentrations [e.g., Reinhardt et al., 2007b]. 

Ideally only tributary catchments that have fully adjusted to local baselevel lowering rates 

(i.e., no knickpoints upstream) would be sampled, but recent increases in baselevel fall 

preclude this situation. Alternatively, erosion rates can be inferred from adjusted 

topography, even when relict topography exists upstream (Figure 5.2). 

We used a combination of direct and indirect methods to constrain the 

distribution of erosion rates in the BTC watershed. Because climate and lithology are 

similar for much of the SGM, we interpret the relations between topography and erosion 

rate generated from the entire range to be applicable for inferring erosion rate in BTC. 

We supplement published catchment-averaged erosion rates [DiBiase et al., in review; 

DiBiase et al., 2010; Heimsath et al., in press] with 20 new measurements of 10Be 

concentrations in alluvial sands for a total of 80 catchment-averaged erosion rates. We 

processed the 250-500um sand fraction following methods described by DiBiase et al. 

[2010]. Quartz separation and 10Be isolation was performed at Arizona State University, 

while 10Be/9Be ratios were measured at PrimeLab (Purdue University). We determined 

catchment-averaged production rates by calculating pixel-by-pixel elevation and latitude 

scaling factors [Dunai, 2000] from a 10 m DEM. We did not account for topographic 
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shielding, snow cover, or muogenic production, and assume that these factors contribute 

to an estimated 5% uncertainty in production rates that is added to the 1σ analytical error. 

For each sample catchment, we also report mean hillslope angle and normalized channel 

steepness index following Ouimet et al. [2009] and DiBiase et al. [2010] using the 10 m 

USGS DEM. 

RESULTS 

DEM Analysis 

Normalized channel steepness index in the BTC watershed ranges from 20-500 

m0.9, with values greater than ~200 m0.9 corresponding to short, oversteepened reaches 

just below prominent knickpoints (Figure 5.3a). Two prominent knickpoint levels 

separate three distinct physiographic regions. In the uppermost reaches of the BTC 

watershed, knickpoints on Chilao Creek (~1550 m asl) and the East Fork of Alder Creek 

(~1600 m asl) isolate the saprolitic, low relief surface of Chilao Flats (ksn ~ 20 m0.9). 

Knickpoints on major tributaries ranging in elevation from ~930-1030 m mark the limit 

of a dramatic inner gorge that characterizes lower BTC (Figure 5.3b). Between Chilao 

Flats and the lower gorge of BTC lies a dissected, soil-mantled landscape with mean ksn 

equal to 64 m0.9. Mean slope binned by elevation reveals a similar story, with slope 

declining systematically as elevation increases (Figure 5.5). Furthermore, breaks in mean 

slope at elevations of 1000 m and 1550 m line up approximately with knickpoint 

elevations along stream channels, and there is a significant difference between the rocky, 

rugged slopes of the inner gorge of BTC (mean slope = 33°) and the gentle, soil mantled 

hillslopes of Chilao Flats (mean slope = 23°). Together, the pattern of hillslope gradient 

and the map-view distribution of knickpoints suggest that transient behavior in BTC can 

156



be well characterized by the simple case where knickpoints migrate at a constant vertical 

rate, resulting in physiographic breaks at 1000 m and 1500 m elevation. 

Inspection of the longitudinal profile of the mainstem BTC, however, suggests a 

more complicated story. In contrast to models that predict smooth transitions between 

reaches of different steepness (e.g., Figure 5.2), the two knickpoints along BTC lie at the 

head of significant oversteepenings (Figure 5.6), as seen in many landscapes [Whipple et 

al., in press]. Furthermore, the majority of the vertical drop on these oversteepenings 

consist of bedrock steps greater than 3 m in height (bold lines, Figure 5.6). Long profiles 

of tributaries flowing into the lower gorge of BTC show a similarly complicated story. 

For example, Lucas Creek and Clear Creek have few or no bedrock steps along their 

entire length, yet show clear evidence of a knickpoint near 1000 m elevation. In contrast, 

Fox Creek and Falls Creek drop from their relict reaches to the inner gorge via a series of 

10-30 m waterfalls. However, projections of the relict profiles of these tributaries (dotted 

lines, Figure 5.7) grade smoothly with the reconstructed intermediate reach of BTC 

(dashed line, figure 5.7). In addition, mapped strath terraces in lower BTC define a 

profile parallel to and ~50 m higher than the current stream level (thin dashed line, Figure 

5.7) and many tributaries are directly hung on this level. 

Channel Surveys 

Detailed surveys of channels crossing knickpoints reveal trends consistent with 

observations by Berlin and Anderson [2009] and Haviv et al. [2006]. Upstream reaches 

tend to be mantled with alluvium and across knickpoints, valley width decreases 

dramatically, channels narrow, and sediment cover decreases. Figure 5.8 highlights three 

examples of such surveys.  
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Figure 5.8a shows the behavior of Fox Creek, which enters the lower gorge of 

BTC. The upper reaches of Fox Creek flow through a wide (~75 m), low gradient alluvial 

valley consisting primarily of anorthosite bedrock. Just over 1 km upstream of the main 

knickpoint, the bedrock lithology changes to granite, with no obvious change in valley 

width or channel slope. Approximately 700 m upstream of the main knickpoint, the 

valley narrows to ~20 m (~2-3 times channel width), channel slope increases slightly, and 

there is a gradual loss of sediment cover [cf., Berlin and Anderson, 2009; Haviv et al., 

2006]. The main knickpoint of Fox Creek consists of a series of 7 waterfalls ranging in 

height from 3-30 m that incise through a dramatic bedrock gorge 5-10 m wide. Below the 

main knickpoint is a lower gradient (though steeper than the upstream reach) reach with 

abundant exposed bedrock in the channel bed. Finally, Fox Creek enters BTC via a 20 m 

waterfall that corresponds to the lowest-observed strath terrace level along the mainstem. 

While not shown, bankfull channel width stays approximately constant (7 ± 2 m) for the 

length of the  4 km survey, while drainage area increases from 17 to 24 km2. 

Figure 5.8b shows a similar survey of the mainstem BTC as it crosses its lower 

knickpoint (Figure 5.6). The upstream reaches are characterized by low slopes and 

limited bedrock exposure in the channel bed. The lower knickpoint of BTC is 

characterized by two over-steepened zones separated by a lower gradient reach. Across 

these steepened zones, valley width and bankfull channel width decrease, while bedrock 

exposure increases. 

Figure 5.8c tells a slightly different story of the upper knickpoint along Chilao 

Creek. The uppermost reach of the survey flows through a wide (>100 m), flat, alluvial 

valley, which narrows ~ 1 km upstream of the main knickpoint, similar to Fox Creek. 

However, while the entire reach downstream of the knickpoint is characterized by a series 
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of 3-20 m bedrock steps, where exposed bedrock in the channel bed is less abundant 

through this steepened zone than it is just upstream of the knickpoint. Instead, much of 

this zone is mantled by 1-3 m boulders. 

Reconstructing Uplift History 

Erosion rates in the SGM range from 30-1100 m/Ma, with the highest rates 

focused along the southern range front and in the eastern SGM (Figures 5.1 and 5.9, 

Appendix B). Channel steepness index increases monotonically with erosion rate across 

the SGM, following a power law relationship described by: 

Eksn  ,  (5.4) 

where ϕ ~ 0.5 [DiBiase and Whipple, in review]. DiBiase et al. [in review] argue that this 

non-linear relationship between channel steepness and erosion rate arises due to the 

presence of erosion thresholds that preferentially retard the incision of channels with low 

steepness. It should be emphasized that this relationship only applies to adjusted channel 

reaches, and should not be used to describe the oversteepened reaches observed 

immediately downstream of knickpoints. 

Using this relationship, we infer three different erosion rates for the distinct 

physiographic regions of the BTC watershed (Figures 5.3c, 5.6). The uppermost region, 

Chilao Flats, with a mean ksn of 22 m0.9, can be directly measured to have a rate of 45 ± 7 

m/Ma, based on two catchment erosion samples (SG128 and SG129) and consistent with 

local soil production rates [Heimsath et al., in press]. The middle BTC, with a mean ksn of 

64 m0.9 ,can be inferred to have a rate of 151 ± 32 m/Ma, based on the average of 10 

catchment samples (we ignore two outliers in this analysis, both from Wickiup Canyon – 

SG0703 and SG0708). For the lower gorge of BTC, none of the detrital CRN samples 

directly measure the erosion rate of the most recently adjusted topography. Four samples 
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(SGB7, SGB9, SGB10, and SG0730) reflect erosion rates in transient catchments that 

average 358 ± 113 m/Ma, but these rates may be biased too high as a result of amplified 

erosion near knickpoints or too low due to the contribution of sediment from upstream of 

the knickpoints. Alternatively, based on the normalized channel steepness (80-105 m0.9) 

and mean hillslope angle (33) measured in the adjusted topography, we can estimate 

erosion rates for the lower-most BTC to be 230 ± 60 m/Ma.  

In addition to erosion rates, we also need to identify the locus of baselevel fall 

from which we want to calculate the time since initiation. We interpret that active 

deformation is concentrated along a northern strand of the Sierra Madre Fault System that 

intercepts BTC at its confluence with Trail Canyon (Figures 5.6 and 5.7). To determine 

values for ΔZ1-2 and ΔZ2-3, we also need to determine the elevations of the projected relict 

channels at the chosen outlet point (Figure 2). The normalized channel steepness index of 

the upper reaches of BTC and its tributaries averages 22 ± 2 m0.9 (Figure 5.6). Channel 

steepness values for the intermediate reaches of BTC and its tributaries averages 64 ± 4 

m0.9. Because the elevations of the projected streams is well constrained relative to the 

uncertainty in erosion rates, we ignore the errors in ΔZ for our calculations. Furthermore, 

the exact choice of where the Sierra Madre Fault Zone intersects BTC does not strongly 

influence values of ΔZ. If we use direct measurements of erosion rate for lower BTC (i.e., 

358 ± 113 m/Ma), ΔT1 ~ 7-8 Ma and ΔT2 ~ 0.5-1.5 Ma following equations (5.2) and 

(5.3). If we instead infer erosion rates for lower BTC based on the relationship between 

normalized channel steepness index and erosion rate shown in Figure 5.9 (i.e., 230 ± 60 

m/Ma), ΔT1 ~ 8-9 Ma and ΔT2 ~ 1.5-2.5 Ma. 
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DISCUSSION 

Knickpoint Propagation 

What controls the knickpoint migration rate? Analytical solutions to the simple 

detachment-limited stream power model suggest that knickpoints propagate upstream as a 

kinematic wave at rate that increases with increasing drainage area [Rosenbloom and 

Anderson, 1994]. Furthermore, for cases where erosion rate increases linearly with 

channel slope (i.e., ϕ = 1, equation (5.4)), knickpoint migration rate is expected to be 

independent of the forcing strength [Whipple and Tucker, 1999]. In a recently de-

glaciated valley in the French Western Alps, Valla et al. [2010] found a strong power-law 

relationship between the retreat distances of glacially formed hanging valleys and 

upstream drainage area. Whittaker et al. [2008] found that for transient catchments in the 

Central Apennines of Italy, knickpoint migration rate was additionally a function of the 

magnitude of throw rate increase on range bounding normal faults. Whittaker et al. 

[2008] used obervations of channel narrowing across knickpoints [Whittaker et al., 2007] 

to argue that non-linear channel incision (with regard to slope) was responsible for the 

more rapid retreat rates of steeper convexities or knickzones (defined as the steepened 

reach below a knickpoint). Attal et al. [2011] used the same field setting to test a range of 

fluvial incision laws closely related to the stream power model, and showed that 

including an erosion threshold [e.g., Tucker, 2004] or modeling slope dependent channel 

width [e.g., Finnegan et al., 2005] reproduces the observed increase in knickpoint retreat 

rate with uplift rate. 

We find little relationship between drainage area and retreat distance for 

knickpoints on tributaries draining the lower gorge of BTC (Figure 5.7). For example, 

Fox Creek (A = 24 km2) plunges over a series of large waterfalls 2 km from its 
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confluence with BTC. In contrast, the knickpoint on Lucas Creek (A = 4 km2) has 

migrated more than 3 km upstream from BTC, and contains few bedrock steps. 

Furthermore, the location of waterfalls is not confined to near tributary junctions, as 

described by Crosby and Whipple [2006] and Goode and Burbank [2009]. Thus 

alternative models that allow for the formation of fluvial hanging valleys do not appear to 

be capable for describing the distribution of bedrock steps within BTC [e.g., Crosby et 

al., 2007]. 

We make two first-order interpretations based on our observations: (1) 

knickzones in the BTC characterized by the presence of large (>3 m) bedrock steps stall 

knickpoint retreat and insulate relict topography from baselevel fall; and (2) the 

development of these oversteepened reaches is enhanced in areas of limited coarse 

sediment supply. To elaborate, the longitudinal profile “offsets” seen in Figure 5.6 are 

likely the result of small scale variations in rock strength that initiate negative feedbacks 

between slope and erosion rate, such as those present in saltation-abrasion models of 

bedrock incision [Lamb et al., 2008; Sklar and Dietrich, 2004]. This results in a switch in 

the processes controlling waterfall retreat from fluvial incision to weathering and mass 

wasting, slowing knickpoint migration as a result. These feedbacks are enhanced in 

regions with low coarse sediment supply, as observed by Johnson et al. [2009] in the 

Henry Mountains and suggested by the plunge-pool waterfall retreat model of Lamb et al. 

[2007]. We observe this behavior in particular for 3 catchments: Fox Creek, Falls Creek, 

and Chilao Creek. The headwater lithology of Fox Creek and Falls Creek is dominated by 

a Precambrian anorthosite body that produces cobbles that rapidly break down into finer 

material. For example, pebble counts in Fox Creek taken across the lithologic contact to 

granite (Figure 5.8) reveal a rapid switch in bed material dominance from anorthosite to 
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granite, despite the low areal extent of granite in the catchment. For Chilao Creek, the 

relict landscape of Chilao Flats consists of deeply weathered granitic surface that 

contributes a bimodal sediment load of grus and occasional meter-scale boulders to the 

channel network. Extensive fluting of these large boulders mantling the steep knickzone 

below the upper knickpoint on Chilao Creek (Figure 5.8) suggests they are relatively 

immobile, and likely act similar to bedrock. Furthermore, this low relief surface remains 

only because the upper knickpoint on Chilao Creek has hung up and we speculate that it 

is incapable of migrating further given the lack of tools (Figure 5.6). While we also 

observe channel narrowing across these knickzones, it apparently does not enhance 

incision rates enough to overcome these lithology-initiated negative feedbacks.  

Implications for the Tectonic History 

By a certain amount of luck then, what we interpret to be a signal of the initial 

phase of SGM uplift is preserved in the upper knickpoint of BTC. Our estimate of 7-9 Ma 

overlaps with independent estimates of the timing of SGM uplift (ca. 5-7 Ma) by Matti 

and Morton [1993] and Blythe et al. [2002]. In addition to the geomorphic evidence 

provided by stream profile analysis, the inference that Chilao Flats preserves the pre-

uplift surface of the SGM is supported by two additional factors: similarity in relief and 

weathering extent to the Big Bear Plateau in the nearby San Bernardino Mountains, and 

old cooling ages (>40 Ma) from low-temperature thermochronometers [Blythe et al., 

2000; Spotila et al., 1998]. Traces of this pre-uplift surface have likely been entirely 

erased in the eastern SGM, due to more rapid rates of uplift and erosion [DiBiase et al., 

2010; Spotila et al., 2002]. Assuming a similar W-E gradient in erosion rates 

(approximately 2-3x) has existed over long time periods [e.g., Spotila et al., 2002], the 
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equivalent surface would lie at elevations greater than 6000 m in the Eastern SGM, 

whereas the highest peaks currently only reach 3000 m. 

The origin of the lower knickpoint is less definitive. As noted earlier, this 

knickpoint reflects a sustained increase in baselevel fall (~2-3x) ca. 0.5-2.5 Ma. This age 

corresponds with estimates of the initiation of the right lateral San Jacinto Fault Zone, 

which range from 1.1 Ma [Kirby et al., 2007; Lutz et al., 2006] to 1.8 Ma [Blisniuk et al., 

2010]. However, the influence on the pattern of uplift in the SGM from this transfer of 

slip from the San Andreas Fault to the San Jacinto Fault is unclear. Spotila et al. [1998] 

interpret young mineral cooling ages as evidence for rapid uplift of the Yucaipa Ridge 

Block in the San Bernardino Mountains since 1.5 Ma, and attribute the increase to the 

inception of the San Jacinto Fault, following Morton and Matti [1993]. Further work is 

needed using kinematic models of southern California faults to test whether the transfer 

of slip from the San Andreas Fault to the San Jacinto Fault results in increased vertical 

slip rates along the Sierra Madre and Cucamonga thrust systems in the SGM. 

This increase in uplift rate was likely not restricted to the Big Tujunga drainage, 

and we see scattered evidence of transient signals elsewhere in the SGM. In particular, 

the low relief surface of Copter Flats (Figure 1) is potentially correlative to the middle 

physiographic zone of BTC. Rough estimates based on detrital CRN erosion rates 

[DiBiase et al., 2010] and the projection of the upper reaches of the Iron Fork of the San 

Gabriel River reveal a story consistent with that along BTC. However, projecting these 

spatially limited surfaces is fraught with difficulty, and a change in vegetation or switch 

to frost shattering at high elevation may also be important. 
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CONCLUSIONS 

We have described a two-staged transient within Big Tujunga Creek in the San 

Gabriel Mountains, CA. The upper (earlier) transient in the BTC catchment has nearly 

propagated through the entire fluvial network, with only isolated patches of an elevated 

low-relief weathering surface remaining. The lower transient, however, is characterized 

by a dramatic inner gorge with over-steepened valley walls and fluvial hanging valleys. 

In both cases, we interpret an increase in the rate of local baselevel fall that resulted in the 

propagation of a wave of incision upstream through the landscape, with discrete 

knickpoints separating adjusting from relict portions of the landscape. We used a 10 m 

digital elevation model identify knickpoints and extract channel long profiles and 

hillslope angles. Combining erosion rate estimates with elevation differences between 

projected long profiles allows for the estimation of the timing of increases in baselevel 

fall. We found the age of the older transient to be ca. 7-9 Ma, which likely corresponds to 

the initiation of uplift in the SGM associated with the transfer of slip from the San 

Gabriel Fault to the current trace of the San Andreas Fault. The younger transient dates to 

ca. 0.5-2.5 Ma, which overlaps with estimates of activation of the San Jacinto Fault Zone, 

the inception of which has been linked to increases in rock uplift rate in both the eastern 

San Gabriel Mountains and in the nearby San Bernardino Mountains. 

The lower BTC transient also affords us the opportunity to investigate the nature 

of bedrock channel response to temporal forcing in a relatively homogenous lithology 

(massive crystalline rocks). Supplementing detailed field surveys with 160 km2 of 

airborne LiDAR-derived topography (1 m resolution), we mapped channel width, valley 

width, and the extent of bedrock steps greater than 3 m throughout the channel network. 

We also mapped the extent of bedrock exposure in 20 km of channels both above and 
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below the main knickpoint. We found, as shown in other landscapes, that channels 

respond to the transient signal by narrowing and steepening. Additionally, much of the 

increase in slope (up to 60 percent) tends to be in the form of discrete bedrock steps 

separating channel reaches that maintain slopes just necessary to transport available 

sediment. The prevalence of large bedrock steps, as well as the preservation of a 

continuous strath terrace 60 m above the current channel profile in lower BTC strongly 

contrasts the channel morphology upstream, suggesting that the style, in addition to the 

pace, of baselevel fall has changed in the past 1-2 Ma. 
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FIGURE CAPTIONS 

Figure 5.1. Overview map of San Gabriel Mountains, California, showing local relief 

measured with a 250 m radius circular window. Black lines indicate quaternary faults 

(thickness corresponds to activity, http://earthquakes.usgs.gov/regional/qfaults). SAF = 

San Andreas Fault; SGF = San Gabriel Fault; SMFZ = Sierra Madre Fault Zone; CFZ = 

Cucamonga Fault Zone. Red outline highlights the catchment draining Big Tujunga 

Creek. Other labeled regions mentioned in text include LG = Lower Gorge of Big 

Tujunga Creek; ChF = Chilao Flats; and CoF = Copter Flats. 

 

Figure 5.2. Conceptual diagram of a two-staged increase in baselevel fall, showing 

longitudinal profiles of the current stream channel (solid line), projections of relict 

channels (dotted and dashed lines), and the location of knickpoints (circles). Arrows 

indicate variables used in equations (5.2) and (5.3). 

 

Figure 5.3. Shaded relief map of the Big Tujunga Creek watershed, highlighting (a) the 

extent of LiDAR coverage (gray hachures), detailed field surveys (blue lines), and Figure 

5.4 (star), (b) the distribution of channel steepness index (colored stream network) and 

knickpoints (circles) relative to elevation breaks at 1000 and 1550 m, and (c) the 

distribution of hillslope angle relative to the position of knickpoints and elevation breaks 

 

Figure 5.4. Example of mapping morphologic features in the lower gorge of the Big 

Tujunga using 1 m LiDAR slope map draped over shaded relief. Profile A-A’ (inset) 

shows a four-staged waterfall along Falls Creek, with bedrock steps shown in red. WV 

indicates the definition of valley width used in Figure 5.8. Strath terraces appear as 
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elevated low slope (< 10) regions adjacent to the main stem Big Tujunga Creek. Block 

arrows show the location of photos (b) (left arrow, lower waterfall of Falls Creek) and (c) 

(right arrow, strath terraces of Big Tujunga Creek). 

 

Figure 5.5. Mean slope of 50 m elevation bins derived from 10 m DEM plotted against 

elevation for the Big Tujunga Creek catchment. Bars indicate mean slope for elevations 

600-1000 m (dark bar, 33), 1000-1550 m (medium bar, 27), and 1550-2150 m (light 

bar, 23). 

 

Figure 5.6. Channel long profile for the main stem of Big Tujunga Creek (location 

shown by inset), showing three graded channel segments separated by two knickpoints 

(circles). Bedrock steps greater than 3 m are highlighted in red. Profile fits using equation 

(5.1) with reference concavity index of 0.45 are fit to the upper (ksn = 22), middle (ksn = 

64), and lower (ksn = 80) reaches of the profile. In contrast to typical predictions (e.g., 

Figure 5.2), the three channel segments are offset by large oversteepened reaches 

consisting of numerous bedrock steps. 

 

Figure 5.7. Reconstructed long profiles of tributaries to the lower gorge of Big Tujunga 

Creek (note x-axis similar to Figure 5.6). Dotted lines show projections of tributary 

profiles approximately grading to the projected mainstem profile (thick dashed line). Thin 

dashed line highlights an intermediate level defined by numerous mapped strath terraces 

30 m above the current channel (grey circles, Figure 5. 4c). Thick black lines indicate 

bedrock steps greater than 3 m in height. 
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Figure 5.8. Results of channel surveys along (a) Fox Creek, (b) Big Tujunga Creek, and 

(c) Chilao Creek. Surveyed long profiles are shown by black lines. Valley width 

measured from the 1 m LiDAR DEM (Figure 5.4a) is shown by white circles. Percent 

bedrock exposure in the channel bed is shown by gray circles. The vertical dashed line in 

(a) highlights the lithologic contact between granite and anorthosite shown in Figure 

5.3b. Black circles in (b) indicate field measurements of channel width averaged over 100 

m to highlight reaches where valley width and bankfull channel width are equal (usually 

corresponding to bedrock lined channels). 

 

Figure 5.9. Plot of channel steepness index against catchment averaged erosion rate for 

the San Gabriel Mountains. Horizontal error bars indicate 5% uncertainty in production 

rate added to 1σ analytical uncertainty in erosion rates. Vertical error bars indicate 

estimated uncertainty in ksn as described by DiBiase et al. [2010]. Black line shows fit 

through erosion rate data using the stochastic threshold model described by DiBiase et al. 

[in review]. 
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CHAPTER 6 

SYNTHESIS 

This study presents a quantitative analysis of the surface processes acting to 

erode the San Gabriel Mountains of California. Here I summarize the main findings from 

this research and identify directions for further work. 

DISTRIBUTION OF EROSION RATES IN THE SGM 

As presented in Chapters 2, 3, and 5, and summarized in Appendix B, we 

quantified 80 catchment-averaged erosion rates using 10Be concentrations in stream sands 

from across the San Gabriel Mountains (SGM). These data, in conjunction with nearly 60 

point measurements of soil production rates [Heimsath et al., in press], provide one of the 

most comprehensive collections of long term erosion rates to date, and set the framework 

for the interpretations described below. Erosion rates in the SGM range from 0.03 to 1.1 

mm/a, and generally increase from west to east, with two notable exceptions. First, the 

lowest erosion rates come from an elevated low relief surface in the central SGM (Chilao 

Flats, Figure 5.1). As discussed in Chapter 5, we interpreted this surface to be a remnant 

of pre-uplift SGM topography that remains disconnected from active baselevel fall at the 

range front. The second exception to the west-east trend in erosion rates occurs in the 

western front range of the SGM, from Arroyo Seco to Santa Anita Creek. Erosion rates 

from these catchments rival those measured in the San Gabriel River, but although mean 

hillslope angle is similar between these regions, the channel steepness index of the front 

range streams is significantly lower (~100 m0.9 vs 175 m 0.9). We offered two potential 

explanations for the accelerated erosion rates observed in these catchments. First, 

increased fire frequency in the 20th century [Lavé and Burbank, 2004] may be influencing 

our erosion rate measurements, even though these rates are averaged over thousands of 
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years. Second, slight differences in the flood frequency distribution (Figure 4.4) may 

result in erosion thresholds being exceeded more frequently. Nonetheless, Figure 5.9 

reflects one of the most robust relationships between topography and erosion rate found 

to date. The scatter in Figure 5.9 likely reflects differences in rock strength, climatic 

variables, and inherent variations in stochastic erosion processes. Finally, the erosion rate 

data from this study suggest that detrital CRN rates in rapidly eroding catchments are less 

sensitive to issues of mass wasting and fluvial mixing than previously thought. We found 

no relationship between erosion rate and catchment area in our data (Figure 2.5), and 

catchments as small as 3 km2 appear to provide robust estimates of erosion rate, in 

contrast to predictions based on landslide models by Niemi et al. [2005] and Yanites et al. 

[2009]. 

HILLSLOPE PROCESS AND FORM 

Chapter 2 presents a quantitative analysis of the relationship between mean 

hillslope angle and erosion rate in the SGM using a 10 m digital elevation model (DEM). 

We found that for catchment-averaged erosion rates below ~0.3 mm/a, mean hillslope 

angle increases roughly linearly with erosion rate. For basins eroding more rapidly, mean 

slope stays approximately constant (~36-38). This relationship is consistent with, but not 

unique to, the relationship between mean slope and erosion rate predicted by the non-

linear hillslope transport model of Roering et al. [1999]. We concluded in Chapter 2 that, 

as found in similar studies of hillslope angle and erosion rate [e.g., Binnie et al., 2007; 

Montgomery and Brandon, 2002; Ouimet et al., 2009], the achievement of threshold 

slope angles due to limits in rock strength [e.g., Schmidt and Montgomery, 1995] appears 

to decouple hillslope form from erosion rate in steep landscapes. 
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However, in Chapter 3 we used a LiDAR-derived, high resolution (1 m) DEM to 

show that hillslopes do indeed preserve signals of tectonic forcing in threshold 

landscapes. The increase in observation scale afforded by the 1 m DEM (compared to 10- 

and 30 m DEMs typically used for such analysis), along with a series of high-resolution 

(1 cm) panoramic field photographs, enabled a closer examination of the transition from 

soil mantled to rocky landscapes in the SGM. We noticed in the field that areas of locally 

high slope on the 1 m DEM tended to correspond to rocky outcrops on hillsides. To 

quantitatively test this, we calibrated a slope-based rock exposure index to independently 

map bedrock exposure, and found excellent agreement between percent local slopes 

greater than 45 and percent exposed rock (over scales of ~100 m). 

We used 20 small (~3 km2) catchments where we have both estimates of erosion 

rate and 1 m LiDAR data to quantitatively evaluate the changes in hillslope texture and 

form across a gradient in erosion rate from 0.3 – 1.1 mm/a. In contrast to conclusions 

based on coarser analysis using 10 m topography data and larger basins, we found a 

monotonic relationship between mean slope and erosion rate, though a kink at ca. 300 

m/Ma indicates a decrease in the sensitivity of slope for high erosion rates. Rock 

exposure, as quantified by the metric described above, increases linearly with erosion rate 

for catchments eroding more rapidly than ~300 m/Ma. Below this rate, hillslopes tend to 

be entirely soil mantled. Furthermore, we used slope-area plots and maps of total 

catchment area to investigate how drainage density varies with erosion rate. We found 

that as erosion rates increase, the extent of the fluvial network decreases, while colluvial 

channels extend downstream. This competition acts to keep the total drainage density 

(and equivalently mean hillslope length) similar across the SGM. 
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Thus, the above analysis reveals important textural details lost in 10 or 30 m 

resolution DEMs of steep landscapes, and reinforces the need for process-based studies 

of threshold hillslopes and colluvial channels. 

CHANNEL PROCESS AND FORM 

One of the fundamental results from this study is our quantification of the 

relationship between channel steepness index and erosion rate for steady-state catchments 

in the SGM. We show in Chapter 2 that the channel steepness index serves as a scale-

independent metric of fluvial relief that can furthermore be tied directly to channel 

incision models [c.f., Wobus et al., 2006]. The relationship between channel steepness 

and erosion rate is non-linear, approximating a power law with exponent ϕ ~ 0.5 

(equation (4.1)) which implies that channels become more efficient as they steepen. We 

focused on four potential mechanisms that could lead to this form: (1) orographic 

precipitation gradients may lead to increasing erosional efficiency with relief [e.g., Roe et 

al., 2002]; (2) channels may narrow as they steepen [e.g., Finnegan et al., 2005]; (3) the 

mechanics of bedrock incision may be non-linear with shear stress [e.g., Whipple et al., 

2000]; or (4) thresholds of erosion preferentially retard the incision of low-slope channels 

[e.g., Lague et al., 2005; Tucker, 2004].  

Using detailed channel surveys where we measured channel geometry and bed 

state, along with analyzing decadal precipitation and stream-flow records, we concluded 

in Chapter 4 that the first 3 effects are unlikely to be significant enough to generate the 

observed non-linear relationship between channel steepness and erosion rate. Rather, the 

nature of the relationship between steady-state channel steepness and erosion rate can be 

explained using a simple bedrock incision model. This model incorporates both an 
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erosion threshold and a probability distribution function of large floods that follows an 

inverse power-law scaling [Lague et al., 2005]. 

Starting from this case, we explored the influence of changing mean runoff and 

variability on the modeled relationship between channel steepness and erosion rate. For 

the range of parameter space tested, erosion rates increase with both increasing mean 

runoff and increasing discharge variability. We used an empirical relationship between 

discharge mean and variability [Molnar et al., 2006] to test whether dry, variable climates 

can be more efficient than wet, stable climates. We showed that for channels with a high 

erosion threshold (or alternatively low steepness) a peak exists in erosional efficiency that 

lies near a mean runoff of 200-400 mm/a. Furthermore, erosion rates are predicted to be 

insensitive to increases in runoff above ~500 mm/a.  

In Chapter 5, we used the example of Big Tujunga Creek to study the transient 

behavior of bedrock channels in the SGM responding to what we infer to be increases in 

rock uplift rate. Detailed channel surveys across knickpoints demonstrated behavior seen 

in many other landscapes [e.g., Berlin and Anderson, 2009; Crosby and Whipple, 2006; 

Haviv et al., 2006]. Just upstream of knickpoints (~102 m), channels tend to steepen, 

sediment cover decreases, and valleys narrow to approximately bankfull channel width 

(Figure 5.8). In the SGM, as elsewhere, often times knickpoints are characterized not 

only by a break in regional slope, but also a break in elevation in the form of discrete 

waterfalls [e.g., Haviv et al., 2010]. Indeed, there are many examples of extensive (up to 

300 m of elevation drop) oversteepened zones downstream of knickpoints in Big Tujunga 

Creek, consisting mainly of bedrock steps larger than 3 m. Furthermore, these 

oversteepened zones are not constrained to tributary junctions (e.g., hanging valleys), and 

are not easily reproduced by existing bedrock incision models. Rather, we interpreted that 
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these oversteepenings arise due to local variation in rock strength, and grow and persist 

due to negative feedbacks between slope and erosion rate present in some sediment-flux 

dependent incision models [e.g., Crosby et al., 2007]. This interpretation is further 

supported by the enhancement of these oversteepenings below knickpoints draining relict 

surfaces with low coarse sediment supply. 

TECTONIC IMPLICATIONS 

In Chapter 5, we reconstructed relict stream profiles in Big Tujunga Creek and 

used measures of erosion rate (both direct and inferred) to estimate the timing of a two-

staged increase in the rate of baselevel fall. This two-staged increase in baselevel fall, 

which we attribute to increasing vertical slip rate along the southern range-bounding 

thrust faults, resulted in the propagation of two waves of knickpoints through Big 

Tujunga Creek. The upper knickpoints have nearly swept through the landscape, but are 

retained on two tributaries near elevations of 1550 m, above which lies the relict surface 

of Chilao Flats. The lower knickpoints separate a predominantly soil-mantled, slowly 

eroding landscape from a dramatic inner gorge along the main stem of Big Tujunga 

Creek, with the boundary between the two landscapes lying near the 1000 m elevation 

contour. Based on our reconstructions, we interpreted the age of the upper knickpoint-

forming event to be 7-9 Ma, suggesting that Chilao Flats represents the pre-uplift 

topography of the SGM. This knickpoint was likely generated by the switch from 

predominantly strike slip motion along the San Gabriel Fault (~6-12 Ma) to thrust 

faulting along the Sierra Madre Fault (~7 Ma to present) [Blythe et al., 2002; Matti and 

Morton, 1993]. The younger knickpoint-forming event dates to ca. 1-2 Ma, but the 

mechanism for a change in uplift pattern is unclear. The age of the younger event was 

coeval with the estimated initiation age of the right-lateral San Jacinto Fault, which then 
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began accumulating strain formerly accommodated by the San Andreas Fault [e.g., 

Blisniuk et al., 2010; Kirby et al., 2007]. However, while the initiation of the San Jacinto 

Fault has been used to explain recent increases in uplift rate of the nearby San Bernardino 

Mountains [Spotila et al., 1998], the influence of this westward-stepping of strain 

accumulation on the uplift pattern in the SGM is unclear. 

Our results from Chapter 4 have broader implications for the dynamic coupling 

of climate and tectonics. In particular, we showed that two behaviors emerge from our 

modeling results that have the potential to greatly weaken the influence of climatically 

driven increases in rock uplift rate for compressional orogens. First, the prediction of a 

non-linear relationship between channel steepness and erosion rate (ϕ < 1, equation 

(4.1)), along with our observation of ϕ ~ 0.5 in the SGM, suggests a weaker dependence 

of rock uplift rate on erosional efficiency than typically assumed [e.g., Whipple and Meade, 

2004]. Second, and perhaps more importantly, we showed that if increases in mean runoff 

are offset by decreases in flow variability [e.g., Molnar et al., 2006], then the sensitivity of 

erosion rate to climate is greatly reduced.  

FUTURE WORK 

The erosion rate dataset presented above, and used throughout this dissertation, 

provides a solid foundation for further studies related to surface processes in the SGM. In 

particular, the gradient in erosion rates, soil production rates, hillslope form, and soil 

cover enables a test of how chemical denudation varies as a function of physical erosion 

rate. This relationship has been the focus of a number of recent theoretical treatments 

[e.g., Ferrier and Kirchner, 2008; Hilley et al., 2010], and field studies in soil mantled 

landscapes [e.g., Dixon et al., 2009; Riebe et al., 2001], but the role of chemical 

weathering in denuding or weakening steep, rocky landscapes has yet to be tested. 
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Second, the 2009 Station fire burned much of the range, providing an opportunity to 

study the influences of fire on soil transport rates, critical hillslope angle, and sediment 

delivery to channels in an area where long term rates are well constrained. Finally, the 

tectonic story presented in Chapter 5 can be greatly supplemented by kinematic modeling 

of southern California faults to test whether the transfer of slip from the San Andreas 

Fault to the San Jacinto Fault results in increased vertical slip rates along the Sierra 

Madre and Cucamonga thrust systems. Additionally, although the general thermal history 

of the SGM was investigated by Spotila et al. [1998] and Blythe et al. [2000], a series of 

thermochronologic samples along targeted elevation transects would greatly aid our 

interpretations of uplift history based on the topographic analysis presented in Chapter 5. 
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APPENDIX A 

CHAPTER 4 SUPPLEMENTARY: 

CROSS-SECTIONAL FLOW MODELING OF AT-A-STATION SHEAR STRESS-

DISCHARGE RELATIONSHIP 
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The standard formulation for bed shear stress (equation (4.3)) combines a steady, 

uniform flow approximation for a wide channel with a cross-section averaged frictional 

resistance relationship [e.g. , Howard, 1994]. In addition, hydraulic geometry relations 

are often used to model downstream and at-a-station variations in channel width with 

water discharge (equations (4.4a, 4.4b)) [e.g. , Tucker, 2004]. Taken together, these 

define the relationship between discharge and bed shear stress (equation (4.5)) used in the 

stochastic-threshold models of Tucker [2004] and Lague et al. [2005] and discussed in 

the text. We argue on the basis of an analysis described below that the at-a-station 

exponent (α(1 - ωs)) in equation (4.5) is best considered an effective model 

parameterization of the combined effects of channel geometry and frictional losses on 

channel bed and banks – its function in the model is to transform a pdf of flood 

discharges into a pdf of bed shear stresses. Thus while the exponent ωs in equation (4.4b) 

varies strongly with channel geometry and can be measured in the field [e.g. , Turowski et 

al., 2008], applying these results to equation (4.5) may not be appropriate due to the 

influence of frictional losses along channel banks, an effect ignored by the wide channel 

assumption built into equation (4.3), but that also varies with channel geometry and flow 

depth. Because it controls how flood magnitude translates into bed shear stress, the at-a-

station exponent in equation (4.5) (α(1 - ωs)) strongly influences the shape of the 

relationship between channel steepness and erosion rate (equation (4.11)). 

To evaluate whether estimates of ωs using equation (4.4b) provide reasonable 

approximations of how shear stress varies with discharge in a given cross-section, we 

used a 2D cross-sectional flow model [Kean and Smith, 2004] to measure the 

relationships among discharge, shear stress, and channel top width for a trapezoidal 

channel with varying bank angles. Kean and Smith [2004] extended the ray-isovel 
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method of Houjou et al. [1990] to accommodate a range of cross sectional geometries. 

We use the simple case of a trapezoidal channel with a fixed basal width of 10 m, and 

vary bank angle from 20-85°. We fixed slope to 0.001, and z0 to 0.008 m (for both bed 

and banks) for all runs. Fixed bed width, slope and roughness are selected because for 

this analysis only the at-a-station variability of discharge and the resulting bed shear 

stresses are of interest. Downstream variation in discharge and shear stress is unaffected, 

and we have confirmed that the effect of channel slope is well captured with the standard 

exponent, β, in equations (4.3 and 4.5). For each of 4 different bank angles, we ran 4-9 

flows of increasing discharge. Flow depth and top width were output from each run, and 

width-to-depth ratios (w/d) ranged from ~3-30 for each bank angle. In addition, for each 

run, we measured the average boundary shear stress across the center 70% of the channel 

bed to minimize corner flow effects and for consistency with a channel incision model 

based on bed shear stress. We define 3 normalized variables for comparing the results of 

each geometry – Q*, W*, and τ* – as the discharge, width, and average shear stress 

normalized by the low flow condition (chosen to have a reasonable width to depth ratio, 

w/d = 20-30). 

Plotting W* against Q* enables a literal interpretation of ωs, though it should be 

highlighted that the relationship clearly does not follow the power-law scaling described 

by equation (4.4b). Even so, we can estimate a value of ωs by fitting a power-law for each 

geometry to generate a relationship between ωs and bank angle. Although not entirely 

accurate, this approach nonetheless captures the general trend of ωs decreasing to zero as 

bank angle approaches 90° (Figure A1), generally matching measurements at gage 

stations on Taiwanese rivers and associated cross-sectional flow analysis by Turowski et 

al. [2008]. 
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We can evaluate the suitability of these estimates of ωs for application to 

prediction the discharge-shear stress relationship by comparing data generated by the 

cross-sectional flow model to the expected relationship between Q* and τ* according to 

equation (5), with ωs varying as in Figure A1. Figure A2 shows that the results from 

channel geometries with bank angle ranging from 20-85° follow similar scaling between 

Q* and τ*, in contrast to expectations using equation (4.5) with ωs varying as a function 

of channel geometry. The slope of the data in log-log space is ~0.5, which corresponds to 

a constant, effective ωs value of ~0.25 for α = 2/3 as dictated by the cross-sectional flow 

model. This suggests geometrical effects and sidewall friction balance each other out 

approximately to keep the at-a-station exponent (α(1 - ωs)) constant across a range of 

channel geometries. Thus to capture this behavior, we use a constant value of ωs = 0.25 

for our analyses, but note that given the importance of the exponent (α(1 - ωs)) to the ks-E 

relationship, this problem deserves greater attention to better parameterize the issue of 

shear stress and channel width scaling in mountain channels. 
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FIGURES 

Figure A1. Plot of normalized channel width (W*) against normalized discharge (Q*) for 

channel cross-sectional flow model runs with varying bank angle θ. Solid line shows 

forced fit of equation (4.4b) to the case θ = 20°, resulting in an effective ωs value of 0.25. 

Inset shows dependence of effective ωs on channel bank angle. 

 

Figure A2. Plot of normalized bed shear stress (τ*) against normalized discharge (Q*) 

for channel cross-sectional flow model runs with varying bank angle θ. Lines indicate 

expected relationship between τ* and Q* assuming no bank friction. Instead, the 

relationship is similar for all cases, suggesting that the competing effects of channel 

widening and bank friction are balanced, and that the at-a-station discharge exponent α(1- 

ωs) holds constant near a value of 0.5, corresponding to ωs = 0.25. 
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APPENDIX C 

CHANNEL SURVEY METHODS AND DATA 
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Over the course of four summers (2007-2010), I surveyed approximately 60 km 

of stream channels throughout the San Gabriel Mountains. This appendix provides both a 

brief summary of the field methods, as well as a data table containing all of the 

observations. 

Because of poor GPS satellite coverage in these canyons, I used a laser 

rangefinder and electronic data-logger to geo-locate observations of channel bed state and 

geometry. At each surveyed point, I recorded measurements of bankfull width, valley 

width, the percent of rock exposed in the channel bed and banks, and the median grain 

size (D50) of the surface bed material. I measured bankfull channel width using a laser 

rangefinder, based on vegetation lines and slope breaks in channel cross sections. For 

incised reaches, I measured valley width using a laser rangefinder. In reaches with 

extensive valley flats (> 20 m), I supplemented our field surveys with measurements of 

valley width from the 1 m LiDAR DEM where applicable (see Chapter 5). 

For each point, I estimated the percent of bedrock exposed in channel bed and 

banks to the nearest 10%. For example, channel reaches incised entirely into bedrock 

were assigned a bank rock exposure of 100%, while those confined only on one bank by 

rock were assigned a bank rock exposure of 50%. All observations were made at low 

flow conditions. I estimated D50 by eye, intermittently calibrating these observations 

with more detailed point counts (50 total point counts, see Chapter 4 for details). For 

early surveys, grain size estimates were made qualitatively (e.g., gravel, cobble, boulder); 

in later surveys I switched to estimating grain size to the nearest ½ phi size. For ease of 

comparison, I converted qualitative survey results to numeric using the following 

conversion: sand = 2 mm; pea gravel = 11 mm; fine gravel = 22 mm; coarse gravel = 45 

mm; cobble = 90 mm; small boulder = 256 mm; medium boulder = 512 mm; large 
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boulder =1024 mm. These converted estimates, which should be interpreted with caution, 

are marked in the data table by a star. In particular, the range of clast sizes covered by the 

“cobble” classification is quite large. 

The table below also includes location information and contributing area 

(calculated from a 10 m DEM) for each point. 

 

208



Station ID Eastinga Northinga Area (km2) Bankfull Width (m) Valley Width (m) % Rock (bed) % Rock (bank) D50

efork-1 429238 3787648 150.5 0 0
efork-3 429234 3787717 150.5 15 15 0 0 90 *

efork-4 429207 3787788 150.5 15 15 0 40 45 *

efork-5 429208 3787827 150.5 0 0 45 *

efork-5 429209 3787866 150.4 0 0 45 *

efork-7 429217 3787910 150.4 15 30 0 10 45 *

efork-7 429219 3787953 150.4 15 30 0 10 45 *

efork-9 429239 3787988 150.4 13 30 0 0 45 *

efork-9 429257 3788003 150.3 13 30 0 0 45 *

efork-11 429272 3788033 150.3 11 20 0 20 45 *

efork-12 429287 3788085 150.3 17 40 0 50 45 *

efork-12 429297 3788154 150.2 17 40 0 50 45 *

efork-14 429306 3788208 150.2 20 25 0 25 45 *

efork-14 429348 3788259 150.2 20 25 0 25 45 *

efork-16 429424 3788257 150.2 20 50 0 5 45 *

efork-17 429436 3788264 150.2 0 50 45 *

efork-18 429440 3788295 150.2 22 70 0 10 45 *

efork-18 429420 3788336 150.1 22 70 0 10 45 *

efork-20 429412 3788393 150.0 40 90 0 15 45 *

efork-20 429403 3788448 149.9 40 90 0 15 45 *

efork-22 429383 3788495 149.8 15 150 0 0 45 *

efork-22 429417 3788552 149.3 15 150 0 0 45 *

efork-24 429454 3788567 149.3 90 0 0 45 *

efork-24 429523 3788559 149.3 90 0 0 45 *

efork-25 429564 3788577 149.2 0 0
efork-27 429601 3788613 149.2 15 90 0 5 45 *

efork-27 429619 3788644 149.2 15 90 0 5 45 *

efork-29 429580 3788699 149.2 15 75 0 0 45 *

efork-29 429561 3788770 149.1 15 75 0 0 45 *

efork-30 429558 3788787 149.0 0 0
efork-31 429579 3788814 148.9 0 0
efork-32 429610 3788861 148.9 0 0
efork-34 429642 3788879 148.8 20 70 0 5 45 *

efork-34 429693 3788865 148.7 20 70 0 5 45 *

efork-35 429742 3788860 148.7 0 0
efork-37 429791 3788877 148.7 15 80 0 0 45 *

efork-37 429826 3788878 148.7 15 80 0 0 45 *

efork-38 429860 3788911 148.7 0 0
efork-39 429899 3788944 148.4 0 0
efork-40 429904 3788949 148.4 0 0
efork-42 429905 3789027 148.4 30 0 80 45 *

efork-42 429907 3789087 148.4 30 0 80 45 *

efork-44 429921 3789129 148.4 0 0 45 *

efork-44 429937 3789190 148.4 0 0 45 *

efork-45 429964 3789226 148.3 0 0
efork-46 429979 3789228 147.8 0 0
efork-48 430016 3789277 147.7 0 0 45 *

efork-49 430050 3789349 147.7 15 25 0 0 90 *

efork-50 430078 3789427 147.7 0 0 90 *

efork2-0 430049 3789595 146.3 0 0 90 *

efork2-1 430040 3789658 146.2 12 20 5 50 45 *

efork2-1 430048 3789681 146.1 12 20 5 50 45 *

efork2-3 430068 3789703 146.0 12 25 0 50 90 *

efork2-3 430095 3789731 146.0 12 25 0 50 90 *

efork2-5 430106 3789743 145.9 15 45 0 50 90 *

efork2-5 430110 3789771 145.9 15 45 0 50 90 *

efork2-7 430101 3789805 145.9 13 35 0 0 90 *

efork2-8 430100 3789832 145.9 5 50 90 *

efork2-9 430125 3789862 145.9 15 25 0 0 90 *

efork2-10 430169 3789889 145.9 15 15 0 50 90 *

efork2-10 430176 3789924 145.9 15 15 0 50 90 *

efork2-11 430174 3789934 145.9 0 0
efork2-14 430176 3789974 145.8 9 30 0 40 90 *

efork2-15 430183 3790022 145.8 9 24 0 50 90 *

efork2-16 430186 3790045 145.8 0 50 90 *

efork2-16 430183 3790065 145.7 0 50 90 *
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Station ID Eastinga Northinga Area (km2) Bankfull Width (m) Valley Width (m) % Rock (bed) % Rock (bank) D50

efork2-18 430175 3790090 145.6 15 40 2 40 90 *

efork2-18 430159 3790109 145.5 15 40 2 40 90 *

efork2-19 430134 3790153 145.5 0 0
efork2-20 430125 3790178 145.4 0 0
efork2-22 430134 3790218 145.3 0 0 90 *

efork2-23 430156 3790248 145.3 0 0 90 *

efork2-23 430192 3790279 145.2 0 0 90 *

efork2-24 430197 3790314 145.2 0 0
efork2-25 430194 3790369 145.1 0 0
efork2-26 430189 3790393 145.1 0 0
efork2-27 430177 3790421 145.1 0 0
efork2-28 430172 3790431 145.1 0 0
efork2-30 430151 3790439 145.1 12 40 0 50 90 *

efork2-30 430138 3790436 145.1 12 40 0 50 90 *

efork2-31 430123 3790449 145.1 0 0
efork2-32 430115 3790468 145.1 0 0
efork2-34 430120 3790501 142.3 0 0 90 *

efork2-34 430151 3790528 142.3 0 0 90 *

efork2-35 430158 3790533 142.3 0 0
efork2-36 430179 3790562 142.3 0 0
efork2-38 430198 3790596 142.2 12 25 5 0 90 *

efork2-39 430230 3790627 142.2 9 50 0 50 90 *

efork2-39 430243 3790636 142.2 9 50 0 50 90 *

efork2-41 430268 3790627 142.2 0 0 90 *

efork2-43 430316 3790621 142.2 12 30 0 10 45 *

efork2-43 430359 3790632 142.2 12 30 0 10 45 *

efork2-44 430381 3790641 142.2 0 0
efork2-46 430400 3790657 142.1 12 60 5 0 45 *

efork2-47 430427 3790671 142.1 12 0 15 45 *

efork2-47 430428 3790712 142.1 12 0 15 45 *

efork2-48 430415 3790761 141.6 0 0
efork2-50 430415 3790785 141.6 0 0 45 *

efork2-52 430423 3790814 141.6 0 0 45 *

efork2-52 430444 3790833 141.6 0 0 45 *

efork2-53 430468 3790834 141.6 0 0
efork2-54 430491 3790816 141.5 0 0
efork2-56 430533 3790808 141.5 13 50 0 0 90 *

efork2-56 430571 3790804 141.1 13 50 0 0 90 *

efork2-57 430623 3790802 141.0 0 0
efork2-58 430684 3790809 140.9 0 0
efork2-59 430760 3790816 140.9 0 0
efork2-60 430780 3790825 140.8 0 0
efork2-62 430830 3790866 140.7 10 35 0 0 90 *

efork2-62 430857 3790900 140.7 10 35 0 0 90 *

efork2-64 430878 3790911 140.6 0 0 90 *

sf-litroc-43 407558 3803086 0.3 2 2 5 45 *

sf-litroc-44 407576 3803099 0.3 1.5 4 10 45 *

sf-litroc-45 407596 3803113 0.3 1.5 30 15 45 *

sf-litroc-45 407608 3803134 0.3 0 0
sf-litroc-47 407611 3803145 0.3 0 0 45 *

sf-litroc-47 407616 3803148 0.3 0 0
sf-litroc-48 407626 3803170 0.3 0 0
sf-litroc-49 407635 3803169 0.3 0 0
sf-litroc-50 407647 3803166 0.3 0 0
sf-litroc-51 407652 3803170 0.3 0 0
sf-litroc-52 407683 3803164 0.3 0 0
sf-litroc-53 407694 3803163 0.3 0 0
sf-litroc-54 407717 3803161 0.3 0 0
sf-litroc-55 407726 3803166 0.3 0 0
sf-litroc-56 407732 3803164 0.3 0 0
sf-litroc-57 407745 3803153 0.3 0 0
sf-litroc-58 407759 3803164 0.3 0 0
sf-litroc-60 407770 3803179 0.3 0 0 45 *

sf-litroc-60 407775 3803185 0.3 0 0
sf-litroc-61 407775 3803200 0.9 0 0
sf-litroc-63 407781 3803203 0.9 1.5 0 0 2 *
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Station ID Eastinga Northinga Area (km2) Bankfull Width (m) Valley Width (m) % Rock (bed) % Rock (bank) D50

sf-litroc-64 407799 3803208 0.9 2 0 0 22 *

sf-litroc-65 407803 3803207 0.9 2 100 50 1024 *

sf-litroc-66 407814 3803212 0.9 2 0 0 11 *

sf-litroc-67 407826 3803233 0.9 1.5 0 5 45 *

sf-litroc-68 407841 3803246 0.9 0 10 45 *

sf-litroc-68 407851 3803247 0.9 0 0
sf-litroc-70 407867 3803248 0.9 2.5 15 40 11 *

sf-litroc-71 407872 3803259 0.9 0 5 45 *

sf-litroc-71 407886 3803266 0.9 0 0
sf-litroc-72 407900 3803270 0.9 0 0
sf-litroc-73 407920 3803289 0.9 0 0
sf-litroc-74 407926 3803308 0.9 0 0
sf-litroc-75 407924 3803319 0.9 0 0
sf-litroc-76 407921 3803325 1.9 0 0
sf-litroc-77 407928 3803339 1.9 0 0
sf-litroc-78 407936 3803347 1.9 0 0
sf-litroc-80 407938 3803362 1.9 0 0 45 *

sf-litroc-80 407970 3803366 1.9 0 0
sf-litroc-81 407980 3803369 2.0 0 0
sf-litroc-82 407989 3803377 2.0 0 0
sf-litroc-83 408000 3803382 2.0 0 0
sf-litroc-84 408008 3803389 2.0 0 0
sf-litroc-85 408014 3803389 2.0 0 0
sf-litroc-87 408020 3803384 2.0 2 20 40 22 *

sf-litroc-88 408028 3803379 2.0 30 50 90 *

sf-litroc-89 408049 3803378 2.0 3 0 0 45 *

sf-litroc-89 408066 3803387 2.0 0 0
sf-litroc-90 408071 3803392 2.0 0 0
sf-litroc-92 408101 3803386 2.0 4 3 5 45 *

sf-litroc-92 408117 3803379 2.0 0 0
sf-litroc-93 408126 3803381 2.0 0 0
sf-litroc-95 408150 3803404 2.0 3 0 0 90 *

sf-litroc-95 408151 3803413 2.0 0 0
sf-litroc-97 408172 3803449 2.0 3 0 0 90 *

sf-litroc-98 408204 3803472 2.0 3 0 0 45 *

sf-litroc-99 408244 3803501 2.0 4 1 0 45 *

sf-litroc-100 408285 3803498 2.0 5 50 0 0 45 *

sf-litroc-100 408314 3803487 2.0 0 0
sf-litroc-102 408333 3803486 2.0 0 0 45 *

sf-litroc-102 408357 3803475 3.0 0 0
sf-litroc-104 408367 3803486 3.1 0 0 45 *

sf-litroc-105 408397 3803431 3.1 5 70 0 0 90 *

sf-litroc-105 408448 3803417 3.2 0 0
sf-litroc-107 408504 3803421 3.2 3 50 0 0 45 *

sf-litroc-108 408558 3803409 3.2 3 50 15 0 45 *

sf-litroc-109 408599 3803398 3.2 0 0 45 *

sf-litroc-109 408626 3803388 3.2 0 0
sf-litroc-111 408645 3803382 3.3 3 35 0 0 45 *

sf-litroc-111 408650 3803371 3.3 0 0
sf-litroc-112 408674 3803357 3.3 0 0
sf-litroc-113 408722 3803341 3.3 0 0
sf-litroc-115 408749 3803328 3.3 3 40 0 0 45 *

sf-litroc-115 408788 3803328 3.3 0 0
sf-litroc-116 408797 3803331 3.4 0 0
sf-litroc-118 408823 3803306 3.4 2 40 0 0 45 *

sf-litroc-118 408845 3803301 3.4 0 0
sf-litroc-120 408852 3803289 3.4 0 0 45 *

sf-litroc-120 408859 3803292 3.4 0 0
sf-litroc-121 408866 3803289 3.4 0 0
sf-litroc-122 408869 3803288 3.4 0 0
sf-litroc-124 408867 3803269 3.5 0 0 45 *

sf-litroc-124 408895 3803275 3.5 0 0
sf-litroc-125 408902 3803271 3.5 0 0
sf-litroc-126 408910 3803252 3.5 0 0
sf-litroc-127 408920 3803242 3.5 0 0
sf-litroc-129 408922 3803237 3.5 0 0 45 *
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Station ID Eastinga Northinga Area (km2) Bankfull Width (m) Valley Width (m) % Rock (bed) % Rock (bank) D50

sf-litroc-129 408941 3803229 3.5 0 0
sf-litroc-130 408962 3803223 3.5 0 0
sf-litroc-132 408977 3803225 3.5 1 50 0 5 11 *

sf-litroc-132 408986 3803229 3.5 0 0
sf-litroc-133 409000 3803225 3.5 0 0
sf-litroc-134 409006 3803224 3.5 0 0
sf-litroc-135 409010 3803227 3.5 0 0
sf-litroc-136 409018 3803227 3.5 0 0
sf-litroc-137 409035 3803214 3.5 0 0
sf-litroc-138 409047 3803206 3.6 0 0
sf-litroc-139 409065 3803197 3.6 0 0
sf-litroc-140 409074 3803200 3.6 0 0
sf-litroc-141 409081 3803201 3.6 0 0
sf-litroc-142 409094 3803200 3.6 0 0
sf-litroc-143 409106 3803203 3.6 0 0
sf-litroc-144 409115 3803204 3.6 0 0
sf-litroc-146 409122 3803203 3.6 0 0 11 *

sf-litroc-146 409133 3803190 3.6 0 0
sf-litroc-148 409129 3803184 3.6 0 0 11 *

sf-litroc-149 409165 3803182 3.6 3 10 0 2 *

sf-litroc-149 409185 3803177 7.9 0 0
sf-litroc-150 409189 3803178 7.9 0 0
sf-litroc-152 409197 3803190 7.9 0 0 2 *

sf-litroc-152 409224 3803154 7.9 0 0
sf-litroc-154 409222 3803140 7.9 5 40 10 5 45 *

sf-litroc-155 409256 3803117 7.9 5 30 70 10 90 *

sf-litroc-156 409289 3803114 7.9 3 30 10 0 45 *

sf-litroc-156 409317 3803122 7.9 0 0
sf-litroc-157 409326 3803133 7.9 0 0
sf-litroc-158 409333 3803149 7.9 0 0
sf-litroc-160 409340 3803158 7.9 10 10 45 *

sf-litroc-161 409344 3803164 7.9 2 5 0 0 90 *

sf-litroc-162 409358 3803188 7.9 3 3 80 70 256 *

sf-litroc-163 409371 3803203 8.0 3 3 20 10 2 *

sf-litroc-164 409372 3803210 8.0 5 0 90 *

sf-litroc-165 409391 3803238 8.0 4 4 30 30 90 *

sf-litroc-166 409406 3803245 8.0 4 4 20 40 45 *

sf-litroc-167 409421 3803252 8.0 4 4 50 50 256 *

sf-litroc-167 409440 3803259 8.0 0 0
sf-litroc-169 409447 3803263 8.0 3 3 5 90 256 *

sf-litroc-170 409452 3803266 8.0 3 3 20 80 256 *

sf-litroc-171 409456 3803268 8.0 4 4 0 40 11 *

sf-litroc-172 409463 3803274 8.0 4 4 0 0 2 *

sf-litroc-173 409477 3803277 8.1 4 4 0 40 2 *

sf-litroc-174 409484 3803275 8.1 4 4 0 50 45 *

sf-litroc-175 409504 3803275 8.1 3 10 0 50 90 *

sf-litroc-176 409563 3803299 8.1 5 10 30 10 90 *

middle_alder-37 406513 3802436 0.4 0 0
middle_alder-38 406506 3802432 0.4 0 0
middle_alder-40 406497 3802437 0.4 0 0 45 *

middle_alder-40 406489 3802449 0.4 0 0
middle_alder-41 406481 3802457 0.4 0 0
middle_alder-42 406477 3802464 0.4 0 0
middle_alder-43 406473 3802464 0.4 0 0
middle_alder-45 406449 3802472 0.4 0 2 45 *

middle_alder-45 406436 3802466 0.5 0 0
middle_alder-47 406431 3802460 0.5 4 0 0 45 *

middle_alder-47 406422 3802455 0.5 0 0
middle_alder-49 406411 3802445 0.5 0 0 45 *

middle_alder-49 406405 3802436 0.5 0 0
middle_alder-51 406390 3802417 0.5 0 0 45 *

middle_alder-52 406364 3802397 0.5 0 0
middle_alder-52 406350 3802374 0.5 0 0
middle_alder-53 406341 3802363 0.5 0 0
middle_alder-54 406337 3802353 0.5 0 0
middle_alder-55 406329 3802339 0.5 0 0
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Station ID Eastinga Northinga Area (km2) Bankfull Width (m) Valley Width (m) % Rock (bed) % Rock (bank) D50

middle_alder-56 406326 3802340 0.5 0 0
middle_alder-58 406319 3802340 0.5 0 0 45 *

middle_alder-58 406306 3802329 0.5 0 0
middle_alder-59 406299 3802323 0.5 0 0
middle_alder-61 406292 3802309 0.5 3 20 5 0 45 *

middle_alder-62 406283 3802304 0.5 2 0 40 45 *

middle_alder-63 406272 3802291 0.5 3 3 0 0 45 *

middle_alder-64 406269 3802286 0.5 0 0 45 *

middle_alder-64 406263 3802282 0.5 0 0
middle_alder-65 406257 3802281 0.5 0 0
middle_alder-67 406253 3802273 0.5 0.4 0 0 45 *

middle_alder-67 406247 3802267 0.5 0 0
middle_alder-68 406240 3802264 0.5 0 0
middle_alder-70 406235 3802265 0.5 2 2 20 50 45 *

middle_alder-71 406231 3802265 0.6 2 8 20 40 45 *

middle_alder-71 406228 3802263 0.6 0 0
middle_alder-72 406221 3802264 0.6 0 0
middle_alder-73 406218 3802264 0.6 0 0
middle_alder-74 406214 3802268 0.6 0 0
middle_alder-75 406209 3802268 0.6 0 0
middle_alder-77 406203 3802265 0.6 5 5 45 *

middle_alder-78 406200 3802266 0.6 1 0 0 45 *

middle_alder-78 406194 3802266 0.6 0 0
middle_alder-80 406191 3802267 0.6 0 0 45 *

middle_alder-81 406184 3802268 0.6 0 0 45 *

middle_alder-81 406181 3802267 0.6 0 0
middle_alder-82 406175 3802268 0.6 0 0
middle_alder-83 406168 3802267 0.6 0 0

chilao-1 406435 3798883 8.0 0 0
chilao-2 406420 3798851 8.0 0 0
chilao-4 406408 3798831 8.0 3 0 0 45 *

chilao-4 406391 3798818 8.0 0 0
chilao-5 406359 3798811 8.0 0 0
chilao-7 406331 3798791 8.0 4 0 0 2 *

chilao-8 406305 3798782 8.7 3.5 0 0 90 *

chilao-9 406292 3798790 8.7 2 5 0 45 *

chilao-10 406286 3798796 8.7 2.5 0 0 45 *

chilao-11 406268 3798804 8.8 3 35 15 90 *

chilao-12 406258 3798814 8.8 2 80 5 2 *

chilao-13 406235 3798841 8.8 4 10 0 90 *

chilao-14 406212 3798875 8.8 4 0 0 2 *

chilao-15 406198 3798884 8.8 2.5 0 0 90 *

chilao-16 406165 3798885 8.8 3.5 0 0 45 *

chilao-16 406161 3798879 8.8 0 0
chilao-17 406139 3798876 8.8 0 0
chilao-19 406139 3798870 8.8 2 0 0 45 *

chilao-19 406131 3798868 8.8 0 0
chilao-21 406102 3798873 8.8 3 10 5 2 *

chilao-22 406094 3798874 10.0 2 0 0 90 *

chilao-23 406071 3798882 10.0 3 5 10 22 *

chilao-24 406052 3798876 10.1 3.5 0 25 22 *

chilao-25 406036 3798862 10.1 1.5 0 0 90 *

chilao-26 406019 3798849 10.1 1.5 0 0 90 *

chilao-27 406021 3798835 10.1 2 5 5 90 *

chilao-28 406015 3798820 10.1 3.5 60 50 90 *

chilao-29 406021 3798788 10.1 4 50 30 2 *

chilao-30 405959 3798775 10.1 5 75 45 2 *

chilao-31 405928 3798772 10.1 4 4 30 50 2 *

chilao-32 405912 3798766 10.1 2 50 50 45 *

chilao-33 405904 3798766 10.1 2.5 10 2 0 45 *

chilao-34 405895 3798753 10.1 3.5 10 0 45 *

chilao-35 405876 3798713 10.2 5 20 40 30 2 *

chilao-36 405884 3798682 10.2 3 50 40 2 *

chilao-37 405895 3798666 10.2 3.5 0 5 22 *

chilao-38 405897 3798641 10.2 3 5 0 2 *

chilao-39 405898 3798616 10.2 2.5 0 0 90 *
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Station ID Eastinga Northinga Area (km2) Bankfull Width (m) Valley Width (m) % Rock (bed) % Rock (bank) D50

chilao-39 405894 3798607 10.2 0 0
chilao-41 405880 3798597 10.2 3 85 100 90 *

chilao-42 405875 3798579 10.2 5 5 90 100 90 *

chilao-43 405865 3798564 10.2 5 5 60 100 2 *

chilao-44 405874 3798547 10.2 3.5 4 75 60 2 *

chilao-45 405885 3798536 10.2 4 4 5 10 256 *

chilao-46 405890 3798515 10.2 4 4 40 50 256 *

chilao-47 405893 3798496 10.2 3 90 100 256 *

chilao-48 405886 3798492 10.2 2.5 90 100 11 *

chilao-49 405882 3798487 10.2 3 20 100 1024 *

chilao-50 405883 3798483 10.2 2.5 10 100 1024 *

chilao-51 405886 3798470 10.2 4 0 100 2 *

chilao-52 405887 3798462 10.2 8 8 0 30 512 *

chilao-53 405885 3798452 10.3 4 8 40 50 1024 *

chilao-54 405890 3798438 10.3 5 5 5 10 1024 *

chilao-55 405891 3798428 10.3 6 6 10 20 512 *

chilao-55 405887 3798407 10.3 0 0
chilao-57 405892 3798404 10.3 6 6 15 0 512 *

chilao-58 405892 3798400 10.3 0 0 512 *

chilao-59 405897 3798391 10.3 8 8 30 80 1024 *

chilao-59 405887 3798375 10.3 0 0
chilao-61 405883 3798373 10.3 0 0 1024 *

chilao-62 405876 3798367 10.3 0 0 1024 *

chilao-63 405881 3798361 10.3 0 0 1024 *

chilao-64 405888 3798356 10.3 0 0 1024 *

chilao-65 405895 3798347 10.3 5 10 70 256 *

chilao-66 405893 3798322 10.3 5 10 1024 *

chilao-67 405883 3798315 10.3 0 0 1024 *

chilao-68 405881 3798312 10.3 0 0 1024 *

chilao-69 405878 3798300 10.3 0 0 1024 *

chilao-70 405868 3798297 10.3 0 0 1024 *

chilao-71 405865 3798281 10.3 6 15 5 20 512 *

chilao-72 405854 3798281 10.3 0 0 512 *

chilao-73 405833 3798271 10.4 10 10 100 100
chilao-74 405821 3798266 10.4 8 8 15 50 512 *

chilao-75 405816 3798265 10.4 0 0 512 *

chilao-76 405808 3798264 10.4 5 5 0 50 256 *

chilao-76 405805 3798266 10.4 0 0
chilao-77 405801 3798273 10.4 0 0
chilao-79 405796 3798274 10.4 0 0 256 *

chilao-80 405790 3798279 10.4 0 0 256 *

chilao-81 405784 3798268 10.4 0 0 256 *

chilao-82 405757 3798259 10.4 20 20 0 20 1024 *

chilao-83 405727 3798228 10.5 10 50 0 1024 *

chilao-84 405712 3798220 10.5 6 6 30 0 512 *

chilao-84 405693 3798223 10.5 0 0
chilao-86 405688 3798232 10.5 6 6 0 30 256 *

chilao-86 405675 3798242 10.5 0 0
chilao-88 405642 3798249 10.5 5 5 70 30 1024 *

chilao-89 405611 3798227 10.5 8 80 40 11 *

chilao-90 405598 3798220 10.6 0 0 11 *

chilao-91 405586 3798215 10.6 0 0 11 *

chilao-93 405571 3798202 5.3 12 0 50 512 *

chilao-94 405624 3798173 5.3 12 0 100 1024 *

chilao-95 405619 3798156 5.3 12 12 0 100 1024 *

chilao-95 405645 3798141 5.3 0 0
chilao-97 405670 3798100 5.3 10 10 0 100 1024 *

chilao-98 405681 3798087 5.3 7 7 0 100 1024 *

chilao-99 405698 3798049 5.3 10 0 100 512 *

chilao-100 405718 3798036 5.3 12 12 0 100 512 *

chilao-101 405732 3798029 5.2 7 7 0 50 512 *

chilao-102 405743 3798024 5.2 5 5 0 50 2 *

chilao-103 405760 3797985 5.2 5 5 0 70 1024 *

chilao-104 405770 3797945 5.2 8 8 70 40 1024 *

chilao-105 405783 3797936 5.2 7 7 0 30 256 *

chilao-106 405803 3797931 5.2 7 7 0 5 256 *
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Station ID Eastinga Northinga Area (km2) Bankfull Width (m) Valley Width (m) % Rock (bed) % Rock (bank) D50

chilao-107 405819 3797918 5.2 7 7 0 30 90 *

chilao-108 405830 3797903 5.2 7 7 20 100 256 *

chilao-109 405838 3797887 5.2 3 3 0 70 11 *

chilao-110 405840 3797866 5.2 4 4 40 100 512 *

chilao-111 405841 3797854 5.2 5 5 100 100
chilao-112 405847 3797821 5.2 10 10 25 90 256 *

chilao-113 405851 3797815 5.2 10 10 0 70 256 *

chilao-114 405857 3797793 5.1 10 10 5 50 1024 *

chilao-115 405861 3797767 5.1 10 10 0 50 1024 *

chilao-116 405866 3797738 5.1 8 8 0 30 1024 *

chilao-117 405879 3797691 5.1 7 7 5 0 90 *

chilao-118 405880 3797683 5.1 4 15 0 0 90 *

chilao-119 405860 3797642 5.1 4 20 2 0 90 *

chilao-119 405878 3797613 5.1 0 0
chilao-121 405885 3797609 5.0 0 0 2 *

chilao-122 405890 3797597 5.0 3 10 0 0 45 *

chilao-123 405910 3797585 5.0 3 10 0 0 2 *

chilao-124 405922 3797561 5.0 3 15 0 0 2 *

chilao-125 405923 3797532 5.0 2.5 15 40 25 2 *

chilao-126 405921 3797520 5.0 2 0 0 90 *

chilao-127 405923 3797510 5.0 0 0 90 *

wickiup-1 398416 3796882 9.7 0 0
wickiup-3 398427 3796855 9.7 5 5 0 90 *

wickiup-3 398435 3796848 9.7 0 0
wickiup-4 398450 3796841 9.7 0 0
wickiup-6 398461 3796828 9.7 4 30 30 90 *

wickiup-7 398459 3796801 9.7 4.5 0 0 90 *

wickiup-8 398478 3796784 9.7 4 0 0 45 *

wickiup-8 398508 3796772 9.7 0 0
wickiup-9 398527 3796774 9.7 0 0
wickiup-11 398544 3796794 9.6 6 40 0 0 45 *

wickiup-12 398581 3796796 9.6 5 40 0 0 45 *

wickiup-12 398618 3796778 9.6 0 0
wickiup-13 398631 3796765 9.6 0 0
wickiup-14 398650 3796747 9.6 0 0
wickiup-16 398660 3796727 9.6 4 30 0 0 45 *

wickiup-17 398658 3796713 9.6 0 0 45 *

wickiup-18 398691 3796695 9.6 5 25 0 5 90 *

wickiup-19 398713 3796693 9.6 5 30 2 20 90 *

wickiup-19 398740 3796710 9.6 0 0
wickiup-21 398756 3796701 9.6 0 0 90 *

wickiup-21 398762 3796689 9.6 0 0
wickiup-22 398759 3796672 9.6 0 0
wickiup-23 398743 3796656 9.6 0 0
wickiup-25 398725 3796648 9.6 5 40 2 4 45 *

wickiup-25 398718 3796639 9.6 0 0
wickiup-27 398717 3796610 9.5 4 6 0 0 45 *

wickiup-27 398719 3796589 9.5 0 0
wickiup-29 398739 3796572 9.5 4 3 0 45 *

wickiup-29 398747 3796565 9.5 0 0
wickiup-30 398749 3796538 9.5 0 0
wickiup-32 398750 3796520 9.5 3 40 0 0 45 *

wickiup-32 398771 3796493 9.5 0 0
wickiup-33 398790 3796488 9.5 0 0
wickiup-34 398807 3796483 9.5 0 0
wickiup-36 398828 3796472 9.5 3 0 15 90 *

wickiup-36 398831 3796452 9.5 0 0
wickiup-38 398831 3796407 9.5 0 0 90 *

wickiup-38 398838 3796372 9.5 0 0
wickiup-40 398843 3796357 9.4 5 0 0 45 *

wickiup-40 398844 3796339 9.4 0 0
wickiup-42 398852 3796316 9.1 5 1 10 45 *

wickiup-43 398863 3796298 9.1 5 0 0 90 *

wickiup-44 398872 3796277 9.1 4.5 0 50 90 *

wickiup-45 398892 3796254 9.1 5 8 0 40 45 *

wickiup-46 398898 3796222 8.9 5 10 0 0 90 *
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Station ID Eastinga Northinga Area (km2) Bankfull Width (m) Valley Width (m) % Rock (bed) % Rock (bank) D50

wickiup-46 398890 3796202 8.9 0 0
wickiup-47 398896 3796189 8.9 0 0
wickiup-49 398911 3796174 8.9 7 40 0 0 45 *

wickiup-49 398914 3796153 8.8 0 0
wickiup-51 398906 3796114 8.8 5 0 0 45 *

wickiup-51 398919 3796078 8.8 0 0
wickiup-53 398927 3796063 8.8 4 0 0 45 *

wickiup-54 398967 3796027 8.8 4 12 20 15 512 *

wickiup-54 398986 3796016 8.8 0 0
wickiup-56 399009 3796004 8.8 3 12 20 40 90 *

wickiup-57 399038 3795994 8.8 3.5 10 5 40 45 *

wickiup-58 399052 3795986 8.7 4 35 15 30 90 *

wickiup-59 399058 3795986 8.7 3.5 25 0 0 45 *

wickiup-60 399078 3795983 8.7 3 15 3 0 45 *

wickiup-61 399098 3795982 8.7 10 40 90 *

wickiup-62 399103 3795966 8.7 3.5 0 0 90 *

wickiup-63 399083 3795923 8.7 2 15 15 90 *

wickiup-64 399088 3795901 8.6 2.5 50 100 1024 *

wickiup-65 399101 3795895 8.6 0 0 1024 *

wickiup-66 399118 3795887 8.5 2 20 30 40 45 *

wickiup-67 399136 3795873 8.5 3 15 0 0 45 *

wickiup-67 399171 3795857 8.5 0 0
wickiup-69 399190 3795833 8.4 3 10 30 90 *

wickiup-70 399193 3795816 8.4 3.5 0 0 90 *

wickiup-70 399196 3795787 8.4 0 0
wickiup-71 399197 3795793 8.4 0 0
wickiup-73 399190 3795775 8.1 2.5 10 10 90 *

wickiup-74 399170 3795757 8.1 3 0 0 90 *

wickiup-74 399163 3795716 8.1 0 0
wickiup-75 399168 3795703 8.1 0 0
wickiup-77 399214 3795693 8.0 4 2 0 90 *

wickiup-78 399236 3795683 8.0 2.5 50 50 90 *

wickiup-79 399254 3795658 8.0 3.5 0 0 90 *

wickiup-80 399271 3795607 8.0 3.5 10 20 90 *

wickiup-81 399282 3795571 8.0 2.5 50 80 45 *

wickiup-82 399280 3795556 8.0 4 30 50 90 *

wickiup-83 399268 3795543 8.0 4 50 50 90 *

wickiup-84 399251 3795529 7.9 3.5 0 0 90 *

wickiup-85 399239 3795507 7.9 5 0 30 90 *

wickiup-86 399221 3795490 7.9 3 0 10 90 *

wickiup-87 399213 3795484 7.9 3 80 80 256 *

wickiup-88 399188 3795475 7.9 3 0 40 90 *

wickiup-89 399167 3795466 7.9 2.5 5 15 90 *

wickiup-90 399157 3795445 7.9 3 0 0 90 *

wickiup-90 399161 3795424 7.8 0 0
wickiup-91 399172 3795404 7.8 0 0
wickiup-92 399177 3795396 7.8 0 0
wickiup-93 399177 3795378 7.8 0 0
wickiup-95 399166 3795366 7.8 3 0 0 90 *

wickiup-96 399137 3795350 7.8 3.5 0 5 90 *

wickiup-96 399145 3795313 7.7 0 0
wickiup-98 399155 3795303 7.7 4 0 0 90 *

wickiup-98 399179 3795289 7.7 0 0
wickiup-100 399206 3795283 7.7 4 0 0 90 *

wickiup-101 399225 3795283 7.7 4 0 2 45 *

wickiup-102 399253 3795288 7.7 5 0 0 45 *

wickiup-102 399273 3795287 7.7 0 0
wickiup-103 399283 3795286 7.7 0 0
wickiup-105 399304 3795272 7.7 4 0 0 45 *

wickiup-106 399318 3795257 7.7 4 5 5 90 *

wickiup-107 399325 3795221 7.6 4 0 0 90 *

wickiup-108 399306 3795200 7.6 4 2 0 45 *

wickiup-109 399279 3795181 7.6 3 50 50 90 *

wickiup-110 399268 3795166 7.6 4 0 0 45 *

wickiup-110 399251 3795133 7.6 0 0
wickiup-112 399235 3795104 7.6 3 2 0 45 *
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wickiup-113 399228 3795088 7.6 3 30 50 11 *

wickiup-114 399210 3795069 7.6 3 2 5 45 *

wickiup-114 399203 3795060 7.3 0 0
wickiup-116 399184 3795051 7.3 0 0 45 *

wickiup-117 399197 3795047 7.3 0 0 45 *

wickiup-118 399208 3795026 7.3 0 0 45 *

wickiup-119 399220 3795026 7.3 1 0 0 11 *

wickiup-119 399222 3795018 7.3 0 0
wickiup-121 399221 3795013 7.3 0 0 11 *

wickiup-122 399222 3795021 7.3 0 0 11 *

wickiup-123 399220 3795026 7.3 0 0 11 *

wickiup-124 399208 3795026 7.3 0 0 11 *

wickiup-125 399197 3795047 7.3 0 0 11 *

wickiup-126 399185 3795052 6.0 2.5 20 20 45 *

wickiup-126 399178 3795040 6.0 0 0
wickiup-128 399180 3795030 6.0 4 0 0 90 *

wickiup-128 399184 3795022 6.0 0 0
wickiup-129 399188 3795007 6.0 0 0
wickiup-130 399189 3794993 6.0 0 0
wickiup-132 399193 3794967 6.0 4 0 0 90 *

wickiup-132 399201 3794955 6.0 0 0
wickiup-133 399209 3794942 6.0 0 0
wickiup-135 399216 3794934 6.0 4 0 0 90 *

wickiup-136 399233 3794922 6.0 4 0 0 90 *

wickiup-136 399244 3794903 6.0 0 0
wickiup-137 399246 3794901 5.9 0 0
wickiup-138 399260 3794892 5.9 0 0
wickiup-139 399268 3794886 5.9 0 0
wickiup-141 399270 3794865 5.9 5 0 0 90 *

wickiup-141 399272 3794856 5.9 0 0
wickiup-142 399279 3794837 5.9 0 0
wickiup-143 399283 3794826 5.9 0 0
wickiup-145 399286 3794819 5.9 0 0 90 *

wickiup-145 399291 3794814 5.9 0 0
wickiup-147 399290 3794806 5.9 2.5 10 40 90 *

wickiup-148 399281 3794793 5.8 3 0 0 45 *

wickiup-148 399278 3794789 5.8 0 0
wickiup-150 399278 3794764 5.8 4 0 0 90 *

wickiup-151 399284 3794744 5.8 4 0 20 45 *

wickiup-152 399287 3794720 5.8 4 5 2 90 *

wickiup-152 399291 3794696 5.8 0 0
wickiup-154 399291 3794663 4.9 3 0 0 90 *

wickiup-154 399276 3794626 4.9 0 0
wickiup-156 399247 3794604 4.9 4 0 0 90 *

wickiup-157 399220 3794583 4.9 3 0 2 90 *

wickiup-157 399218 3794571 4.9 0 0 *

wickiup-158 399223 3794554 4.9 0 0 *

wickiup-160 399221 3794536 4.9 2.5 0 0 90 *

wickiup-160 399209 3794518 4.9 0 0
wickiup-161 399208 3794492 4.9 0 0
wickiup-162 399217 3794467 4.8 0 0
wickiup-164 399218 3794456 4.8 0 0 90 *

endofwikiup-0 399209 3794449 4.8 0 0 90 *

endofwikiup-1 399209 3794449 4.8 0 0 90 *

mill-1 395431 3797568 55.0 0 0
mill-3 395419 3797554 55.0 3.5 8 2 0 22 *

mill-4 395417 3797530 55.0 3.5 5 5 40 22 *

mill-5 395427 3797507 55.0 4 4 0 10 22 *

mill-6 395434 3797493 55.0 3 3 10 80 22 *

mill-7 395438 3797477 55.0 3 3 20 50 11 *

mill-8 395412 3797465 55.1 3 3 80 100 11 *

mill-9 395395 3797459 55.1 3 3 50 100 11 *

mill-10 395384 3797442 55.1 3.5 0 5 90 *

mill-11 395367 3797423 55.1 4 4 0 50 45 *

mill-12 395362 3797410 55.1 2.5 70 100 90 *

mill-13 395361 3797398 55.1 3 3 60 100 90 *
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mill-14 395342 3797391 55.1 3 10 50 90 *

mill-15 395324 3797392 55.1 3.5 5 10 0 90 *

mill-16 395306 3797403 55.1 5 5 5 50 90 *

mill-17 395286 3797425 55.1 4 4 50 100 22 *

mill-18 395267 3797442 55.1 3.5 4 25 60 11 *

mill-19 395257 3797452 55.1 2 4 10 60 90 *

mill-20 395233 3797458 55.3 3 80 80 2 *

mill-21 395216 3797464 55.3 3 3 50 50 45 *

mill-22 395195 3797472 55.3 3.5 4 20 30 45 *

mill-23 395189 3797486 55.3 3 3 15 60 90 *

mill-24 395188 3797503 55.3 4 4 5 40 45 *

mill-25 395179 3797509 55.3 3.5 4 80 90 45 *

mill-26 395160 3797513 55.3 5 5 0 70 45 *

mill-27 395140 3797525 55.3 3 3 30 50 90 *

mill-28 395125 3797534 55.3 3 5 50 90 *

mill-29 395114 3797535 55.4 5 5 0 40 2 *

mill-29 395102 3797523 55.4 0 0
mill-31 395096 3797517 55.4 0 0 2 *

mill-32 395091 3797517 55.4 0 0 2 *

mill-33 395085 3797526 55.4 0 0 2 *

mill-34 395071 3797521 55.4 5 5 0 50 256 *

mill-35 395068 3797515 55.4 0 0 256 *

mill-36 395064 3797508 55.4 3.5 4 0 100 512 *

mill-37 395044 3797500 55.4 3 3 0 100 2 *

mill-38 395035 3797490 55.4 4 0 100 45 *

mill-39 395036 3797475 55.4 1 1 100 100
mill-40 395037 3797459 55.8 3 3 0 100 90 *

mill-41 395033 3797443 55.8 3.5 4 40 100 11 *

mill-42 395023 3797429 55.8 3 3 20 100 11 *

mill-43 395017 3797419 55.8 3 3 60 70 90 *

mill-44 394998 3797413 55.8 0 0 90 *

mill-45 394988 3797401 55.8 4 4 0 50 256 *

mill-46 394977 3797399 55.8 2.5 3 50 59 256 *

mill-47 394958 3797392 55.8 5 7 5 80 256 *

mill-48 394940 3797371 55.8 4 8 0 40 22 *

mill-48 394923 3797374 55.8 0 0
mill-50 394915 3797374 55.8 5 10 0 0 512 *

mill-51 394904 3797349 55.8 10 12 5 30 90 *

mill-52 394884 3797335 55.8 6 10 5 20 90 *

mill-53 394884 3797324 55.8 5 8 0 20 90 *

mill-54 394859 3797277 55.9 5 5 5 30 45 *

mill-55 394853 3797265 55.9 5 5 0 5 90 *

mill-56 394834 3797252 55.9 5 5 2 0 90 *

mill-56 394826 3797234 55.9 0 0
mill-58 394825 3797225 55.9 5 5 2 0 256 *

mill-59 394821 3797222 55.9 4 100 0
mill-60 394806 3797183 55.9 4 10 0 50 11 *

mill-61 394805 3797174 55.9 5 12 0 0 90 *

mill-62 394796 3797167 55.9 0 0 90 *

mill-63 394808 3797142 55.9 7 7 0 40 11 *

mill-64 394845 3797134 56.0 6 10 5 0 90 *

mill-64 394850 3797136 56.0 0 0
mill-66 394860 3797125 56.0 0 0 256 *

mill-67 394891 3797122 56.0 3 3 90 100 90 *

mill2-0 394891 3797122 56.0 3 3 90 100 90 *

mill2-1 394905 3797114 56.0 70 50 90 *

mill2-2 394904 3797095 56.0 5 5 0 30 22 *

mill2-2 394896 3797076 56.0 0 0
mill2-3 394896 3797073 56.0 0 0
mill2-5 394904 3797056 56.0 10 40 2 *

mill2-6 394910 3797041 56.0 3 3 10 40 90 *

mill2-7 394933 3797030 56.0 4 6 0 10 90 *

mill2-8 394947 3797021 56.0 4 5 5 15 90 *

mill2-9 394953 3797008 56.0 4 5 5 60 2 *

mill2-10 394948 3796991 56.0 5 5 10 15 256 *

mill2-11 394958 3796982 56.0 5 5 2 2 90 *
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mill2-12 394956 3796973 56.0 2.5 5 30 50 45 *

mill2-13 394950 3796967 56.0 2.5 3 10 50 45 *

mill2-13 394938 3796959 56.0 0 0
mill2-15 394919 3796958 56.0 3 7 0 0 2 *

mill2-16 394909 3796954 56.0 3 8 0 50 2 *

mill2-17 394902 3796952 56.0 3 8 0 50 2 *

mill2-17 394895 3796954 56.0 0 0
mill2-19 394886 3796945 56.0 6 10 0 0 256 *

mill2-20 394887 3796928 56.0 6 10 0 0 90 *

mill2-21 394887 3796914 56.0 4 10 15 50 90 *

mill2-22 394877 3796895 56.0 5 8 5 50 45 *

mill2-23 394871 3796889 56.1 5 8 0 5 45 *

mill2-24 394872 3796866 56.1 4 4 80 100 2 *

mill2-25 394881 3796846 56.1 6 5 0 11 *

mill2-25 394879 3796840 56.1 0 0
mill2-27 394883 3796834 167.5 0 0 11 *

mill2-28 394867 3796820 167.5 8 0 5 256 *

mill2-29 394837 3796811 167.5 10 50 256 *

mill2-30 394828 3796810 167.5 8 0 0 256 *

mill2-30 394815 3796804 167.5 0 0
mill2-32 394783 3796801 167.5 8 8 0 35 90 *

mill2-33 394754 3796804 167.5 15 30 90 *

mill2-34 394735 3796802 167.6 2 5 90 *

mill2-35 394717 3796807 167.6 7 15 2 50 2 *

mill2-35 394693 3796828 167.6 0 0
mill2-37 394660 3796841 167.6 8 0 0 22 *

mill2-37 394656 3796848 167.6 0 0
mill2-39 394637 3796846 167.6 4 15 70 50 256 *

mill2-40 394634 3796830 167.6 7 40 50 45 *

mill2-41 394637 3796824 167.6 7 7 100 100
mill2-42 394612 3796781 167.6 7 7 20 100 45 *

mill2-43 394595 3796764 168.0 70 40 45 *

mill2-44 394567 3796754 168.0 10 12 0 50 45 *

mill2-44 394535 3796753 168.0 0 0
mill2-46 394520 3796774 168.0 10 0 50 512 *

mill2-47 394518 3796789 168.0 15 50 256 *

mill2-48 394531 3796804 168.1 8 8 25 50 256 *

mill2-49 394510 3796852 168.1 50 100 2 *

mill2-50 394493 3796880 168.1 20 100 22 *

mill2-51 394427 3796901 168.1 25 100 45 *

mill2-52 394400 3796910 168.1 90 100 45 *

mill2-53 394385 3796908 168.1 8 8 70 100 45 *

mill2-54 394372 3796917 168.1 4 4 90 100 90 *

mill2-55 394347 3796920 168.2 9 9 30 100 90 *

mill2-56 394324 3796919 168.2 6 6 70 100 90 *

mill2-56 394321 3796914 168.2 0 0
mill2-58 394290 3796909 168.2 8 10 100 22 *

mill2-58 394277 3796906 168.2 0 0
mill2-60 394271 3796899 168.2 0 0 22 *

mill2-61 394259 3796883 168.3 0 0 22 *

mill2-62 394238 3796860 168.3 7 30 100 22 *

mill2-62 394218 3796864 168.3 0 0
mill2-64 394211 3796873 168.3 4 4 70 100 45 *

mill2-64 394195 3796887 168.3 0 0
mill2-66 394186 3796890 168.4 5 5 30 100 256 *

mill2-67 394186 3796931 168.4 4 4 70 100 256 *

mill2-68 394169 3796941 168.4 4 4 80 100 45 *

mill2-69 394139 3796920 168.4 8 8 20 100 11 *

mill2-70 394111 3796924 168.4 8 8 20 100 45 *

mill2-70 394099 3796930 168.4 0 0
mill2-71 394082 3796931 168.4 0 0
mill2-73 394072 3796944 168.4 8 8 10 60 90 *

mill2-74 394021 3796972 168.4 5 5 50 75 90 *

mill2-75 393988 3796992 169.0 7 7 40 100 90 *

mill2-76 393983 3797013 169.0 0 0 90 *

mill2-77 393975 3797013 169.0 6 6 30 100 90 *
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mill2-77 393954 3797023 169.0 0 0
mill2-79 393922 3797021 169.1 6 6 0 100 11 *

mill2-80 393898 3797018 169.1 5 0 100 256 *

mill2-80 393869 3797017 169.1 0 0
mill2-81 393831 3797018 169.5 0 0
mill2-82 393789 3797002 169.6 0 0
mill2-84 393786 3796973 169.6 9 9 0 100 256 *

mill2-84 393774 3796935 169.6 0 0
mill2-86 393756 3796902 169.6 10 10 0 80 256 *

mill2-86 393750 3796876 169.6 0 0
mill2-88 393747 3796856 169.6 6 6 30 100 512 *

mill2-88 393733 3796841 169.7 0 0
mill2-90 393727 3796835 169.7 6 6 0 100 512 *

mill2-91 393702 3796829 169.7 7 7 0 100 11 *

mill2-92 393692 3796765 169.7 8 8 0 100 11 *

mill2-93 393679 3796737 169.7 8 12 30 15 90 *

mill2-93 393663 3796727 169.7 0 0
mill2-95 393624 3796672 169.8 10 15 0 0 90 *

mill2-96 393619 3796644 169.9 12 0 10 90 *

mill2-97 393617 3796575 169.9 15 0 40 11 *

mill2-98 393604 3796544 169.9 20 5 50 11 *

mill2-99 393574 3796513 174.3 0 0 11 *

mill2-99 393561 3796501 174.3 0 0
mill2-100 393555 3796488 174.3 0 0
mill2-101 393541 3796470 174.3 0 0
mill2-103 393528 3796459 174.3 8 20 0 0 90 *

mill2-103 393493 3796424 174.3 0 0
mill2-104 393458 3796398 174.3 0 0
mill2-105 393414 3796373 174.4 0 0
mill2-106 393390 3796364 174.4 0 0
mill2-107 393372 3796368 174.5 0 0
mill2-108 393364 3796367 174.5 0 0
mill2-109 393332 3796377 174.5 0 0
mill2-111 393326 3796397 174.5 8 30 0 0 90 *

mill2-112 393323 3796402 174.5 0 0 90 *

tujunga-1 396819 3797079 106.5 0 0
tujunga-3 396812 3797101 106.7 80 100 2 *

tujunga-4 396794 3797096 106.7 15 15 5 50 2 *

tujunga-5 396778 3797098 106.8 10 10 15 50 2 *

tujunga-6 396772 3797098 106.8 0 0 2 *

tujunga-7 396755 3797107 106.8 10 10 0 100 1024 *

tujunga-8 396742 3797101 106.8 10 10 10 100 256 *

tujunga-9 396734 3797082 106.8 8 10 0 50 11 *

tujunga-10 396726 3797075 106.8 6 8 50 50 45 *

tujunga-11 396727 3797067 106.8 5 5 80 100 2 *

tujunga-12 396702 3797047 106.8 5 5 10 100 11 *

tujunga-13 396673 3797026 106.9 10 10 0 70 11 *

tujunga-14 396663 3797000 106.9 8 8 20 70 45 *

tujunga-15 396663 3796983 106.9 8 8 0 50 256 *

tujunga-15 396660 3796976 106.9 0 0
tujunga-17 396647 3796964 106.9 8 8 0 100 256 *

tujunga-18 396643 3796952 106.9 5 8 30 70 256 *

tujunga-19 396628 3796936 106.9 7 8 50 20 11 *

tujunga-20 396620 3796922 106.9 7 7 0 30 512 *

tujunga-21 396605 3796899 106.9 6 6 0 90 11 *

tujunga-22 396594 3796880 107.0 6 10 0 5 11 *

tujunga-22 396581 3796888 107.0 0 0
tujunga-24 396574 3796886 107.0 6 0 5 256 *

tujunga-25 396565 3796889 107.0 5 40 50 90 *

tujunga-26 396548 3796898 107.0 6 0 15 256 *

tujunga-27 396528 3796921 107.0 7 10 50 256 *

tujunga-28 396521 3796925 107.0 8 0 50 45 *

tujunga-29 396505 3796956 107.0 8 0 50 2 *

tujunga-30 396494 3796971 107.1 9 0 5 11 *

tujunga-31 396483 3796998 107.1 10 25 0 0 11 *

tujunga-32 396473 3797037 107.2 6 25 0 0 45 *
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tujunga-33 396462 3797054 107.2 7 20 0 0 11 *

tujunga-34 396443 3797058 107.2 7 10 0 0 90 *

tujunga-35 396430 3797067 107.2 6 8 0 50 11 *

tujunga-35 396410 3797055 107.2 0 0
tujunga-37 396385 3797046 107.3 6 6 0 30 11 *

tujunga-38 396367 3797032 107.3 7 7 0 20 11 *

tujunga-38 396361 3797020 107.3 0 0
tujunga-40 396332 3797002 107.4 9 9 0 5 2 *

tujunga-40 396325 3796988 107.4 0 0
tujunga-41 396321 3796981 107.4 0 0
tujunga-42 396312 3796976 107.4 0 0
tujunga-44 396305 3796966 107.4 9 12 0 0 22 *

tujunga-45 396261 3796940 107.5 10 15 0 0 90 *

tujunga-45 396251 3796927 107.5 0 0
tujunga-46 396239 3796922 107.5 0 0
tujunga-48 396222 3796917 107.5 10 20 0 0 11 *

tujunga-48 396209 3796913 107.5 0 0
tujunga-50 396179 3796897 107.5 8 20 0 0 45 *

tujunga-50 396163 3796888 107.5 0 0
tujunga-52 396155 3796883 107.5 0 0 90 *

tujunga-53 396141 3796881 107.6 0 0 90 *

tujunga-54 396123 3796881 107.6 6 15 10 40 11 *

tujunga-55 396108 3796882 107.6 0 10 90 *

tujunga-56 396089 3796881 107.6 9 15 0 0 11 *

tujunga-57 396071 3796886 107.6 0 0 45 *

tujunga-58 396061 3796889 107.6 0 0 11 *

tujunga-59 396055 3796885 107.6 0 0 11 *

tujunga-60 396042 3796897 107.6 8 8 0 0 11 *

tujunga-60 396027 3796902 107.6 0 0
tujunga-62 395999 3796900 107.6 8 0 0 11 *

tujunga-62 395978 3796903 107.6 0 0
tujunga-64 395963 3796897 107.7 6 30 0 0 22 *

tujunga-65 395950 3796893 107.7 8 0 0 90 *

tujunga-66 395911 3796886 107.7 9 0 30 2 *

tujunga-67 395885 3796850 107.7 0 20 2 *

tujunga-68 395871 3796845 108.1 8 20 0 0 22 *

tujunga-69 395854 3796834 108.1 8 30 0 0 90 *

tujunga-70 395806 3796816 108.1 10 25 0 0 256 *

tujunga-71 395776 3796806 108.1 0 0 11 *

tujunga-72 395755 3796793 108.1 12 15 0 0 45 *

tujunga-73 395734 3796790 108.1 8 0 0 45 *

tujunga-74 395725 3796789 108.2 0 0 90 *

tujunga-75 395699 3796803 108.2 10 10 5 50 2 *

tujunga-76 395687 3796834 108.2 9 9 0 10 90 *

tujunga-77 395678 3796862 108.2 10 20 5 0 45 *

tujunga-78 395665 3796891 108.2 0 0 90 *

tujunga-79 395668 3796919 109.8 0 0 90 *

tujunga-80 395655 3796924 109.8 0 0 90 *

tujunga-81 395657 3796944 109.8 8 40 0 40 90 *

tujunga-82 395682 3796992 109.8 8 25 5 40 2 *

tujunga-83 395675 3797011 109.8 0 0 45 *

tujunga-84 395670 3797018 109.8 10 12 0 0 45 *

tujunga-85 395662 3797028 109.8 12 15 0 0 256 *

tujunga-86 395656 3797029 109.8 12 20 0 0 1024 *

tujunga-87 395646 3797031 109.8 12 20 0 0 256 *

tujunga-88 395616 3797038 109.8 0 25 11 *

tujunga-89 395611 3797033 109.8 12 20 5 0 90 *

tujunga-90 395592 3797041 109.9 12 15 0 0 90 *

tujunga-90 395556 3797050 109.9 0 0
tujunga-92 395540 3797045 109.9 0 0 90 *

tujunga-93 395521 3797044 109.9 10 10 0 0 45 *

tujunga-94 395507 3797041 109.9 6 15 0 0 45 *

tujunga-95 395498 3797039 110.0 15 70 50 45 *

tujunga-96 395447 3797036 110.0 10 10 10 2 90 *

tujunga-97 395416 3797025 110.0 10 10 2 20 90 *

tujunga-98 395409 3797001 110.0 8 12 0 40 2 *
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tujunga-99 395409 3796984 110.0 10 10 5 10 2 *

tujunga-100 395401 3796969 110.0 8 8 20 0 256 *

tujunga-101 395396 3796954 110.0 8 8 5 50 90 *

tujunga-102 395367 3796934 110.0 10 10 0 50 11 *

tujunga-103 395355 3796920 110.1 7 7 80 60 90 *

tujunga-104 395324 3796902 110.1 8 12 10 5 90 *

tujunga-105 395306 3796892 110.1 8 12 70 10 90 *

tujunga-106 395272 3796889 110.1 12 12 15 50 22 *

tujunga-107 395238 3796896 110.1 10 15 10 5 22 *

tujunga-108 395221 3796898 110.1 10 0 90 *

tujunga-109 395178 3796917 110.1 12 12 0 0 11 *

tujunga-110 395151 3796933 110.1 10 18 0 0 90 *

tujunga-111 395110 3796956 110.2 8 15 40 40 90 *

tujunga-112 395097 3796956 110.2 10 10 0 2 512 *

tujunga-113 395067 3796939 110.2 10 15 5 30 90 *

tujunga-114 395053 3796931 110.2 8 18 10 15 256 *

tujunga-115 395006 3796921 110.2 10 20 30 50 90 *

tujunga-116 394991 3796916 110.2 10 15 0 50 256 *

tujunga-117 394960 3796910 110.2 10 12 30 2 2 *

tujunga-118 394934 3796894 110.2 6 30 60 90 *

tujunga-119 394921 3796876 110.2 8 8 40 30 256 *

tujunga-120 394911 3796869 110.2 6 6 10 100 256 *

tujunga-121 394900 3796841 110.2 8 8 5 70 2 *

tujunga-122 394882 3796825 110.2 0 50 22 *

tujunga-123 394869 3796815 110.2 6 6 30 50 22 *

uppertuj3-1 397647 3796879 101.9 0 0
uppertuj3-2 397625 3796900 101.9 0 0
uppertuj3-4 397609 3796920 101.9 10 10 5 256 *

uppertuj3-5 397579 3796974 101.9 10 0 40 2 *

uppertuj3-6 397558 3797001 101.9 0 0 11 *

uppertuj3-7 397536 3796991 101.9 10 0 40 11 *

uppertuj3-8 397529 3796948 102.0 10 0 0 90 *

uppertuj3-9 397518 3796937 102.0 0 0 90 *

uppertuj3-10 397515 3796920 102.5 0 15 90 *

uppertuj3-10 397509 3796899 102.5 0 0
uppertuj3-12 397497 3796891 102.5 0 50 90 *

uppertuj3-13 397481 3796893 102.5 8 8 10 50 45 *

uppertuj3-14 397472 3796897 102.5 10 10 70 50 11 *

uppertuj3-14 397466 3796899 102.5 0 0
uppertuj3-16 397448 3796893 102.5 8 8 20 15 11 *

uppertuj3-17 397448 3796886 102.5 0 0
uppertuj3-18 397409 3796852 102.5 9 9 0 100 11 *

uppertuj3-19 397394 3796842 102.5 8 15 0 50 11 *

uppertuj3-19 397390 3796834 102.5 0 0
uppertuj3-21 397382 3796819 102.5 5 50 90 *

uppertuj3-22 397378 3796809 102.5 5 5 20 100 11 *

uppertuj3-23 397373 3796805 102.5 7 7 0 100 11 *

uppertuj3-24 397341 3796804 104.6 10 5 50 2 *

uppertuj3-25 397318 3796831 104.6 10 12 0 60 2 *

uppertuj3-25 397301 3796839 104.7 0 0
uppertuj3-27 397291 3796845 104.7 10 15 2 40 2 *

uppertuj3-28 397263 3796853 104.7 8 8 90 100 2 *

uppertuj3-29 397256 3796855 104.7 8 8 15 100 1024 *

uppertuj3-30 397244 3796863 104.7 4 4 50 100 256 *

uppertuj3-31 397228 3796874 104.7 2 2 40 100 1024 *

uppertuj3-32 397206 3796879 104.7 5 5 0 100 11 *

uppertuj3-33 397187 3796882 104.7 2.5 3 40 100 512 *

uppertuj3-34 397148 3796886 104.7 2 2 10 0 11 *

uppertuj3-35 397115 3796880 106.3 7 7 40 100 2 *

uppertuj3-36 397086 3796881 106.3 8 6 30 100 256 *

uppertuj3-37 397068 3796896 106.3 8 8 50 100 2 *

uppertuj3-38 397051 3796912 106.3 10 10 30 100 2 *

uppertuj3-39 397044 3796929 106.3 8 15 100 2 *

uppertuj3-40 397039 3796937 106.3 5 8 70 50 90 *

uppertuj3-41 397044 3796945 106.3 5 10 30 100 11 *

uppertuj3-42 397056 3796961 106.3 5 5 20 70 90 *
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uppertuj3-43 397064 3796970 106.3 3 3 40 100
uppertuj3-44 397085 3796992 106.3 4 4 10 100 11 *

uppertuj3-45 397100 3797012 106.3 10 10 30 100 11 *

uppertuj3-46 397104 3797030 106.3 8 8 5 100 45 *

uppertuj3-47 397099 3797043 106.3 8 8 60 30 256 *

uppertuj3-48 397084 3797057 106.4 8 8 10 10 11 *

uppertuj3-49 397060 3797056 106.4 8 8 10 50 22 *

uppertuj3-50 397043 3797052 106.4 10 12 0 0 256 *

uppertuj3-51 397029 3797051 106.4 0 0 256 *

uppertuj3-52 397011 3797057 106.4 6 6 10 100 512 *

uppertuj3-53 396986 3797049 106.4 8 8 50 100 11 *

uppertuj3-54 396968 3797048 106.4 6 6 80 100 11 *

uppertuj3-55 396960 3797048 106.4 3 3 90 100 11 *

uppertuj3-56 396960 3797040 106.5 3 3 20 100 256 *

uppertuj3-57 396929 3797043 106.5 6 70 80 11 *

uppertuj3-58 396873 3797038 106.5 8 8 50 100 45 *

uppertuj3-59 396865 3797037 106.5 5 5 5 100 256 *

uppertuj3-60 396847 3797052 106.5 7 7 10 100 2 *

uppertuj3-61 396840 3797053 106.5 0 0 2 *

uppertuj3-61 396831 3797064 106.5 0 0
uppertuj3-62 396829 3797079 106.5 0 0

upper_big_tuj-1 397642 3796876 101.9 0 0
upper_big_tuj-3 397659 3796862 101.8 10 10 0 0 22 *

upper_big_tuj-3 397663 3796858 101.8 0 0
upper_big_tuj-4 397668 3796856 101.8 0 0
upper_big_tuj-6 397691 3796832 101.8 10 10 0 0 2 *

upper_big_tuj-7 397711 3796816 101.8 8 12 0 0 11 *

upper_big_tuj-8 397732 3796795 101.8 9 10 0 11 *

upper_big_tuj-9 397757 3796765 101.8 12 25 2 5 11 *

upper_big_tuj-10 397778 3796734 101.8 8 2 5 11 *

upper_big_tuj-11 397790 3796703 101.8 10 25 5 5 90 *

upper_big_tuj-12 397798 3796682 101.8 10 20 20 5 45 *

upper_big_tuj-13 397801 3796638 101.8 10 12 0 0 11 *

upper_big_tuj-14 397805 3796626 101.7 7 20 10 10 90 *

upper_big_tuj-15 397813 3796603 101.7 6 25 0 0 90 *

upper_big_tuj-15 397815 3796600 101.7 0 0
upper_big_tuj-17 397814 3796599 101.7 0 0 90 *

upper_big_tuj-18 397810 3796588 101.7 11 40 0 0 11 *

upper_big_tuj-18 397811 3796587 101.7 0 0
upper_big_tuj-19 397812 3796586 101.7 0 0
upper_big_tuj-20 397811 3796584 101.7 0 0
upper_big_tuj-21 397813 3796578 101.7 0 0
upper_big_tuj-22 397824 3796575 101.7 0 0
upper_big_tuj-23 397826 3796572 101.7 0 0
upper_big_tuj-25 397860 3796543 101.7 0 0 11 *

bigt_2-1 397647 3796880 101.7 0 0
bigt_2-2 397666 3796863 101.7 0 0
bigt_2-3 397673 3796860 101.7 0 0
bigt_2-5 397696 3796836 101.7 10 0 0 11 *

bigt_2-6 397714 3796820 101.7 10 20 0 0 11 *

bigt_2-7 397737 3796798 101.7 10 5 2 11 *

bigt_2-8 397762 3796768 101.7 9 25 0 2 2 *

bigt_2-8 397783 3796737 101.6 0 0
bigt_2-10 397796 3796704 101.6 10 20 10 5 90 *

bigt_2-11 397802 3796684 101.6 10 15 30 10 45 *

bigt_2-11 397806 3796641 101.6 0 0
bigt_2-13 397817 3796593 101.6 7 15 5 2 90 *

bigt_2-14 397824 3796570 101.6 6 25 10 2 90 *

bigt_2-15 397829 3796552 101.6 0 0 90 *

bigt_2-15 397828 3796532 101.6 0 0
bigt_2-16 397835 3796520 101.6 0 0
bigt_2-17 397839 3796503 101.6 0 0
bigt_2-19 397853 3796485 101.6 0 0 90 *

bigt_2-20 397886 3796451 101.6 10 1 0 11 *

bigt_2-21 397916 3796435 101.6 10 40 20 11 *

bigt_2-22 397947 3796425 101.6 7 30 50 90 *
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bigt_2-23 397984 3796417 101.6 9 15 40 90 *

bigt_2-24 397998 3796405 101.5 4 50 60 11 *

bigt_2-25 398035 3796409 101.5 12 0 0 90 *

bigt_2-26 398084 3796456 101.5 10 0 0 90 *

bigt_2-27 398096 3796505 101.4 6 0 0 45 *

bigt_2-28 398094 3796564 101.3 10 10 20 11 *

bigt_2-29 398086 3796590 101.3 10 10 75 11 *

bigt_2-30 398085 3796602 101.3 4 20 60 90 90 *

bigt_2-31 398070 3796641 101.2 10 15 15 11 *

bigt_2-32 398055 3796674 101.2 11 5 0 90 *

bigt_2-33 398046 3796712 101.2 0 0 11 *

bigt_2-34 398048 3796729 101.2 5 2 90 *

bigt_2-35 398043 3796735 101.2 50 50 90 *

bigt_2-36 398050 3796745 101.2 0 0 90 *

bigt_2-36 398059 3796750 101.2 0 0
bigt_2-37 398061 3796761 101.2 0 0
bigt_2-39 398067 3796767 101.2 8 0 0 11 *

bigt_2-40 398090 3796781 100.4 6 0 0 90 *

bigt_2-41 398106 3796784 100.3 90 40 11 *

bigt_2-42 398130 3796774 100.3 14 0 0 11 *

bigt_2-43 398180 3796729 100.3 10 2 5 11 *

bigt_2-44 398200 3796710 100.3 2 50 80 11 *

bigt_2-45 398205 3796707 100.3 2 95 100 11 *

bigt_2-46 398237 3796698 100.3 7 20 40 45 *

bigt_2-47 398259 3796699 100.3 7 15 0 45 *

bigt_2-48 398278 3796740 100.3 8 0 0 90 *

bigt_2-49 398281 3796793 100.2 12 0 15 11 *

bigt_2-49 398313 3796838 100.2 0 0
bigt_2-51 398356 3796860 100.2 10 2 2 90 *

bigt_2-52 398414 3796878 90.5 10 30 25 22 *

bigt_2-53 398441 3796891 90.5 8 30 10 90 *

bigt_2-53 398470 3796919 90.5 0 0
bigt_2-55 398488 3796935 90.5 5 0 5 90 *

bigt_2-56 398496 3796946 90.5 0 5 90 *

bigt_2-57 398510 3796964 90.5 7 0 2 90 *

bigt_2-57 398509 3796977 90.5 0 0
bigt_2-59 398517 3796990 90.5 0 0 90 *

bigt_2-59 398527 3796988 90.5 0 0
bigt_2-60 398536 3796990 90.5 0 0
bigt_2-61 398542 3796993 90.5 0 0
bigt_2-62 398551 3797002 90.5 0 0
bigt_2-63 398562 3797006 90.5 0 0
bigt_2-64 398568 3797009 90.4 0 0
bigt_2-65 398576 3797014 90.4 0 0
bigt_2-67 398585 3797018 90.4 0 0 90 *

bigt_2-68 398588 3797022 90.4 0 0 90 *

bigt_2-69 398604 3797031 90.4 0 0 45 *

bigt_2-69 398618 3797032 90.4 0 0
bigt_2-70 398626 3797035 90.4 0 0
bigt_2-71 398630 3797034 90.4 0 0
bigt_2-72 398636 3797032 90.4 0 0
bigt_2-73 398655 3797031 89.7 0 0
bigt_2-74 398665 3797029 89.7 0 0
bigt_2-75 398672 3797028 89.7 0 0
bigt_2-76 398683 3797025 89.7 0 0
bigt_2-77 398690 3797023 89.7 0 0
bigt_2-78 398703 3797021 89.7 0 0
bigt_2-79 398715 3797018 89.7 0 0
bigt_2-80 398729 3797012 89.7 0 0
bigt_2-81 398745 3797001 89.7 0 0
bigt_2-82 398760 3796992 89.7 0 0
bigt_2-83 398775 3796988 89.7 0 0
bigt_2-85 398783 3796979 88.6 0 0 45 *

bigt_2-85 398808 3796962 88.6 0 0
bigt_2-86 398815 3796948 88.5 0 0
bigt_2-88 398824 3796934 88.5 0 0 45 *
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bigt_2-89 398857 3796900 88.5 8 0 0 22 *

bigt_2-89 398866 3796891 88.5 0 0
bigt_2-90 398879 3796875 88.5 0 0
bigt_2-91 398886 3796870 88.5 0 0
bigt_2-92 398897 3796855 88.5 0 0
bigt_2-93 398905 3796846 88.4 0 0
bigt_2-94 398917 3796832 88.4 0 0
bigt_2-96 398922 3796825 88.4 0 0 45 *

bigt_2-97 398923 3796819 88.4 0 0 45 *

bigt_2-98 398937 3796810 88.4 0 0 45 *

bigt_2-98 398942 3796806 88.4 0 0
bigt_2-99 398946 3796805 88.4 0 0

bigt_2-100 398958 3796794 88.4 0 0
bigt_2-101 398975 3796787 88.4 0 0
bigt_2-102 398994 3796774 88.4 0 0
bigt_2-104 399001 3796767 88.4 0 0 45 *

bigt_2-105 399015 3796760 88.4 8 30 0 90 *

bigt_2-106 399024 3796755 88.4 8 0 15 90 *

bigt_2-106 399039 3796742 88.4 0 0
bigt_2-107 399043 3796737 88.4 0 0
bigt_2-109 399067 3796728 88.3 0 0 90 *

bigt_2-110 399077 3796722 88.3 8 95 100 90 *

bigt_2-111 399090 3796717 88.3 8 0 2 90 *

bigt_2-112 399112 3796716 88.3 8 5 15 90 *

bigt_2-113 399124 3796722 88.3 0 0 90 *

bigt_2-114 399137 3796724 88.3 0 0 90 *

bigt_2-115 399154 3796746 88.3 7 0 0 90 *

bigt_2-116 399166 3796782 88.2 8 0 0 90 *

bigt_2-117 399187 3796821 88.2 0 0 90 *

bigt_2-118 399219 3796855 88.2 8 20 40 22 *

bigt_2-119 399248 3796872 85.9 6 10 10 90 *

bigt_2-120 399267 3796879 85.9 7 0 0 90 *

bigt_2-121 399300 3796876 85.9 8 40 30 90 *

bigt_2-122 399343 3796881 85.9 8 15 5 11 *

bigt_2-123 399368 3796875 85.9 6 5 0 45 *

bigt_2-124 399377 3796877 85.9 8 0 0 45 *

bigt_2-125 399393 3796877 85.9 6 10 5 90 *

bigt_2-125 399397 3796877 85.8 0 0
bigt_2-126 399408 3796879 85.8 0 0
bigt_2-127 399417 3796880 85.8 0 0
bigt_2-129 399430 3796881 85.8 6 0 0 45 *

bigt_2-130 399448 3796894 85.8 8 0 0 90 *

bigt_2-130 399464 3796898 85.7 0 0 *

bigt_2-132 399471 3796899 85.7 5 0 0 90 *

bigt_2-132 399477 3796897 85.7 0 0
bigt_2-133 399486 3796895 85.7 0 0
bigt_2-134 399512 3796886 85.7 0 0
bigt_2-135 399526 3796882 85.7 0 0
bigt_2-137 399535 3796875 85.7 4 0 0 22 *

bigt_2-137 399541 3796871 85.7 0 0
bigt_2-138 399549 3796864 85.7 0 0
bigt_2-139 399555 3796860 85.7 0 0
bigt_2-140 399567 3796854 85.7 0 0
bigt_2-141 399574 3796850 85.7 0 0
bigt_2-142 399578 3796849 85.7 0 0
bigt_2-143 399579 3796847 85.7 0 0
bigt_2-145 399578 3796842 85.7 0 0 22 *

bigt_2-146 399575 3796832 85.6 0 0 22 *

bigt_2-147 399609 3796809 85.6 0 0 11 *

bigt_2-148 399634 3796799 85.6 0 0 45 *

bigt_2-149 399663 3796783 85.6 0 0 90 *

bigt_2-150 399689 3796773 85.6 0 5 45 *

bigt_2-150 399696 3796769 85.6 0 0
bigt_2-151 399712 3796758 85.6 0 0
bigt_2-153 399812 3796738 85.6 8 1 10 11 *

bigt_2-154 399817 3796734 85.6 20 30 11 *
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bigt_2-155 399825 3796735 85.6 0 0 90 *

bigt_2-156 399835 3796735 85.6 30 40 90 *

bigt_2-157 399837 3796741 85.6 0 0 90 *

bigt_2-158 399854 3796743 85.6 0 0 90 *

bigt_2-159 399878 3796759 85.5 0 0 11 *

bigt_2-160 399886 3796761 85.5 6 30 5 11 *

bigt_2-161 399895 3796769 77.9 0 0 11 *

bigt_2-162 399907 3796778 77.8 50 5 11 *

bigt_2-163 399912 3796784 77.8 0 0 45 *

bigt_2-163 399924 3796792 77.8 0 0
bigt_2-164 399939 3796802 77.8 0 0
bigt_2-166 399960 3796814 77.7 10 80 45 *

bigt_2-167 399964 3796819 77.7 0 0 90 *

bigt_2-167 399975 3796826 77.7 0 0
clby-0 395656 3792780 1.6 5.0 5 0 0
clby-1 395634 3792787 1.6 4.9 5 0 100
clby-2 395622 3792788 1.6 4.5 5 0 100
clby-3 395611 3792774 1.6 4.0 4 0 100
clby-4 395606 3792757 1.6 4.2 4 5 60 128
clby-5 395595 3792741 1.6 5.1 5 0 50
clby-6 395587 3792723 1.6 5 10 50
clby-7 395571 3792729 1.6 3.9 4 10 80
clby-8 395564 3792726 1.6 4 20 100
clby-9 395552 3792709 1.6 4.2 4 0 70
clby-10 395542 3792689 1.7 6 10 50
clby-11 395551 3792681 1.7 6 0 0
clby-12 395551 3792666 1.7 5.6 7 10 20
clby-13 395543 3792655 1.7 4.5 5 5 40
clby-14 395531 3792651 1.7 4.0 4 5 50 128
clby-15 395516 3792653 1.7 4.3 4 20 50
clby-16 395509 3792643 1.7 5.0 5 0 0 180
clby-17 395518 3792627 1.7 4.9 6 0 30 180
clby-18 395513 3792614 1.7 5.0 6 0 0 180
clby-19 395503 3792605 1.7 5.0 6 0 20 180
clby-20 395495 3792592 1.7 4.5 6 0 50 90
clby-21 395484 3792581 2.6 4.6 8 0 0 90
clby-22 395472 3792592 2.6 5.9 8 0 0
clby-23 395461 3792602 2.6 4.9 12 0 0 90
clby-24 395449 3792600 2.6 8 0 30
clby-25 395439 3792589 2.6 4.3 5 0 0
clby-26 395426 3792574 2.6 4.4 5 5 0
clby-27 395417 3792569 2.6 3.9 5 30 30 180
clby-28 395404 3792564 2.6 5.0 5 10 20
clby-29 395390 3792561 2.6 5.0 5 10 80
clby-30 395376 3792553 2.6 4.0 4 0 70
clby-31 395362 3792543 2.7 5.0 8 10 20
clby-32 395341 3792538 2.7 5.4 5 20 60
clby-33 395326 3792536 2.7 5.3 10 0 0
clby-34 395312 3792535 2.7 5.3 13 0 0 128
clby-35 395304 3792527 2.7 5.7 11 0 0
clby-36 395286 3792526 2.7 5.3 7 60 0
clby-37 395264 3792523 2.7 4.9 7 10 0
clby-38 395255 3792540 2.7 5.8 8 30 30
clby-39 395240 3792550 2.7 13 0 0
clby-40 395224 3792545 2.7 8 0 0
clby-41 395200 3792540 2.7 9 0 0
switz-0 393756 3791135 12.1 8 0 0
switz-1 393766 3791120 12.1 6.6 9 0 70 256
switz-2 393786 3791114 12.1 6.2 10 0 50 256
switz-3 393818 3791114 12.1 7.0 13 5 30 180
switz-4 393839 3791115 12.1 5.7 9 10 40
switz-5 393863 3791128 12.1 9 0 20 128
switz-6 393887 3791132 12.1 5.6 9 0 50 180
switz-7 393910 3791113 12.1 7.0 7 0 50 180
switz-8 393926 3791092 12.1 7.4 8 10 20
switz-9 393948 3791063 12.2 6.8 9 20 50 4
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switz-10 393944 3791020 12.2 7.5 8 30 80 180
switz-11 393940 3791011 12.3 5.9 6 95 100
switz-12 393937 3790987 12.3 10.6 11 50 100
switz-13 393933 3790954 12.3 7.2 8 5 30 180
switz-14 393939 3790934 12.3 8.0 12 0 0 180
switz-15 393975 3790930 12.3 6.8 12 0 20
switz-16 393981 3790916 12.3 6.8 18 0 30 180
switz-17 393962 3790890 12.3 7.6 15 0 20 128
switz-18 393949 3790877 12.3 7.5 17 0 0 180
switz-19 393968 3790843 12.3 8.2 12 0 20 180
switz-20 394006 3790835 12.3 8.2 13 0 0
switz-21 394044 3790812 12.3 8.7 15 0 0 128
switz-22 394067 3790792 12.4 7.1 12 0 0
switz-23 394094 3790783 12.4 8.8 22 0 0 90
switz-24 394113 3790807 12.4 37 0 0
switz-25 394148 3790838 12.4 39 0 0 180
switz-26 394179 3790855 12.4 8.4 20 0 0 128
switz-27 394202 3790834 12.4 8.0 31 0 0 128
switz-29 394195 3790809 12.4 25 0 0
switz-30 394198 3790790 12.4 6.8 15 0 0 180
switz-31 394217 3790781 12.4 7.3 9 0 50
switz-32 394238 3790770 12.4 11 0 0
switz-33 394253 3790748 12.4 7.0 20 0 0 128
switz-34 394241 3790740 12.4 5.8 16 30 50
switz-35 394226 3790728 12.4 10.4 9 20 75
switz-36 394198 3790700 12.4 7.3 13 10 30 180
switz-37 394180 3790676 12.4 6.5 16 0 20 180
switz-38 394156 3790676 12.4 6.5 12 30 50
switz-39 394148 3790673 12.5 5.1 7 90 100
switz-40 394131 3790656 12.5 10.6 11 20 100
switz-41 394125 3790645 12.5 10.0 11 30 100
switz-42 394166 3790621 12.5 6.9 9 0 10 256
switz-43 394181 3790618 12.5 9.1 9 20 100
switz-44 394205 3790613 12.5 6.8 7 30 100
switz-45 394210 3790604 12.5 6.2 7 0 50 180
switz-46 394211 3790575 12.5 6.6 7 0 40 180
switz-47 394225 3790546 12.5 6.4 7 20 70
switz-48 394224 3790540 12.5 6.3 7 100 100
switz-49 394220 3790523 15.0 10 0 0
switz-50 394210 3790506 15.0 7.3 14 0 0 256
switz-51 394202 3790444 15.0 8.3 12 0 30 180
switz-52 394199 3790421 15.0 7.8 10 0 0
switz-53 394205 3790390 15.0 8.1 9 0 50
bearcyn-0 395337 3789437 5.5 23 0 0
bearcyn-1 395302 3789451 5.5 6.2 24 0 30 64
bearcyn-2 395292 3789473 5.5 7.3 14 0 0
bearcyn-3 395283 3789505 5.6 7.0 13 30 50
bearcyn-4 395285 3789525 5.6 6.5 12 5 10
bearcyn-5 395272 3789550 5.6 6.0 13 0 0 180
bearcyn-6 395258 3789563 5.6 6.1 14 5 60 64
bearcyn-7 395223 3789563 5.6 5.7 10 0 0 128
bearcyn-8 395193 3789583 5.6 6.5 14 0 20 64
bearcyn-9 395174 3789596 5.6 22 0 0
bearcyn-10 395159 3789617 5.7 7.5 57 0 10 128
bearcyn-11 395166 3789660 5.7 7.1 35 0 0
bearcyn-12 395184 3789688 5.7 27 0 0
bearcyn-13 395181 3789705 5.7 42 0 0
bearcyn-14 395179 3789722 5.7 7.2 42 0 0
bearcyn-15 395163 3789729 5.7 6.9 40 0 0
bearcyn-16 395140 3789716 5.7 5.9 34 0 30 128
bearcyn-17 395122 3789701 5.7 5.8 23 0 0 64
bearcyn-18 395108 3789708 5.7 6.2 21 0 0 64
bearcyn-19 395093 3789729 5.7 20 0 0
bearcyn-20 395092 3789755 5.8 5.6 16 0 0
bearcyn-21 395074 3789761 5.8 6.7 15 0 0 128
bearcyn-22 395068 3789751 5.8 6.0 6 30 50
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bearcyn-23 395059 3789739 5.8 6.5 7 10 10 128
bearcyn-24 395036 3789739 5.8 5.0 6 0 30 128
bearcyn-25 395016 3789753 5.8 5.0 9 0 30 128
bearcyn-26 395007 3789765 5.8 5.7 8 0 0
bearcyn-27 394987 3789757 5.8 5.8 6 10 60
bearcyn-28 394984 3789742 5.8 5.7 12 0 50
bearcyn-29 394986 3789698 5.8 6.3 12 0 0
bearcyn-30 394972 3789678 5.8 5.7 11 0 0 128
bearcyn-31 394946 3789683 5.8 5.1 7 0 50
bearcyn-32 394933 3789695 5.8 5.7 6 0 50 128
bearcyn-33 394899 3789708 5.8 5.6 6 0 50 128
bearcyn-34 394882 3789716 5.9 8 0 0
bearcyn-35 394862 3789715 5.9 5.7 9 0 45 128
bearcyn-36 394832 3789726 5.9 5.0 8 0 30 128
bearcyn-37 394815 3789741 5.9 4.7 8 0 20 128
bearcyn-38 394795 3789760 5.9 5.0 7 0 10 128
bearcyn-39 394789 3789775 5.9 7 0 0
bearcyn-40 394787 3789785 5.9 6 0 0
bearcyn-41 394785 3789811 6.0 7 0 0
bearcyn-42 394769 3789843 6.0 5.1 8 0 20 90
bearcyn-43 394756 3789865 6.0 5.4 7 0 5 128
bearcyn-44 394746 3789885 6.3 6.0 17 0 0 128
bearcyn-45 394729 3789915 6.3 13 0 0 180
bearcyn-46 394744 3789939 6.3 12 0 0 128
bearcyn-47 394752 3789949 6.3 23 0 0
bearcyn-48 394749 3789971 6.3 6.4 18 0 0 128
bearcyn-49 394738 3789985 6.3 5.4 16 0 0 360
bearcyn-50 394718 3790000 6.4 5.7 10 0 0 180
bearcyn-51 394693 3790011 6.4 5.7 10 0 10
bearcyn-52 394678 3790015 6.4 16 0 0
bearcyn-53 394670 3790029 6.4 6.2 15 0 0 90
bearcyn-54 394686 3790072 6.4 5.5 10 0 0 90
bearcyn-55 394695 3790091 6.4 6.1 13 5 10 128
bearcyn-56 394692 3790109 6.4 21 0 0
bearcyn-57 394671 3790112 6.5 5.9 19 0 0 180
bearcyn-58 394614 3790120 6.5 6.0 11 0 20 64
bearcyn-59 394594 3790143 6.5 6.5 12 0 0 128
bearcyn-60 394593 3790161 6.5 12 0 0
bearcyn-61 394609 3790169 6.5 6.0 15 5 5 128
bearcyn-62 394613 3790183 6.7 13 0 5
bearcyn-63 394592 3790228 6.7 6.5 15 0 30 128
bearcyn-64 394582 3790244 6.7 15 0 0 700
bearcyn-65 394565 3790258 6.7 6.5 13 0 0
bearcyn-66 394532 3790259 6.7 18 0 0
bearcyn-67 394496 3790260 6.7 17 0 0
bearcyn-68 394470 3790264 6.7 12 0 0
bearcyn-69 394422 3790267 6.8 5.6 9 0 10
bearcyn-70 394404 3790309 6.8 7.4 13 0 0 128
bearcyn-71 394390 3790324 6.8 6.0 13 0 50
bearcyn-72 394375 3790315 6.8 6.1 10 0 50 2
bearcyn-73 394367 3790290 6.8 6.0 10 0 5 180
bearcyn-74 394313 3790319 6.8 7.1 8 0 10 90
bearcyn-75 394301 3790317 6.8 4.4 6 0 50
bearcyn-76 394285 3790301 6.8 5.8 6 0 30 180
bearcyn-77 394268 3790288 6.8 4.9 7 0 30
bearcyn-78 394260 3790294 6.8 8 0 0
bearcyn-79 394251 3790322 6.8 6.0 6 0 50 128
bearcyn-80 394230 3790364 6.8 5.5 6 0 60 128
bearcyn-81 394207 3790390 6.8 5.0 7 0 0
bigrock_1 423611 3804438 17.6 8.0 0 0 32
bigrock_2 423677 3804534 17.7 8.0 0 0 32
bigrock_3 423748 3804616 17.8 8.0 0 0 22
bigrock_4 423845 3804789 18.1 8.0 0 0 22
bigrock_5 423909 3804878 18.3 8.0 0 0
bigrock_6 423997 3804994 18.4 9.0 0 0 32
bigrock_7 424200 3805039 18.5 9.0 0 0 22
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bigrock_8 424204 3805299 19.4 9.0 0 0 22
bigrock_9 424281 3805429 19.8 6.0 0 0 32
devils_a_1 410281 3794733 25.9 8.0 0 0
devils_a_2 410377 3794830 25.8 9.0 0 0
devils_a_3 410379 3794982 25.7 9.0 0 0
devils_a_4 410261 3795190 25.5 10.0 0 0
devils_a_5 410250 3795209 25.5 9.0 0 0
devils_a_6 410245 3795266 25.3 14.0 0 0
devils_a_7 410115 3795469 24.0 9.0 0 0
devils_a_8 410117 3795540 24.0 0 0
devils_a_9 409873 3795859 23.5 9.0 0 0

devils_a_10 409871 3796017 22.0 9.0 0 0
devils_a_11 409813 3796085 22.0 9.0 0 0
devils_a_12 409774 3796112 22.0 9.0 0 0
devils_a_13 409767 3796217 21.9 9.0 0 0
devils_a_14 409812 3796478 21.6 11.0 0 0
devils_a_15 409763 3796782 20.3 0 0
devils_a_16 409646 3796776 20.2 11.0 0 0
upperlrc-0 416016 3803349 22.6 9.5 0 0
upperlrc-1 416036 3803352 22.6 8.7 10 20 5 8
upperlrc-2 416050 3803353 22.6 7.2 10 80 80 11
upperlrc-3 416069 3803354 22.6 8.0 10 20 10 11
upperlrc-4 416104 3803357 22.6 8.4 9 5 0 64
upperlrc-5 416118 3803355 22.6 0 0
upperlrc-6 416145 3803354 22.6 8.5 19 50 10 2
upperlrc-7 416171 3803350 22.6 10.5 11 25 25 2
upperlrc-8 416188 3803333 22.5 8.9 18 5 5 180
upperlrc-9 416206 3803320 22.5 8.0 18 0 0 45

upperlrc-10 416228 3803299 22.5 8.0 25 5 50 2
upperlrc-11 416274 3803316 22.5 8.0 23 0 0 64
upperlrc-12 416304 3803328 22.5 7.5 0 50 128
upperlrc-13 416316 3803319 21.6 6.4 15 50 128
upperlrc-14 416324 3803300 21.6 7.8 12 0 0 180
upperlrc-15 416337 3803269 21.6 8.1 40 50 64
upperlrc-16 416359 3803268 21.5 8.0 10 10 45
upperlrc-17 416376 3803283 21.5 9.5 15 5 5 45
upperlrc-18 416407 3803278 21.5 10.5 30 0 0 90
upperlrc-19 416420 3803280 21.5 0 0 45
upperlrc-20 416433 3803264 21.5 0 0
upperlrc-21 416443 3803249 21.4 8.5 0 0
upperlrc-22 416448 3803227 21.4 8.9 0 0 32
upperlrc-23 416455 3803199 21.4 10 10 16
upperlrc-24 416460 3803172 21.4 11.0 0 0 64

littlerk-0 413224 3807250 37.9 0 0
littlerk-1 413207 3807258 37.9 7.8 8 0 50 90
littlerk-2 413192 3807263 37.9 9.6 12 0 50 360
littlerk-3 413182 3807278 38.0 11.5 12 25 50 32
littlerk-4 413171 3807290 38.0 10.7 11 5 30 16
littlerk-5 413165 3807302 38.0 10.7 11 0 20 16
littlerk-6 413156 3807311 38.0 11.5 12 70 20 1000
littlerk-7 413134 3807308 38.0 9.9 70 75 128
littlerk-8 413102 3807303 38.0 11.9 16 50 50 90
littlerk-9 413088 3807313 38.0 10.0 13 10 70 32

littlerk-10 413085 3807322 38.0 9.5 9 5 100 32
littlerk-11 413074 3807329 38.0 9.8 10 0 100 180
littlerk-12 413046 3807345 38.0 6.0 6 40 100 256
littlerk-13 413033 3807349 38.0 8.8 9 70 80 128
littlerk-14 413001 3807356 38.0 10.0 12 15 100 22
littlerk-15 412985 3807361 38.0 9.1 10 20 60 64
littlerk-16 412968 3807353 38.0 10.6 12 0 20 22
littlerk-17 412953 3807345 38.0 9.9 15 0 0 90
littlerk-18 412932 3807345 38.0 12.0 14 0 25 11
littlerk-19 412914 3807352 38.1 13.2 16 0 0 32
littlerk-20 412898 3807360 38.2 12.8 17 0 20 11
littlerk-21 412889 3807362 38.3 11.9 12 0 0 11
littlerk-22 412879 3807368 38.4 12.0 15 0 30 22
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littlerk-23 412844 3807387 38.6 9.5 10 10 30 11
littlerk-24 412829 3807389 38.6 11.4 11 0 90 45
littlerk-25 412819 3807384 38.6 11.5 12 0 80 64
littlerk-26 412804 3807392 38.6 11.5 12 0 90 45
littlerk-27 412778 3807414 38.6 10.2 11 0 60 16
littlerk-28 412760 3807436 38.6 9.5 10 5 75 22
littlerk-29 412750 3807447 38.7 10.5 11 0 75 256
littlerk-30 412739 3807469 38.7 10.3 15 5 50 32
littlerk-31 412733 3807479 38.7 11.1 13 0 25 22
littlerk-32 412713 3807486 38.7 12.5 13 0 90 45
littlerk-33 412700 3807485 38.7 9.7 10 0 25 32
littlerk-34 412685 3807480 38.7 8.5 10 0 70 8
littlerk-35 412674 3807480 38.7 9.4 10 15 20 180
littlerk-36 412652 3807479 38.7 9.9 15 30 50 32
littlerk-37 412632 3807473 38.7 8.1 8 30 60 45
littlerk-38 412602 3807473 38.7 7.3 7 5 95 16
littlerk-39 412576 3807462 38.7 10.1 10 10 75 32
littlerk-40 412561 3807440 38.7 6.5 8 25 40 90
littlerk-41 412541 3807418 39.4 9.7 12 5 15 22
littlerk-42 412511 3807395 39.4 9.8 11 0 0 45
littlerk-43 412488 3807395 39.4 7.5 10 0 50 45
littlerk-44 412476 3807404 39.4 11.3 11 0 50 32
littlerk-45 412453 3807407 39.4 12.5 20 0 0 45
littlerk-46 412432 3807408 39.4 12.7 18 0 25 32
littlerk-47 412397 3807415 39.5 10.0 20 0 0 32
littlerk-48 412373 3807418 39.5 10.0 15 0 30 32
littlerk-49 412355 3807418 39.5 10.0 10 0 0 32
littlerk-50 412341 3807420 39.5 10.0 12 0 30 32
littlerk-51 412324 3807430 39.5 10.0 20 0 0 45
littlerk-52 412293 3807439 39.5 9.7 20 0 40 32
littlerk-53 412281 3807447 39.5 10.0 0 0 32
littlerk-54 412266 3807465 39.5 11.3 18 0 0 45
littlerk-55 412236 3807483 39.6 10.8 17 0 20 16
littlerk-56 412207 3807502 39.6 10.0 0 35 16
littlerk-57 412181 3807505 39.6 8.8 32 0 50 4
littlerk-58 412159 3807495 39.6 8.9 25 0 0 32
littlerk-59 412130 3807491 39.7 10.6 25 0 0 16
arroyo-0 393054 3790026 24.4 9 0 0
arroyo-1 393041 3790045 24.4 8.4 14 70 50
arroyo-2 393025 3790059 24.4 7.5 11 60 60
arroyo-3 393004 3790070 24.4 7.0 8 10 100 90
arroyo-4 392986 3790078 24.4 6.8 7 0 75
arroyo-5 392976 3790081 24.4 7.0 11 10 50 180
arroyo-6 392964 3790076 24.4 8.4 10 5 50 90
arroyo-7 392952 3790063 24.4 7.1 7 5 75 90
arroyo-8 392937 3790044 24.4 6.4 6 0 100 11
arroyo-9 392920 3790021 24.4 6.4 6 0 100 11
arroyo-10 392890 3790030 24.4 6.5 10 0 50 22
arroyo-11 392884 3790038 24.4 7.0 15 0 50 16
arroyo-12 392885 3790049 24.4 10.0 18 0 20 256
arroyo-13 392878 3790056 24.4 12.0 12 0 10 128
arroyo-14 392871 3790078 24.4 10 0 0
arroyo-15 392863 3790093 24.5 7.6 9 10 50 90
arroyo-16 392856 3790106 24.5 6.8 8 10 50
arroyo-17 392846 3790113 24.5 7.3 10 40 40 22
arroyo-18 392834 3790125 24.5 8.7 12 5 10 90
arroyo-19 392820 3790129 24.5 8.0 10 0 0 64
arroyo-20 392796 3790135 24.5 7.0 9 0 50
arroyo-21 392786 3790121 24.5 7.4 9 0 30 180
arroyo-22 392768 3790101 24.5 8.0 12 0 50 45
arroyo-23 392766 3790089 24.5 11 0 0
arroyo-24 392770 3790069 24.5 9.0 9 0 90 32
arroyo-25 392774 3790032 24.5 7.7 11 5 0 90
arroyo-26 392785 3790012 24.5 7.9 12 0 0 64
arroyo-27 392813 3789988 24.5 7.8 9 0 60 32
arroyo-28 392814 3789973 24.5 9.9 12 0 40 90
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arroyo-29 392803 3789958 24.5 7.0 7 20 50
arroyo-30 392780 3789957 24.5 7.0 8 0 40 64
arroyo-31 392766 3789952 24.5 10.0 15 0 0 45
arroyo-32 392748 3789949 24.5 10.0 17 0 10 64
arroyo-33 392738 3789950 24.5 14 0 0
arroyo-34 392728 3789945 24.5 21 0 0
arroyo-35 392721 3789949 24.5 26 0 0
arroyo-36 392715 3789945 24.6 12.0 27 0 0 32
arroyo-37 392688 3789939 24.6 12.3 33 0 0 128
arroyo-38 392663 3789937 24.6 12.5 33 0 0 128
arroyo-39 392640 3789935 24.6 10.5 24 0 30 64
arroyo-40 392627 3789926 24.6 12.5 13 0 0 90
arroyo-41 392620 3789913 24.6 13 0 0
arroyo-42 392627 3789893 24.6 17 0 5 64
arroyo-43 392620 3789870 24.6 10.4 23 0 0 32
arroyo-44 392580 3789861 24.6 12.0 15 0 0 90
arroyo-45 392550 3789878 24.6 13.0 25 0 0 45
arroyo-46 392536 3789914 24.6 12.0 28 0 0 45
arroyo-47 392525 3789934 24.6 8.6 25 0 40 64
arroyo-48 392504 3789953 24.6 11.7 25 0 0 90
arroyo-49 392494 3789964 24.7 11.7 25 0 50 45
arroyo-50 392477 3789970 24.7 40 10 50 64
arroyo-51 392454 3789949 24.8 40 5 50 90
arroyo-52 392410 3789927 24.8 10.5 36 0 0 64
arroyo-53 392373 3789921 24.9 14.0 33 0 0 64
arroyo-54 392349 3789947 24.9 14.6 27 0 0 64
arroyo-55 392345 3789981 25.0 22 0 0
arroyo-56 392319 3790011 25.0 10.0 13 0 40 64
arroyo-57 392303 3790024 25.0 11.4 18 0 20 45
arroyo-58 392283 3790037 25.0 11.0 20 0 0 64
arroyo-59 392249 3790045 25.1 12.1 25 0 25 45
arroyo-60 392217 3790054 25.1 8.0 30 0 0 90
arroyo-61 392188 3790054 25.1 7.9 28 0 0 90
devils-0 410397 3794148 31.0 6.5 7 0 0
devils-1 410391 3794157 31.0 8.5 100 100
devils-2 410388 3794160 31.0 10 50 2000
devils-3 410379 3794165 31.0 0 0
devils-4 410370 3794172 31.0 10 0 45
devils-5 410357 3794197 30.9 9.0 16 0 0 128
devils-6 410347 3794208 30.9 7.9 15 0 0 90
devils-7 410349 3794223 30.9 11.2 15 5 25 90
devils-8 410347 3794242 30.9 12.3 12 40 90 90
devils-9 410350 3794260 30.9 8.5 50 100 8

devils-10 410346 3794270 29.1 8.7 10 100 180
devils-11 410342 3794277 29.0 0 0
devils-12 410339 3794301 29.0 11.3 12 30 25 5
devils-13 410329 3794324 29.0 9.0 12 10 50 256
devils-14 410324 3794342 29.0 8.0 10 20 5
devils-15 410313 3794361 29.0 0 0
devils-16 410301 3794370 29.0 12.9 13 40 20 64
devils-17 410296 3794375 29.0 10.5 11 95 80
devils-18 410291 3794389 29.0 9.4 12 60 50 32
devils-19 410286 3794394 29.0 0 0
devils-20 410278 3794405 29.0 9.8 35 80 32
devils-21 410282 3794423 28.9 0 0
devils-22 410280 3794426 28.9 10.0 20 50 3000
devils-23 410281 3794441 28.9 8.5 5 0 256
devils-24 410270 3794458 28.9 9.5 15 0 0 128
devils-25 410268 3794469 28.9 10.0 0 20 1000
devils-26 410253 3794495 28.9 8.3 15 40 50 256
devils-27 410250 3794508 28.9 9.0 15 5 40 64
devils-28 410250 3794517 28.9 0 0
devils-29 410236 3794547 28.9 10.1 10 25 60 90
devils-30 410226 3794578 28.9 11.8 15 10 50 180
devils-31 410216 3794602 28.9 11.0 15 0 20 64
devils-32 410226 3794623 28.8 13.5 20 0 0 720
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devils-33 410229 3794637 28.8 15.4 20 0 0 32
devils-34 410239 3794648 28.8 14.4 17 0 0 90
devils-35 410247 3794660 28.8 0 0 128
devils-36 410253 3794673 26.0 11.7 18 0 0 90
devils-37 410267 3794697 25.9 8.9 0 50 180
devils-38 410273 3794710 25.9 9.6 0 0 180
devils-39 410275 3794723 25.9 0 0
nfmill-0 395354 3798546 14.4 0 0
nfmill-1 395364 3798541 14.4 5.0 29 0 0 64
nfmill-2 395374 3798543 14.4 5.0 26 0 0 64
nfmill-3 395391 3798539 14.4 5.4 24 0 0 64
nfmill-4 395403 3798527 14.4 5.5 22 0 0 4
nfmill-5 395410 3798525 14.4 25 0 0
nfmill-6 395419 3798527 14.5 6.0 27 0 0 90
nfmill-7 395439 3798514 14.5 6.0 29 0 0 32
nfmill-8 395449 3798510 14.5 31 0 25 64
nfmill-9 395454 3798495 14.5 5.0 30 85 50
nfmill-10 395461 3798480 14.5 6.0 26 0 0 45
nfmill-11 395467 3798467 14.5 5.5 28 0 0 8
nfmill-12 395478 3798463 14.5 28 0 0 45
nfmill-13 395488 3798460 14.5 27 0 0 45
nfmill-14 395496 3798453 14.5 5.5 19 0 0 45
nfmill-15 395508 3798446 14.5 5.2 20 0 0 22
nfmill-16 395527 3798436 14.5 5.5 20 0 0 45
nfmill-17 395544 3798424 14.5 5.1 22 0 0 45
nfmill-18 395561 3798415 14.6 5.0 23 0 0 180
nfmill-19 395571 3798413 14.6 22 0 0 32
nfmill-20 395586 3798408 14.6 5.6 21 0 0 45
nfmill-21 395604 3798401 14.6 5.5 15 5 5 45
nfmill-22 395623 3798386 14.6 6.0 19 5 40 64
nfmill-23 395629 3798373 14.6 6.0 21 0 0 180
nfmill-24 395627 3798368 14.6 21 0 0 256
nfmill-25 395617 3798362 14.6 5.0 18 50 50 180
nfmill-26 395605 3798342 14.6 5.0 19 20 0 32
nfmill-27 395626 3798326 14.6 6.0 18 0 0 45
nfmill-28 395629 3798320 14.6 19 0 0
nfmill-29 395648 3798316 14.6 5.5 17 0 0 64
nfmill-30 395658 3798305 14.6 6.0 18 40 50 90
nfmill-31 395659 3798293 14.6 6.0 20 5 10
nfmill-32 395656 3798282 14.6 23 5 0 22
nfmill-33 395645 3798269 14.6 6.9 11 0 0 64
nfmill-34 395635 3798259 14.6 6.4 10 0 0 90
nfmill-35 395618 3798249 14.6 6.9 10 5 30 16
nfmill-36 395606 3798245 14.6 6.0 10 0 0 45
nfmill-37 395595 3798250 14.6 9 0 0
nfmill-38 395583 3798249 14.7 10 5 20 64
nfmill-39 395574 3798248 14.7 5.5 8 0 0 45
nfmill-40 395569 3798239 14.7 15 0 0
nfmill-41 395568 3798227 14.7 6.8 16 0 0 180
nfmill-42 395579 3798218 14.7 6.5 15 0 0 64
nfmill-43 395594 3798209 14.7 15 0 0 45
nfmill-44 395599 3798209 14.7 15 0 0
nfmill-45 395613 3798195 14.7 7.1 8 5 50 45
nfmill-46 395625 3798186 14.7 6.3 8 0 0 45
nfmill-47 395638 3798175 14.7 7.0 7 40 50 360
nfmill-48 395645 3798164 14.8 7.0 10 0 0 45
nfmill-49 395653 3798153 14.8 7.0 12 0 0 64
nfmill-50 395664 3798143 14.8 7.0 10 0 0 45
nfmill-51 395678 3798133 14.8 14 0 0
nfmill-52 395688 3798124 14.8 18 0 0 45
nfmill-53 395698 3798115 14.9 5.0 13 75 50
nfmill-54 395703 3798109 14.9 6.0 12 85 60
nfmill-55 395700 3798096 14.9 14 0 0 45
nfmill-56 395694 3798094 14.9 15 0 0 90
nfmill-57 395688 3798092 14.9 18 0 0 180
nfmill-58 395685 3798087 14.9 18 0 0
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nfmill-59 395687 3798077 14.9 5.5 12 80 50
nfmill-60 395680 3798067 14.9 6.1 10 25 75 45
nfmill-61 395668 3798061 14.9 8 0 0
nfmill-62 395664 3798059 14.9 6.2 6 0 80 22
nfmill-63 395663 3798053 14.9 6.7 7 50 100 22
nfmill-64 395658 3798036 14.9 6.5 7 25 100 45
nfmill-65 395663 3798021 14.9 7.0 12 0 0 128
nfmill-66 395672 3798009 14.9 7.0 14 0 10 45
nfmill-67 395690 3797995 14.9 12 0 0
nfmill-68 395693 3797990 15.0 6.8 12 0 30 45
nfmill-69 395719 3797985 15.0 17 0 0 64
nfmill-70 395726 3797982 15.0 18 0 0
nfmill-71 395746 3797970 15.0 7.0 20 0 0 64
nfmill-72 395760 3797963 15.0 21 0 0
nfmill-73 395766 3797960 15.0 23 0 0
nfmill-74 395769 3797952 15.0 22 0 0
nfmill-75 395765 3797943 15.0 23 0 0
upeaton-0 399718 3785093 12.5 5.4 5 0 0
upeaton-1 399730 3785094 12.5 6.6 13 15 50 180
upeaton-2 399735 3785070 12.5 7.2 13 5 0 180
upeaton-3 399752 3785054 12.5 7.5 20 20 70 180
upeaton-4 399766 3785052 12.5 7.0 18 5 70 128
upeaton-5 399788 3785061 12.5 7.1 11 0 50 256
upeaton-6 399809 3785073 12.5 6.2 9 0 50 180
upeaton-7 399831 3785080 12.5 7.7 9 25 50 180
upeaton-8 399849 3785090 12.4 6.7 9 0 50 180
upeaton-9 399858 3785102 12.4 7.7 9 15 50 180

upeaton-10 399874 3785136 12.4 6.4 9 0 50 90
upeaton-11 399875 3785145 12.4 7.0 10 0 50 360
upeaton-12 399867 3785165 12.4 7.6 8 0 30 128
upeaton-13 399857 3785171 12.0 5.8 23 0 35 90
upeaton-14 399825 3785167 12.0 6.9 23 0 0 180
upeaton-15 399799 3785170 12.0 8.1 13 0 0 180
upeaton-16 399788 3785173 12.0 8.0 12 60 50 256
upeaton-17 399769 3785180 12.0 6.7 9 10 50 180
upeaton-18 399766 3785200 12.0 10.1 15 25 20 180
upeaton-19 399783 3785222 12.0 6.8 10 20 50 180
upeaton-20 399794 3785225 12.0 6.0 6 20 100 64
upeaton-21 399800 3785235 12.0 6.5 7 45 50 256
upeaton-22 399817 3785238 12.0 8.0 10 0 30 180
upeaton-23 399845 3785248 12.0 7.6 20 10 10 180
upeaton-24 399867 3785268 11.9 8.1 14 5 30 180
upeaton-25 399867 3785286 11.9 7.8 11 90 100
upeaton-26 399863 3785295 11.9 11.0 11 10 30 180
upeaton-27 399855 3785306 11.9 8.0 8 5 40 180
upeaton-28 399843 3785320 11.9 7.8 8 50 100 256
upeaton-29 399844 3785339 11.9 8.1 8 20 60 180
upeaton-30 399848 3785345 11.9 8.0 10 10 40 256
upeaton-31 399865 3785352 11.9 9.0 12 10 50 256
upeaton-32 399869 3785357 11.9 6.8 14 80 75 180
upeaton-33 399880 3785366 11.9 9.0 15 30 50 180
upeaton-34 399886 3785376 11.9 6.6 10 0 50 128
upeaton-35 399890 3785389 11.9 7.8 10 75 0 360
upeaton-36 399903 3785408 11.9 7.3 9 60 50 180
upeaton-37 399920 3785421 11.9 8.1 18 5 25 360
upeaton-38 399936 3785421 11.9 7.5 22 70 50
upeaton-39 399956 3785429 11.9 45 0 10 256
upeaton-40 399964 3785440 11.9 7.9 52 0 0 256
upeaton-41 399974 3785454 11.9 14.5 42 0 9 256
upeaton-42 399986 3785462 11.9 34 0 0
upeaton-43 400007 3785467 11.9 40 0 0
upeaton-44 400030 3785497 11.9 9.3 40 0 0 180
upeaton-45 400039 3785522 11.9 7.9 16 35 25 256
upeaton-46 400052 3785530 11.9 7.5 18 15 50 360
upeaton-47 400072 3785534 11.9 6.7 18 10 50 256
upeaton-48 400083 3785529 11.8 20 0 0
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upeaton-49 400094 3785518 8.8 7.4 34 0 0 256
upeaton-50 400105 3785502 8.8 6.3 38 0 50 256
upeaton-51 400118 3785500 8.8 9.0 36 0 20 256
upeaton-52 400123 3785481 8.8 40 0 0 360
upeaton-53 400153 3785479 8.8 9.9 44 0 0 180
upeaton-54 400171 3785469 8.8 8.7 52 30 40 8
upeaton-55 400189 3785488 8.8 49 90 50 64
upeaton-56 400180 3785530 7.4 8.1 48 0 0
midcuca-0 442053 3782249 17.7 0 0
midcuca-1 442066 3782250 17.7 9.0 0 0 256
midcuca-2 442083 3782252 17.7 0 0
midcuca-3 442098 3782259 17.7 8.0 5 50
midcuca-4 442109 3782274 17.7 9.0 10 30
midcuca-5 442125 3782296 17.7 10.0 0 25 128
midcuca-6 442141 3782334 17.7 9.0 60 0 45 45
midcuca-7 442150 3782353 17.3 7.0 0 50
midcuca-8 442159 3782374 17.3 0 40
midcuca-9 442170 3782398 17.3 8.0 45 0 50
midcuca-10 442185 3782425 17.3 8.0 20 0 50
midcuca-11 442204 3782437 17.3 0 25
midcuca-12 442214 3782444 17.2 0 0
midcuca-13 442231 3782469 17.2 10.0 20 0 15
midcuca-14 442240 3782484 17.2 0 50 128
midcuca-15 442257 3782495 17.2 0 0
midcuca-16 442282 3782518 17.2 9.0 10 0 50 128
midcuca-17 442306 3782541 17.2 8.0 8 0 100 128
midcuca-18 442335 3782550 17.2 6.0 10 10 60
midcuca-19 442355 3782577 17.2 8.0 15 0 20
midcuca-20 442371 3782615 17.2 15 50 32
midcuca-21 442393 3782635 17.1 8.0 8 10 90 90
midcuca-22 442408 3782645 17.1 8.0 8 0 100 128
midcuca-23 442413 3782663 16.8 0 0
midcuca-24 442421 3782673 16.8 80 100
midcuca-25 442433 3782681 16.8 0 0

ice-0 443329 3789686 4.6 2.0 35 0 0 128
ice-1 443321 3789680 4.7 0 0
ice-2 443308 3789680 4.7 0 0
ice-3 443296 3789681 4.7 0 0
ice-4 443288 3789678 5.5 0 0
ice-5 443284 3789675 5.5 0 0 90
ice-6 443275 3789675 5.6 3.0 20 0 0
ice-7 443253 3789688 5.6 4.0 10 0 0 180
ice-8 443227 3789696 5.6 4.0 12 0 0 64
ice-9 443224 3789697 5.6 0 0
ice-10 443191 3789688 5.6 6.0 25 0 0 32
ice-11 443184 3789688 5.6 6.0 35 0 0
ice-12 443160 3789698 5.6 0 0
ice-13 443129 3789704 5.6 0 0
ice-14 443123 3789702 5.6 0 0
ice-15 443111 3789704 5.6 31 0 0
ice-16 443086 3789700 5.6 5.3 20 0 0
ice-17 443074 3789701 5.6 0 0
ice-18 443071 3789690 5.6 0 0
ice-19 443053 3789678 5.6 6.0 35 0 0 45
ice-20 443036 3789676 5.6 6.0 35 0 0
ice-21 443014 3789674 5.6 0 0
ice-22 442986 3789670 5.7 6.0 30 0 0
ice-23 442959 3789666 5.7 0 0
ice-24 442934 3789685 5.7 8.0 0 0
ice-25 442923 3789685 6.0 0 0
ice-26 442906 3789689 6.0 0 0
ice-27 442880 3789691 6.0 0 0
ice-28 442870 3789682 6.0 0 0
ice-29 442851 3789674 6.0 0 0
ice-30 442839 3789669 6.0 0 0
ice-31 442833 3789667 6.0 0 0
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ice-32 442822 3789655 6.1 0 0
ice-33 442803 3789652 6.1 0 0
ice-34 442779 3789633 6.1 5.0 0 0
ice-35 442765 3789633 6.1 0 0
ice-36 442760 3789636 6.1 0 0
ice-37 442752 3789636 6.1 0 0
ice-38 442746 3789635 6.1 0 0
ice-39 442722 3789637 6.2 0 0
ice-40 442695 3789639 8.5 6.0 0 0
ice-41 442673 3789632 8.5 6.3 0 0

mflytle-0 447671 3790203 12.2 0 0
mflytle-1 447682 3790199 12.2 9.0 45 0 50 45
mflytle-2 447705 3790204 12.2 8.6 45 0 25 64
mflytle-3 447719 3790200 12.2 9.8 45 0 0 22
mflytle-4 447754 3790190 12.2 10.6 35 0 0 45
mflytle-5 447767 3790188 12.2 8.2 25 0 0 256
mflytle-6 447775 3790156 12.2 9.6 0 0 23
mflytle-7 447817 3790151 12.3 12.0 34 0 25 23
mflytle-8 447858 3790151 12.3 9.6 25 0 0 45
mflytle-9 447889 3790138 12.3 9.4 22 0 0 64
mflytle-10 447918 3790127 12.3 7.2 20 0 0 45
mflytle-11 447961 3790134 12.4 7.9 26 0 0 32
mflytle-12 447996 3790146 12.5 12.9 50 0 0 32
mflytle-13 448013 3790136 12.5 12.0 50 0 0 32
mflytle-14 448028 3790155 12.5 10.5 60 0 0 128
mflytle-15 448051 3790164 12.5 7.8 0 0 64

mflynew-15 448051 3790164 12.5 0 0
mflynew-16 448094 3790166 12.5 0 0
mflynew-17 448096 3790163 12.5 9.3 0 0 45
mflynew-18 448122 3790162 12.5 0 0
mflynew-19 448145 3790166 12.5 12.1 0 0 45
mflynew-20 448179 3790165 12.5 10.6 15 0 0 32
mflynew-21 448209 3790173 13.1 12.1 15 0 0 45
mflynew-22 448233 3790174 13.1 10.3 12 0 0 32
mflynew-23 448266 3790162 13.2 13.0 40 0 0 32
mflynew-24 448289 3790164 13.2 11.5 40 0 0 23
mflynew-25 448311 3790147 13.2 11.6 48 0 0 45
mflynew-26 448337 3790150 13.2 9.2 0 20 45
mflynew-27 448347 3790158 13.2 0 15 32
mflynew-28 448382 3790163 13.2 12.5 51 0 0 45
mflynew-29 448410 3790163 13.2 10.9 50 0 0 64
mflynew-30 448428 3790157 13.2 11.6 50 0 0 45
mflynew-31 448458 3790152 13.5 10.5 68 0 0 32
mflynew-32 448476 3790158 13.5 10.0 58 0 0 45
mflynew-33 448490 3790179 13.6 10.0 58 0 0 45
mflynew-34 448517 3790172 13.6 10.5 45 0 0 32
mflynew-35 448564 3790174 13.6 11.3 55 0 0 32
mflynew-36 448572 3790153 13.6 12.2 56 0 0 32

sflytle-0 451536 3787588 8.0 0 0
sflytle-1 451553 3787599 8.0 4.6 100 0 30
sflytle-2 451569 3787609 8.0 8.1 120 10 50
sflytle-3 451582 3787619 8.0 5.6 40 70 16
sflytle-4 451597 3787629 8.0 5.4 40 80 11
sflytle-5 451608 3787649 8.1 8.5 86 0 40 45
sflytle-6 451606 3787664 8.1 11.5 85 0 0 45
sflytle-7 451625 3787695 9.0 15.3 80 0 0 64
sflytle-8 451642 3787726 9.1 14.5 95 0 0
sflytle-9 451676 3787748 9.1 22.0 100 0 0 64

sflytle-10 451737 3787776 9.1 16.3 82 0 0 64
sflytle-11 451765 3787760 9.1 14.4 62 0 0 64
sflytle-12 451781 3787732 9.1 10.2 50 0 0 45
sflytle-13 451788 3787725 9.3 0 0
sflytle-14 451783 3787717 9.3 9.5 45 0 0 45
sflytle-15 451796 3787712 9.4 9.1 57 0 0 64
sflytle-16 451810 3787708 9.4 9.4 55 0 0 45
sflytle-17 451835 3787719 9.4 10.4 65 0 0 45
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sflytle-18 451843 3787727 9.4 0 0
sflytle-19 451852 3787719 9.4 0 0
sflytle-20 451883 3787722 9.5 6.4 64 0 0 45
sflytle-21 451904 3787714 9.5 7.1 69 0 0 45
sflytle-22 451934 3787718 9.5 6.7 71 0 0 45
sflytle-23 451956 3787716 9.5 7.0 70 0 50 45
sflytle-24 451978 3787724 9.5 8.3 68 0 50 45
sflytle-25 452000 3787720 9.7 9.1 61 0 0 45
sflytle-26 452016 3787713 9.8 6.5 63 0 0 45
sflytle-27 452035 3787709 9.8 7.7 65 0 30 45
sflytle-28 452055 3787701 9.8 7.8 71 0 45 45
sflytle-29 452063 3787694 9.8 6.3 75 50 50 32
sflytle-30 452085 3787689 9.8 84 0 20 45
sflytle-31 452101 3787680 9.8 8.1 81 0 50 45
sflytle-32 452116 3787688 9.8 0 0
millard-0 396051 3787619 2.8 17 0 0
millard-1 396031 3787611 2.8 9.5 18 0 0 512
millard-2 396013 3787602 2.8 12 0 0
millard-3 396002 3787581 2.8 8.3 8 0 100
millard-4 396012 3787568 2.8 8.0 10 0 30
millard-5 396040 3787563 2.9 8.0 15 0 20 180
millard-6 396046 3787543 2.9 8.0 12 0 0 180
millard-7 396049 3787528 2.9 15 5 50
millard-8 396054 3787521 3.0 20 0 25
millard-9 396054 3787506 3.0 20 0 30 720

millard-10 396054 3787491 3.0 9.0 20 0 0 512
millard-11 396043 3787485 3.0 26 0 0
millard-12 396029 3787478 3.0 18 0 0
millard-13 396015 3787477 3.0 15 0 0
millard-14 396001 3787479 3.0 10.5 13 0 20 180
millard-15 395979 3787461 3.0 8.5 9 0 10
millard-16 395958 3787448 3.0 13 0 0
millard-17 395966 3787430 3.0 8.5 12 0 30 45
millard-18 395974 3787422 3.0 12 0 0
millard-19 395968 3787415 3.0 13 0 0
millard-20 395952 3787411 3.3 13 0 0
millard-21 395936 3787427 3.3 8.3 14 0 40
millard-22 395917 3787433 3.3 7.1 18 0 0
millard-23 395900 3787425 3.3 7.7 18 0 0
millard-24 395889 3787407 3.3 40 0 0 360
millard-25 395877 3787392 3.3 40 0 0
millard-26 395869 3787374 3.3 7.0 40 0 0
millard-27 395852 3787369 3.3 40 0 0 64
millard-28 395845 3787355 3.4 40 0 0
millard-29 395846 3787341 3.4 28 0 0
millard-30 395827 3787330 3.4 30 0 0
millard-31 395818 3787325 3.4 28 0 0
millard-32 395814 3787314 3.4 29 0 0
millard-33 395801 3787307 3.4 25 0 0
millard-34 395799 3787305 3.4 25 0 0
millard-35 395794 3787293 3.4 25 0 0
millard-36 395790 3787285 3.4 7.6 25 0 0 64
millard-37 395779 3787276 3.4 25 0 0
millard-38 395777 3787259 3.4 25 0 0
millard-39 395773 3787239 3.4 7.3 28 0 10 256
millard-40 395763 3787225 3.5 22 0 0
millard-41 395760 3787210 3.5 7.3 14 0 0
millard-42 395738 3787198 3.5 12 0 0
millard-43 395732 3787183 3.5 17 0 0
millard-44 395738 3787164 3.5 19 0 0
millard-45 395749 3787153 3.5 8.0 18 0 50
millard-46 395750 3787143 3.5 18 0 0
millard-47 395749 3787119 3.5 14 0 0
millard-48 395746 3787103 3.5 12 0 0
millard-49 395743 3787092 3.5 14 5 50
millard-50 395747 3787083 3.5 13 0 50 1000
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millard-51 395747 3787069 3.5 15 0 100 360
millard-52 395736 3787060 3.5 0 0
millard-53 395725 3787048 3.5 7 0 0
millard-54 395719 3787038 3.5 10 0 0
millard-55 395710 3787036 3.5 7.5 9 0 0
millard-56 395706 3787028 3.5 17 0 0
millard-57 395698 3787019 3.5 7.5 20 0 0
millard-58 395702 3787003 3.5 21 0 0
millard-59 395716 3786994 3.5 21 0 0
millard-60 395714 3786978 3.5 24 0 0
millard-61 395713 3786965 3.6 14 0 0
millard-62 395713 3786950 3.6 7.7 19 0 30 256
millard-63 395699 3786939 3.8 14 0 0
millard-64 395689 3786925 3.8 6.6 15 0 30
millard-65 395668 3786907 3.8 7.0 20 0 50
millard-66 395652 3786892 3.8 7.3 21 0 0 128
millard-67 395630 3786881 3.8 20 0 0
millard-68 395615 3786865 3.8 14 0 0
millard-69 395606 3786855 3.8 13 0 0
millard-70 395597 3786840 3.8 16 0 0
millard-71 395581 3786819 3.9 20 0 0
millard-72 395572 3786836 3.9 21 0 0
millard-73 395573 3786853 3.9 15 0 0
millard-74 395579 3786875 3.9 8.0 13 0 40 90
millard-75 395576 3786889 3.9 7.0 14 50 50
millard-76 395564 3786921 3.9 6.8 13 0 10
millard-77 395545 3786939 3.9 12 0 50
millard-78 395530 3786946 3.9 7.0 7 0 70
millard-79 395516 3786946 3.9 8 20 20
millard-80 395494 3786930 3.9 6.2 8 80 50
millard-81 395483 3786909 3.9 6.8 8 5 40
millard-82 395476 3786886 3.9 6.5 10 0 0
millard-83 395460 3786868 3.9 7.0 10 30 0 180
millard-84 395439 3786883 4.0 6.1 7 60 80
millard-85 395423 3786896 4.0 6.5 8 10 60
millard-86 395401 3786922 4.0 6.5 11 70 100
millard-87 395375 3786931 4.0 7.2 15 0 0
millard-88 395363 3786951 4.0 17 0 0
millard-89 395351 3786961 4.0 17 0 50
millard-90 395339 3786962 4.0 13 0 0
millard-91 395324 3786962 4.0 7.4 11 0 30
millard-92 395300 3786964 4.0 14 0 0
millard-93 395293 3786955 4.9 18 0 0
millard-94 395279 3786952 4.9 18 0 0
millard-95 395268 3786941 4.9 18 0 50
millard-96 395262 3786926 4.9 7.9 18 0 0
millard-97 395244 3786900 4.9 7.3 18 0 0 45
millard-98 395231 3786910 4.9 22 0 0
millard-99 395224 3786931 5.0 20 0 0
millard-100 395217 3786953 5.0 13 0 0
millard-101 395207 3786965 5.0 7.9 14 0 0
millard-102 395192 3786963 5.0 14 0 0
millard-103 395182 3786958 5.0 7.5 15 0 0
millard-104 395173 3786946 5.0 6.8 15 50 0
millard-105 395166 3786926 5.0 6.8 14 10 30
millard-106 395160 3786903 5.0 14 0 0
millard-107 395146 3786886 5.0 14 0 0
millard-108 395124 3786888 5.0 7.0 7 0 50
millard-109 395103 3786893 5.0 12 0 0
millard-110 395073 3786882 5.0 6.7 8 20 20
millard-111 395048 3786871 5.0 7.2 9 0 50 180
millard-112 395036 3786860 5.0 7.2 13 10 30
millard-113 395016 3786856 5.1 5.3 10 10 50
millard-114 395002 3786864 5.1 5.0 11 30 50
millard-115 394992 3786896 5.1 6.2 9 0 30
millard-116 394970 3786885 5.1 7 0 0
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millard-117 394955 3786868 5.1 5.0 7 10 50 64
millard-118 394939 3786852 5.1 5.1 12 0 50
millard-119 394916 3786843 5.1 5.9 10 0 50

lucas-1 394264 3795755 3.5 15 0 0
lucas-2 394250 3795755 3.5 5.2 14 10 30
lucas-3 394232 3795745 3.5 4.6 15 0 20 64
lucas-4 394214 3795751 3.5 14 0 0
lucas-5 394202 3795765 3.5 5.4 14 0 0 45
lucas-6 394189 3795782 3.5 16 0 0
lucas-7 394168 3795792 3.7 4.0 20 0 0 64
lucas-8 394153 3795811 3.7 18 0 0
lucas-9 394140 3795819 3.7 4.9 14 0 0 128

lucas-10 394137 3795829 3.7 4.5 14 25 40 500
lucas-11 394130 3795850 3.7 6.7 14 0 10 128
lucas-12 394130 3795864 3.7 5.0 12 0 20 90
lucas-13 394141 3795870 3.7 13 0 0
lucas-14 394152 3795880 3.7 10 0 40 2
lucas-15 394152 3795895 3.7 8.0 9 10 40 2
lucas-16 394153 3795913 3.7 4.1 5 10 40 4
lucas-17 394145 3795930 3.7 4.0 11 20 0 32
lucas-18 394135 3795934 3.7 4.5 14 0 0
lucas-19 394122 3795934 3.9 5.0 12 0 0
lucas-20 394108 3795944 3.9 6.1 10 10 20 45
lucas-21 394096 3795946 3.9 5.9 11 5 0 45
lucas-22 394076 3795934 3.9 5.5 12 0 0 64
lucas-23 394061 3795938 3.9 4.0 10 0 50 32
lucas-24 394047 3795949 3.9 6.0 12 0 0
lucas-25 394046 3795968 3.9 6.0 15 5 10 64
lucas-26 394051 3795975 3.9 6.0 12 5 10 45
lucas-27 394065 3796007 3.9 6.0 10 20 15 32
lucas-28 394066 3796027 3.9 6.0 9 10 0 90
lucas-29 394059 3796047 3.9 5.4 12 0 40 4
lucas-30 394039 3796054 3.9 5.8 12 0 50 45
lucas-31 394021 3796054 3.9 5.5 9 0 40 45
lucas-32 394017 3796067 3.9 6.0 6 0 50 64
lucas-33 394019 3796081 3.9 12 0 0
lucas-34 394002 3796099 3.9 15 0 0
lucas-35 393989 3796111 4.0 15 0 0
lucas-36 393976 3796116 4.0 15 0 0
lucas-37 393945 3796093 4.0 7.4 20 0 10 45
lucas-38 393933 3796115 4.0 8.0 15 0 10 45
lucas-39 393929 3796145 4.0 5.6 10 0 0 45
lucas-40 393933 3796161 4.1 14 0 0
lucas-41 393927 3796183 4.1 6.0 20 0 0 180
lucas-42 393911 3796200 4.1 5.0 15 0 0 4
lucas-43 393910 3796233 4.1 15 0 0
lucas-44 393889 3796236 4.1 5.0 20 0 10 32
lucas-45 393859 3796251 4.1 6.0 20 0 5 64
lucas-46 393833 3796256 4.1 6.1 20 0 0 45
lucas-47 393817 3796287 4.1 5.6 10 0 25 64
lucas-48 393807 3796305 4.1 13 0 0
lucas-49 393789 3796307 4.1 15 0 20 32
lucas-50 393764 3796304 4.1 6.0 15 0 0 90
lucas-51 393754 3796314 4.1 5.5 15 0 0 64
lucas-52 393747 3796333 4.1 16 5 0
lucas-53 393769 3796343 4.1 9 5 0 90
lucas-54 393774 3796360 4.1 5.0 16 0 50
lucas-55 393761 3796376 4.1 17 0 0
lucas-56 393754 3796381 4.1 9 0 0
lucas-57 393748 3796375 4.2 4.0 4 30 30
lucas-58 393736 3796372 4.2 4.3 4 30 80
lucas-59 393729 3796369 4.2 5.0 5 15 75 4
lucas-60 393726 3796361 4.2 5.0 5 5 60
lucas-61 393714 3796343 4.2 5.3 5 10 40 128
lucas-62 393699 3796342 4.3 4.4 10 0 50 90
lucas-63 393675 3796342 4.3 3.5 10 15 70 2
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lucas-64 393671 3796358 4.3 5.8 12 40 10 64
lucas-65 393684 3796372 4.3 3.5 4 60 80 2
lucas-66 393695 3796381 4.3 4.5 5 20 100 4
lucas-67 393701 3796398 4.3 5.4 6 20 80 4
lucas-68 393723 3796417 4.3 6 30 30 90
lucas-69 393727 3796433 4.3 6.3 8 0 0 32
lucas-70 393721 3796447 4.3 6.0 8 0 0 64
lucas-71 393696 3796443 4.4 6.0 9 0 0 180
lucas-72 393694 3796418 4.4 5.5 9 10 25 128
lucas-73 393683 3796414 4.4 14 0 0
lucas-74 393674 3796420 4.4 10 0 0
lucas-75 393660 3796415 4.4 4.0 8 30 50 64
lucas-76 393645 3796406 4.4 5.5 10 0 0 45
lucas-77 393633 3796404 4.4 5.0 8 0 30 90
lucas-78 393626 3796414 4.4 11 5 30 128
lucas-79 393627 3796430 4.4 4.0 12 0 50 4
lucas-80 393630 3796436 4.4 12 0 0
lucas-81 393633 3796448 4.4 10 0 0 180
lucas-82 393638 3796456 4.4 8 0 0 90
lucas-83 393633 3796473 4.4 6 70 80 2
lucas-84 393629 3796493 4.4 5.0 5 0 0
eatonB-0 399413 3785180 12.7 5.9 6 0 0
eatonB-1 399389 3785173 12.8 8.8 9 10 80
eatonB-2 399375 3785174 12.8 9 0 0
eatonB-3 399366 3785181 12.8 10 10 80 128
eatonB-4 399356 3785195 12.8 15 0 0 256
eatonB-5 399343 3785204 12.8 9.5 15 5 0
eatonB-6 399325 3785194 13.2 8.5 12 0 50 256
eatonB-7 399326 3785188 13.2 12 0 0
eatonB-8 399297 3785163 13.2 8.0 16 0 30 180
eatonB-9 399289 3785142 13.2 8.8 16 0 5 256

eatonB-10 399302 3785118 13.2 8.0 15 0 30 180
eatonB-11 399307 3785100 13.2 7.0 15 0 0 128
eatonB-12 399309 3785088 13.2 8.0 22 0 0 180
eatonB-13 399302 3785072 13.2 7.0 22 0 20 128
eatonB-14 399277 3785061 13.2 8.0 20 50 50 90
eatonB-15 399266 3785054 13.2 7.3 14 0 0 256
eatonB-16 399269 3785017 13.7 7.5 11 0 50 180
eatonB-17 399268 3784994 13.7 8.0 15 0 5 256
eatonB-18 399261 3784986 13.7 14 0 0 512
eatonB-19 399253 3784981 13.7 23 0 0
eatonB-20 399243 3784975 13.7 17 0 25 180
eatonB-21 399221 3784964 13.7 8.0 20 5 0 360
eatonB-22 399219 3784949 13.7 9.9 30 0 5 180
eatonB-23 399237 3784915 13.7 7.0 24 0 30 256
eatonB-24 399259 3784915 13.7 7.8 15 0 10 180
eatonC-0 399273 3784912 13.7 22 0 0
eatonC-1 399287 3784907 13.7 7.0 22 0 50 11
eatonC-2 399295 3784901 13.7 22 0 0
eatonC-3 399298 3784892 13.7 15 0 0
eatonC-4 399295 3784887 13.7 16 0 0 512
eatonC-5 399301 3784883 13.7 16 10 50 360
eatonC-6 399308 3784871 13.7 7.0 16 0 20 90
eatonC-7 399305 3784853 13.7 8.0 10 0 20 180
eatonC-8 399298 3784840 13.7 10.0 14 0 50 2
eatonC-9 399304 3784833 13.8 15 0 0
eatonC-10 399301 3784828 13.8 15 0 5 256
eatonC-11 399299 3784819 13.8 8.0 16 20 20 180
eatonC-12 399295 3784802 13.8 8.2 16 0 5 180
eatonC-13 399289 3784768 14.7 8.6 15 0 0 180
eatonC-14 399274 3784742 14.7 8.7 18 0 0 180
eatonC-15 399263 3784719 14.7 30 0 0
eatonC-16 399235 3784701 14.7 11.6 33 0 0 90
eatonC-17 399227 3784693 14.7 35 0 0
eatonC-18 399227 3784680 14.7 36 0 0 360
eatonC-19 399216 3784662 14.7 7.0 45 15 0 128
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eatonC-20 399190 3784642 14.7 6.9 10 0 30 256
eatonC-21 399173 3784635 14.7 7.0 12 0 0 256
eatonC-22 399173 3784624 14.7 7.0 12 0 40 64
eatonC-23 399184 3784605 14.7 6.0 15 0 30 180
eatonC-24 399189 3784589 14.7 6.3 17 0 40 180
eatonC-25 399181 3784569 14.8 7.0 15 0 30 90
eatonC-26 399180 3784545 14.8 6.6 15 0 0 256
eatonC-27 399153 3784551 14.9 6.5 10 0 40 180

foxck-0 390599 3798244 17.7 60 0 0
foxck-1 390617 3798222 17.7 5.6 60 0 0 64
foxck-2 390652 3798210 17.7 8.0 60 0 0 64
foxck-3 390686 3798224 17.7 6.3 48 0 30 64
foxck-4 390699 3798229 17.7 50 0 0 64
foxck-5 390716 3798220 17.8 7.6 54 0 0 90
foxck-6 390738 3798212 17.8 70 0 0
foxck-7 390745 3798206 17.8 70 0 0
foxck-8 390748 3798204 17.8 70 0 0
foxck-9 390752 3798202 17.8 70 0 0
foxck-10 390757 3798203 17.8 80 0 0
foxck-11 390780 3798204 17.8 80 0 0 90
foxck-12 390803 3798193 17.8 83 0 0
foxck-13 390825 3798164 17.8 77 0 0 45
foxck-14 390828 3798148 17.8 80 0 0
foxck-15 390834 3798144 17.8 80 0 0
foxck-16 390840 3798139 17.8 7.0 80 0 30 64
foxck-17 390864 3798127 17.9 7.1 80 0 25 64
foxck-18 390878 3798124 19.3 80 0 0
foxck-19 390888 3798118 19.3 7.7 60 0 0 64
foxck-20 390899 3798112 19.3 7.0 60 0 30 64
foxck-21 390923 3798111 19.3 45 0 0
foxck-22 390946 3798111 19.3 43 0 0
foxck-23 390970 3798118 19.3 50 0 0
foxck-24 390981 3798121 19.3 48 0 0
foxck-25 390990 3798122 19.4 56 0 0 64
foxck-26 391001 3798113 19.4 60 0 0
foxck-27 391013 3798109 19.4 6.0 65 0 0 64
foxck-28 391029 3798104 19.4 73 0 0
foxck-29 391040 3798103 19.5 81 0 0
foxck-30 391050 3798078 19.5 8.5 85 0 0 128
foxck-31 391061 3798048 19.5 8.2 90 0 0 90
foxck-32 391077 3798029 19.6 8.0 78 0 0 5
foxck-33 391073 3798017 19.6 8.0 87 0 0 128
foxck-34 391074 3798000 19.6 74 0 0
foxck-35 391086 3797985 19.6 45 0 0
foxck-36 391103 3797975 19.7 8.0 48 0 0 128
foxck-37 391126 3797968 19.7 6.0 64 0 0 180
foxck-38 391129 3797949 19.7 6.9 77 0 0 180
foxck-39 391156 3797914 19.7 9.4 79 0 0 128
foxck-40 391167 3797904 19.7 7.0 66 0 0 180
foxck-41 391193 3797892 19.7 6.0 52 0 0 180
foxck-42 391221 3797887 19.7 6.0 52 0 0 180
foxck-43 391250 3797889 19.7 5.3 72 0 0
foxck-44 391263 3797892 22.1 73 0 0
foxck-45 391300 3797897 22.1 74 0 0
foxck-46 391329 3797895 22.1 78 20 10 5
foxck-47 391344 3797878 22.1 7.0 84 0 0 5
foxck-48 391344 3797861 22.1 10.0 85 0 0 64
foxck-49 391343 3797838 22.1 7.9 78 0 0 64
foxck-50 391360 3797804 22.1 8.0 70 0 0 128
foxck-51 391344 3797782 22.2 55 0 0
foxck-52 391351 3797747 22.2 7.5 35 5 10
foxck-53 391337 3797713 22.2 7.1 19 0 0 180
foxck-54 391295 3797694 22.2 6.2 10 5 5 180
foxck-55 391298 3797684 22.2 6.0 6 80 100 8
foxck-56 391327 3797662 22.3 5.5 10 5 20 128
foxck-57 391350 3797648 22.3 6.5 16 5 0 180
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foxck-58 391357 3797638 22.3 6.0 20 0 0 180
foxck-59 391359 3797610 22.3 6.2 18 0 5 180
foxck-60 391373 3797576 22.3 6.0 15 0 5 180
foxck-61 391408 3797580 22.4 6.9 18 0 0 256
foxck-62 391425 3797576 22.4 6.5 18 0 0 360
foxck-63 391483 3797597 22.4 6.2 20 5 20 256
foxck-64 391510 3797589 22.4 7.5 29 75 75 180
foxck-65 391518 3797587 22.4 7.5 30 10 10 180
foxck-66 391540 3797558 22.5 6.5 32 10 10 128
foxck-67 391568 3797531 22.5 6.4 20 15 10 180
foxck-68 391586 3797512 22.5 6.2 15 0 0 180
foxck-69 391586 3797500 22.5 23 0 0
foxck-70 391593 3797492 22.5 24 0 0
foxck-71 391597 3797465 22.6 7.1 21 30 50 256
foxck-72 391560 3797449 22.6 7.0 15 60 60 256
foxck-73 391521 3797446 22.6 6.6 18 0 0 180
foxck-74 391486 3797448 22.6 8.3 22 0 0 180
foxck-75 391488 3797426 22.6 7.0 24 0 25 180
foxck-76 391490 3797407 22.7 8.0 16 0 0 128
foxck-77 391502 3797359 22.7 14 0 0
foxck-78 391502 3797322 22.7 7.1 12 0 0 256
foxck-79 391492 3797296 22.7 6.4 12 0 25 128
foxck-80 391473 3797286 22.7 15 0 0
foxck-81 391472 3797267 22.7 16 0 0 360
foxck-82 391494 3797247 22.7 7.7 16 0 10
fox2-0 391506 3797229 22.7 13 0 10
fox2-1 391524 3797226 22.7 6.8 7 30 100 2
fox2-2 391531 3797218 22.7 11.2 11 0 100 8
fox2-3 391538 3797208 22.7 6.0 6 0 80 360
fox4-0 391545 3797194 22.7 7.0 7 20 100 1000
fox4-1 391562 3797192 22.7 10.0 10 10 100 90
fox4-2 391574 3797200 22.7 8 0 100
fox4-3 391580 3797219 22.7 9 10 100 2
fox4-4 391587 3797232 22.7 7 0 100
fox4-5 391603 3797236 22.7 7 20 100 128
fox4-6 391634 3797251 22.7 6.4 6 5 100 180
fox4-7 391641 3797258 22.7 8 0 100
fox4-8 391639 3797263 22.7 6 0 100
fox4-9 391663 3797277 22.7 5.0 5 20 100 180
fox4-10 391673 3797282 22.7 8.0 8 50 100 90
fox4-11 391693 3797290 22.7 8.0 8 60 100 180
fox4-12 391707 3797290 22.7 10.4 10 10 100
fox4-13 391729 3797301 22.8 6.0 6 40 100
fox4-14 391744 3797295 22.8 6.5 7 30 70 180
fox4-15 391766 3797300 22.8 8.0 8 40 70 64
fox4-16 391776 3797297 22.8 7.5 8 90 100
fox4-17 391797 3797293 22.8 6.5 7 60 100 16
fox4-18 391803 3797283 22.8 6.1 6 10 100 90
fox4-19 391849 3797233 22.8 7.5 12 10 30 180
fox4-20 391863 3797220 22.8 12 30 30
fox4-21 391866 3797195 22.8 7.3 7 60 100 2
fox4-22 391874 3797186 22.8 11 100 100
fox4-23 391876 3797164 22.9 6.1 6 30 50 2
fox4-24 391901 3797142 22.9 7.0 7 20 30 180
fox4-25 391911 3797134 22.9 14 0 0 180
fox4-26 391913 3797132 22.9 14 0 0
fox4-27 391914 3797124 22.9 5.5 6 70 100
fox4-28 391915 3797114 23.0 5.9 10 30 50 180
fox4-29 391914 3797083 23.0 6.0 7 30 70 90
fox4-30 391908 3797058 23.0 7.0 10 20 20 2
fox4-31 391907 3797045 23.0 5.0 13 5 100 2
fox4-32 391892 3797039 23.1 5 20 100
fox4-33 391875 3797033 23.1 11 10 50
fox4-34 391856 3797034 23.2 7.0 17 5 50 180
fox4-35 391825 3797030 23.2 5.8 6 10 50 32
fox4-36 391805 3797030 23.2 6.0 6 50 75 128
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fox4-37 391769 3797008 23.3 8.0 15 5 0 64
fox4-38 391782 3796969 23.3 7.0 10 5 40 256
fox4-39 391783 3796941 23.4 7.5 11 20 20 256
fox4-40 391777 3796917 23.4 7.5 8 0 0 256
fox4-41 391776 3796904 23.4 7.5 9 5 50 16
fox4-42 391756 3796887 23.5 12 10 50 2
fox4-43 391731 3796889 23.5 5.8 9 40 50 4
fox4-44 391712 3796887 23.6 7.0 9 20 25 180
fox4-45 391700 3796887 23.6 6.5 7 50 100 8
fox4-46 391689 3796867 23.6 7.0 7 70 50 180
fox4-47 391700 3796854 23.7 7 50 100
fox4-48 391706 3796844 23.7 7.1 8 20 40
fox4-49 391700 3796824 23.8 7.0 10 0 50 2
fox4-50 391690 3796802 23.8 11 0 50
fox4-51 391677 3796794 23.8 11 5 20 180
fox4-52 391676 3796769 23.8 6.3 6 50 100 128
fox4-53 391675 3796755 23.9 5.0 5 60 80 180
fox4-54 391671 3796748 23.9 6.3 6 50 100 2
fox4-55 391675 3796737 23.9 6.0 6 80 100 256
fox4-56 391676 3796722 23.9 6.3 6 50 100 90
fox4-57 391681 3796716 24.0 6.5 7 30 100 180
fox4-58 391702 3796712 24.0 6.4 6 15 100 2
fox4-59 391714 3796703 24.0 6.5 7 20 50 90
fox4-60 391710 3796666 24.0 7.4 8 15 50 64
fox4-61 391707 3796649 24.0 7.5 8 30 30
fox4-62 391734 3796594 24.0 8.0 12 5 30
fox4-63 391739 3796566 24.1 11 15 10
fox4-64 391727 3796540 24.1 8.0 9 0 30
fox4-65 391714 3796518 24.1 8.0 16 0 10 180
fox4-66 391702 3796503 24.2 14 0 0
fox4-67 391674 3796498 24.2 9.5 12 0 0 90
fox4-68 391671 3796454 24.2 9 0 0
fox4-69 391635 3796442 24.2 8.5 12 0 20 90
fox4-70 391597 3796443 24.3 8.1 14 0 0 180
fox4-71 391585 3796431 24.3 8.0 18 0 40 64
fox4-72 391579 3796394 24.3 8.0 14 10 30 256
fox4-73 391568 3796360 24.4 8.0 15 40 40 8
fox4-74 391572 3796340 24.4 8.0 12 10 10 180
fox4-75 391590 3796332 24.4 14 20 50
fox4-76 391613 3796323 24.5 5.5 6 0 100
fox4-77 391631 3796299 24.5 7.5 8 20 100
fox4-78 391649 3796298 24.5 9.8 12 0 0 256
fox4-79 391676 3796295 24.5 8.0 20 0 0 180
fox4-80 391695 3796271 24.6 22 0 0
fox4-81 391699 3796266 24.6 23 0 0
fox4-82 391707 3796260 24.6 23 0 0
fox4-83 391712 3796256 24.6 21 0 0
sfiron-0 429617 3795730 11.4 0 0
sfiron-1 429625 3795729 11.4 5.7 8 10 50
sfiron-2 429636 3795731 11.4 6.0 6 20 100
sfiron-3 429654 3795715 11.4 6.3 6 10 50
sfiron-4 429674 3795701 11.4 5.8 6 30 100
sfiron-5 429684 3795687 11.4 7.1 8 0 40
sfiron-6 429700 3795675 11.4 7.1 8 10 50
sfiron-7 429739 3795687 11.4 7.9 13 0 30
sfiron-8 429746 3795684 11.4 7.6 11 10 20
sfiron-9 429758 3795688 11.4 5.9 6 10 5

sfiron-10 429770 3795707 11.5 7.9 8 60 90
sfiron-11 429789 3795714 11.5 7.8 9 10 10
sfiron-12 429796 3795721 11.5 7.3 0 50
sfiron-13 429808 3795716 11.5 6.5 10 40
sfiron-14 429823 3795731 11.5 7.1 5 60
sfiron-15 429842 3795749 11.5 14 0 50
sfiron-16 429862 3795746 11.5 7.6 0 0
sfiron-17 429882 3795758 11.5 6.7 5 40
sfiron-18 429894 3795757 11.5 6.8 10 60
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sfiron-19 429914 3795784 11.5 0 10
sfiron-20 429929 3795806 11.5 6.9 18 5 0
sfiron-21 429940 3795813 11.5 6.5 11 0 0
sfiron-22 429953 3795824 11.6 7.0 0 0
nfiron-0 429500 3796921 17.3 0 0
nfiron-1 429517 3796908 17.4 7.8 0 0
nfiron-2 429535 3796882 17.5 0 0
nfiron-3 429559 3796866 17.5 8.7 0 0
nfiron-4 429568 3796846 17.6 7.0 0 0
nfiron-5 429569 3796830 17.7 0 0
nfiron-6 429593 3796813 17.7 7.8 10 50
nfiron-7 429626 3796797 17.8 8.9 0 0
nfiron-8 429644 3796765 17.8 7.7 0 0
nfiron-9 429643 3796740 17.8 8.1 0 0
nfiron-10 429670 3796702 17.8 8.1 0 0
nfiron-11 429677 3796674 17.8 7.0 0 0
nfiron-12 429687 3796662 17.8 8.4 0 0
nfiron-13 429710 3796650 17.8 8.0 0 0
nfiron-14 429727 3796638 17.8 8.1 0 0
nfiron-15 429740 3796624 17.8 8.0 5 20
nfiron-16 429749 3796598 17.9 8.1 0 0
nfiron-17 429745 3796566 17.9 7.5 0 0
nfiron-18 429744 3796546 18.0 8.1 0 15
nfiron-19 429751 3796521 18.0 7.5 0 50
nfiron-20 429753 3796508 18.0 0 0
nfiron-21 429757 3796491 18.1 7.7 0 0
nfiron-22 429764 3796468 18.1 8.6 0 0
nfiron-23 429769 3796457 18.2 0 0
nfiron-24 429771 3796449 18.2 6.9 0 0
nfiron-25 429786 3796429 18.2 7.2 0 0
nfiron-26 429809 3796417 18.3 10.2 0 0
nfiron-27 429824 3796404 18.3 7.9 0 0
nfiron-28 429833 3796385 18.3 0 0
nfiron-29 429833 3796377 18.3 8.9 0 0
nfiron-30 429857 3796359 18.4 7.7 0 0
nfiron-31 429849 3796347 18.4 7.7 0 0
nfiron-32 429846 3796332 18.4 8.5 0 0
nfiron-33 429853 3796304 18.4 8.0 0 25
nfiron-34 429866 3796278 18.5 8.3 0 30
nfiron-35 429884 3796258 18.5 9.2 0 10
nfiron-36 429891 3796213 18.5 7.0 0 50
nfiron-37 429905 3796178 18.6 6.7 0 50

iron-0 429955 3795819 30.4 0 0
iron-1 429967 3795827 30.4 0 0
iron-2 429988 3795824 30.4 7.0 0 0
iron-3 429994 3795813 30.4 8.6 0 50
iron-4 430005 3795794 30.4 0 50
iron-5 430009 3795764 30.4 8.4 0 5
iron-6 430017 3795747 30.4 9.0 0 0
iron-7 430027 3795733 30.4 10.7 0 0
iron-8 430039 3795710 30.4 9.3 0 0
iron-9 430054 3795688 30.4 11.6 0 0

iron-10 430081 3795663 30.5 8.8 0 5
iron-11 430093 3795639 30.5 11.1 0 30
iron-12 430106 3795621 30.5 9.2 15 25
iron-13 430109 3795612 30.5 9.0 0 0
iron-14 430126 3795604 30.5 9.3 0 0
iron-15 430138 3795596 30.6 0 0
iron-16 430138 3795577 30.6 0 0
iron-17 430156 3795555 30.6 10.0 5 5
iron-18 430199 3795541 30.6 9.1 0 0
iron-19 430214 3795533 30.7 8.0 0 25
iron-20 430223 3795524 30.7 9.5 0 0
iron-21 430240 3795514 30.7 10.7 20 50
iron-22 430255 3795512 30.7 12.3 95 50
iron-23 430270 3795500 30.7 7.1 0 50
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iron-24 430274 3795501 30.7 0 0
iron-25 430275 3795486 30.8 13.1 0 0
iron-26 430298 3795480 30.8 7.9 5 10
iron-27 430332 3795453 30.8 8.6 0 30
iron-28 430348 3795420 30.8 8.0 5 50
iron-29 430330 3795394 30.8 9.8 0 15
iron-30 430328 3795379 30.8 10.2 0 5
iron-31 430328 3795360 30.8 9.7 0 50
iron-32 430331 3795339 30.9 10.3 20 40
iron-33 430345 3795321 30.9 10.4 15 50
iron-34 430378 3795325 30.9 7.9 0 50
iron-35 430395 3795330 30.9 11.5 0 0
iron-36 430413 3795337 30.9 10.6 0 0
iron-37 430436 3795354 30.9 11.0 0 0
iron-38 430451 3795374 30.9 11.7 0 50
iron-39 430461 3795388 30.9 11.2 0 50
iron-40 430485 3795394 31.0 9.4 0 50
iron-41 430503 3795405 31.0 10.9 0 0
iron-42 430518 3795411 31.0 12.2 0 0
iron-43 430539 3795406 31.0 0 10
iron-44 430552 3795407 31.1 0 0
iron-45 430558 3795405 31.1 0 0
iron-46 430575 3795407 31.1 5 50
iron-47 430578 3795411 31.1 0 30
iron-48 430589 3795416 31.1 0 0
iron-49 430595 3795416 31.1 0 0
iron-50 430612 3795407 31.1 8.1 10 0
iron-51 430609 3795386 31.2 7.4 40 80
iron-52 430610 3795373 31.2 8.5 0 50
iron-53 430624 3795353 31.2 12.6 0 0
iron-54 430630 3795357 31.2 0 0
iron-55 430636 3795347 31.2 11.8 0 50
iron-56 430639 3795334 31.2 8.6 60 50
iron-57 430649 3795312 31.2 15.0 15 10 60
iron-58 430658 3795307 31.2 5 50
iron-59 430664 3795294 31.2 8.6 0 40
iron-60 430677 3795280 31.2 8.5 0 0
iron-61 430697 3795264 31.2 9.3 30 60
iron-62 430705 3795264 31.3 10.5 20 0
iron-63 430718 3795243 31.3 8.6 20 80
iron-64 430722 3795226 31.3 9.5 0 40
iron-65 430729 3795209 31.3 9.5 20 60
iron-66 430731 3795205 31.3 0 0
iron-67 430741 3795189 31.3 7.3 10 100
iron-68 430748 3795189 31.3 10 50
iron-69 430762 3795176 31.4 8.1 20 100
iron-70 430798 3795158 31.4 5.0 30 100
iron-71 430808 3795153 31.5 11.7 0 60
iron-72 430826 3795165 31.5 9.6 30 30
iron-73 430852 3795168 31.6 7.0 40 100
iron-74 430879 3795163 31.7 8.7 5 90
iron-75 430907 3795181 31.7 9.7 0 20
iron-76 430938 3795206 31.7 7.0 20 60
iron-77 430953 3795219 31.7 9.0 0 50
iron-78 430960 3795239 31.8 12.7 0 80
iron-79 430969 3795246 31.8 13.7 5 60
iron-80 431012 3795286 31.8 8.0 5 80
iron-81 431022 3795294 31.8 7.5 0 50
iron-82 431030 3795327 31.8 7.2 50 70
iron-83 431012 3795376 31.9 7.5 60 100
iron-84 430999 3795406 31.9 7.0 50 100
iron-85 431001 3795446 31.9 11.3 10 50
iron-86 431021 3795493 31.9 9.3 5 50
iron-87 431053 3795500 31.9 9.1 0 50
iron-88 431105 3795492 32.0 9.2 0 0
iron-89 431142 3795468 32.0 5.8 90 70
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iron-90 431157 3795464 32.0 9.1 20 40
iron-91 431170 3795451 32.0 8.8 15 20
iron-92 431192 3795469 32.0 7.8 10 90
iron-93 431215 3795509 32.0 7.5 0 0
iron-94 431243 3795561 34.5 7.5 5 90
iron-95 431261 3795565 34.5 6.2 10 100
iron-96 431275 3795562 34.5 0 60
iron-97 431296 3795534 34.6 7.3 10 75
iron-98 431319 3795521 34.6 7.2 5 100
iron-99 431348 3795525 34.6 7.3 20 100
iron-100 431364 3795536 34.6 5.7 10 80
iron-101 431399 3795532 34.6 6.8 20 100
iron-102 431424 3795500 34.6 6.9 20 70
iron-103 431445 3795480 34.7 9.2 0 0
iron-104 431454 3795469 34.7 8.7 0 20
iron-105 431481 3795454 34.7 8.4 0 50
iron-106 431501 3795436 34.7 0 50
iron-107 431526 3795423 34.7 9.0 0 0
iron-108 431544 3795411 34.7 9.5 15 50
iron-109 431557 3795402 34.7 10.3 0 30
iron-110 431574 3795405 34.7 0 0
iron-111 431585 3795402 34.7 9.9 0 10
iron-112 431610 3795397 34.8 8.9 0 10
iron-113 431636 3795395 34.8 9.0 0 0
iron-114 431664 3795380 34.8 10.5 0 0
iron-115 431683 3795366 34.8 11.4 0 0
iron-116 431684 3795348 34.8 0 0
iron-117 431685 3795328 34.8 11.5 0 0
iron-118 431710 3795292 34.9 10.4 0 0
iron-119 431708 3795264 34.9 10.6 0 0
iron-120 431684 3795248 34.9 11.0 0 20
iron-121 431668 3795222 35.0 9.0 0 50
iron-122 431667 3795199 35.0 9.5 0 0
iron-123 431666 3795182 35.0 9.7 0 20
iron-124 431684 3795161 35.0 9.7 0 30
iron-125 431701 3795150 35.0 9.0 0 0
iron-126 431720 3795136 35.0 8.5 0 0
iron-127 431725 3795130 35.0 0 0
iron-128 431749 3795116 35.0 5.9 0 100
iron-129 431770 3795112 35.0 8.2 0 0
iron-130 431777 3795111 35.0 0 0
iron-131 431787 3795102 35.0 11.6 30 50
iron-132 431798 3795090 35.0 6.6 0 50
iron-133 431797 3795057 35.0 0 50
iron-134 431807 3795042 35.0 9.0 0 0
iron-135 431832 3795014 35.0 7.0 0 50
iron-136 431844 3794999 35.0 6.0 0 60

fish-0 434503 3796840 19.9 8.2 0 100
fish-1 434468 3796818 19.9 6.7 0 50
fish-2 434442 3796809 19.9 9.1 0 25
fish-3 434425 3796825 20.0 9.1 0 10
fish-4 434412 3796832 20.0 8.6 0 5
fish-5 434392 3796831 20.0 9.5 0 15
fish-6 434365 3796841 20.0 8.4 0 0
fish-7 434351 3796849 20.0 8.9 0 5
fish-8 434338 3796858 20.0 8.9 0 0
fish-9 434327 3796842 20.1 7.5 0 20

fish-10 434334 3796816 20.1 8.0 0 15
fish-11 434328 3796800 20.1 13.7 0 0
fish-12 434310 3796781 20.1 8.3 0 50
fish-13 434261 3796769 20.1 9.9 0 70
fish-14 434228 3796782 20.1 9.9 0 50

a UTM coordinates (NAD 27 Datum)
*converted from qualitative measurement (see text)
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