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ABSTRACT
Network tomography using end-to-end probes provides a
powerful tool for monitoring the performance of internal
network elements. However, active probing can generate
tremendous traffic, which degrades the overall network per-
formance. Meanwhile, not all the probing paths contain
useful information for identifying the link metrics of interest.
This observation motivates us to study the optimal selection
of monitoring paths to balance identifiability and probing
cost. Assuming additive link metrics (e.g., delays), we con-
sider four closely-related optimization problems: 1) Max-IL-
Cost that maximizes the number of identifiable links under a
probing budget, 2) Max-Rank-Cost that maximizes the rank
of selected paths under a probing budget, 3) Min-Cost-IL
that minimizes the probing cost while preserving identifi-
ability, and 4) Min-Cost-Rank that minimizes the probing
cost while preserving rank. While (1) and (3) are hard to
solve, (2) and (4) are easy to solve, and the solutions give a
good approximation for (1) and (3). Specifically, we provide
an optimal algorithm for (4) and a (1− 1/e)-approximation
algorithm for (2). We prove that the solution for (4) pro-
vides tight upper/lower bounds on the minimum cost of (3),
and the solution for (2) provides upper/lower bounds on
the maximum identifiability of (1). Our evaluations on real
topologies show that solutions to the rank-based optimiza-
tion (2, 4) have superior performance in terms of the ob-
jectives of the identifiability-based optimization (1, 3), and
our solutions can reduce the total probing cost by an order
of magnitude while achieving the same monitoring perfor-
mance.

Categories and Subject Descriptors
C.2.3 [Computer-communication Networks]: Network

Operations—Network Monitoring ; G.2.2 [Discrete Math-
ematics]: Graph Theory—Network problems

Keywords
Network Tomography; Identifiability, Path Selection

1. INTRODUCTION
Today’s Internet traffic is massive, heterogeneous, and dis-
tributed, and continues to grow in these dimensions. There-
fore, unlike small-scale networks, provisioning the desired
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services under an acceptable quality of service (QoS) for
the ever-growing traffic sizes is extremely challenging and
depends on continuous monitoring of the performance of in-
dividual links. Network monitoring provides the internal
network state that is crucial for many network management
functions such as traffic engineering, anomaly detection, and
service provisioning. In cases where the important perfor-
mance metrics are not directly observable (e.g., due to lack
of access), network tomography provides a solution that in-
fers these metrics from end-to-end probes [1–6]. Compared
to other monitoring techniques such as SNMP polling, ping,
or traceroute, end-to-end probes does not need any special
support from the routers [7–11] and is therefore a reliable
tool for monitoring the Internet.

However, despite the considerable amount of research on
estimating the individual link’s performance metrics using
given end-to-end measurements, the selection of which paths
to probe, either to minimize probing cost or to satisfy a given
bound (i.e., budget) on the probing cost, has not been thor-
oughly studied in prior works. Probing all possible paths
between each pair of monitors can produce a tremendous
amount of traffic in the network. Meanwhile, many paths
contain redundant information due to shared links. In this
paper, we show that by carefully selecting the probing paths,
we can significantly reduce the amount of probing traffic
while achieving the same monitoring performance.

To this end, we consider the following closely-related prob-
lems under the assumption of additive performance metrics
(e.g. delays): 1) the Max-IL-Cost problem that maxi-
mizes the number of identifiable links under a limited prob-
ing budget, 2) the Max-Rank-Cost problem that maxi-
mizes the rank of probing paths under a probing budget,
3) the Min-Cost-IL problem that minimizes the probing
cost while identifying all the identifiable links, 4) the Min-
Cost-Rank problem that minimizes the probing cost while
preserving the rank. Problems (1) and (3) are considered
because they address, from different perspectives, the op-
timal trade-off between monitoring performance (measured
by identifiability) and probing cost. Problems (2) and (4)
are considered because they possess desirable properties that
allow efficient computation while providing good approxima-
tions to (1) and (3).

Specifically, we make the following contributions:

1. Based on an existing algorithm that computes all the
minimal sets of paths to identify each identifiable link,
we convert (1) and (3) to problems similar to the max-
coverage problem [12] and the set-cover problem [13],
respectively. The conversion allows us to apply the



greedy heuristic to these problems. We also propose
an iterative branch-and-bound algorithm that treats
our problems as integer linear programs (ILPs), and
decomposes each problem into smaller meaningful sub-
problems to exploit parallelism on a multi-core ma-
chine. Using our iterative branch-and-bound algorithm,
we can configure the trade-off between the execution
time and the optimality gap of the solution.

2. Using techniques from matroid optimization, we give
polynomial-time solutions to (2) and (4) with guar-
anteed performance. The proposed solution for (4) is
provably optimal, and the solution for (2) achieves a
(1− 1/e)-approximation.

3. We show that the solution for (4) provides tight up-
per/lower bounds for (3), and the solution for (2) pro-
vides upper/lower bounds for (1).

4. Our evaluations on real topologies show that in terms
of the objectives of (1) and (3), the solutions proposed
for (2) and (4) perform very close to the optimal and
even outperform the solutions designed for (1) and (3).
Compared to the baseline of probing all the candidate
probing paths, our solutions can reduce the probing
cost by an order of magnitude while achieving the same
monitoring performance.

The remainder of this paper is organized as follows. Sec-
tion 2 discusses the background and motivation behind this
work. In section 3, we formulate the four optimization prob-
lems. Section 4 contains our algorithms and their perfor-
mance analysis. Section 5 shows our evaluation methodol-
ogy and results. Finally, Section 6 concludes the paper.

2. BACKGROUND AND MOTIVATION

2.1 Background
The problem of designing the monitoring system to opti-

mize the trade-off between cost and monitoring performance
is a long-standing hard problem. If monitors cannot control
the routing of probes, the problem is to place the minimum
number of monitors (beacons) to identify all the links, which
is proved to be NP-hard [14,15]. If monitors can control the
probing paths (e.g., via source routing or software-defined
networking), the problem is to both place the minimum
number of monitors and construct the minimum number of
probing paths to identify all the links, which is polynomial-
time solvable [16–18]. In contrast to [16–18], we assume that
routes cannot be controlled, as is usually the case in IP net-
works; in contrast to [14,15] that focus on the offline cost for
deploying monitors, we focus on the online cost for sending
probes (i.e., the probing cost).

In the context of overlay networks, Chen et al. [19] show
that monitoring a set of O(nlog(n)) paths is sufficient for
monitoring an overlay network of n hosts, by selecting a
set of paths that gives a basis of all the paths between the
hosts. Li et al. propose a polynomial-time path selection
algorithm that minimizes the total cost of selected paths to
cover all the links [20]. These approaches differ from ours in
that they focus on end-to-end performance, e.g. loss rates
for all end-to-end paths, while we focus on identifying the
performance of each individual link.

Zheng et al. [21] introduced a problem similar to our

Table 1: Cost Reduction Using Selected Probing Paths

network
name

#monitors #paths total
cost

#selected
paths

cost of se-
lected paths

Abilene 11 55 244 12 46
BellCanada 20 190 4467 31 284
CAIDA 34 528 25553 56 1606

third optimization (Min-Cost-IL). They study the problem
of selecting the minimum number of probing paths that can
uniquely identify all the identifiable links and cover all the
unidentifiable links. Our formulation differs from theirs in
that we allow general probing costs for the paths, and do not
require coverage of all the links. These differences allow us
to model paths with heterogeneous probing costs and further
reduce the total cost without losing identifiability. More im-
portantly, the solution in [21] requires the calculation of all
the irreducible path sets to identify each of the identifiable
links, which has an exponential complexity. In contrast, we
show that using rank as a proxy of identifiability gives an
efficient solution that provides tight upper/lower bounds on
the optimal solution (Theorem 3).

2.2 Motivation
We use an example to illustrate the cost saving that can

be achieved by a careful selection of probing paths. Suppose
that the cost of probing a path is equal to the total number
of links on this path, which represents the amount of traf-
fic that each probe on this path will generate. We consider
three networks from the Internet Topology Zoo [22,23], ran-
domly select a subset of nodes in each network as monitors,
and compute the shortest paths between each pair of mon-
itors as the candidate probing paths. As shown in Table 1,
probing all these paths generates a large number of transmis-
sions and incurs a high cost (total cost). In contrast, using a
selected subset of paths that preserve the rank (computed by
Algorithm 2), we can obtain the same information at a much
lower cost (cost of selected paths). As is shown, using the
selected paths reduces the probing cost by a factor of 5.3–16
in this example. The large gap between the total probing
cost and the probing cost of the given paths motivates the
study of the path selection problem.

3. PROBLEM FORMULATION
In this section, we describe our network model, perfor-

mance measures and optimization problems.

3.1 Network Model
Given an undirected graph G(V,L), where V represents

the network nodes and L is the set of communicating links
connecting the nodes, and a set of nodes M ⊆ V employed
as monitors, the set P of routing paths between all pairs of
monitors specifies the set of candidate probing paths that
we can select from. Each link j in L is associated with
an additive metric xj (e.g., link delay). In our model, we
assume IP packets from a source node s to a destination
node t are being forwarded using a pre-determined routing
algorithm. Our formulation and solutions support arbitrary
routing algorithms, and the specific algorithm used for eval-
uation will be specified later (see Section 5). We denote a
routing path r in G with a list of edges r = {e1, ..., en} and
denote with kr the cost of path r. Probes on each path r in
P give the end-to-end metric of this path yr. Given a set P



Table 2: Notation used in our formulations.

Notation Explanation
G(V,L) an undirected graph where V represents

the set of nodes and L is the set of links
LI the set of identifiable links using all possi-

ble paths P
M set of nodes where the monitors are located
I(PR) set of all identifiable links using paths in

PR

K limit on the probing cost
Pl := {Pli :
i = 1, ..., Sl}

set of all minimal solutions to link l ∈ L

Xl decision to select an identifiable link l (if
Xl = 1) or not (if Xl = 0)

Yr decision to select a path r (if Yr = 1) or
not (if Yr = 0)

Zs decision to select a minimal solution s (if
Zs = 1) or not (if Zs = 0)

P the total set of paths using all of the mon-
itoring nodes M

PR a subset of all possible probing paths with
indices in R

ru,v given a source node u and a destination
node v and a pre-defined routing algo-
rithm, ru,v gives the routing path from u
to v

AR a routing matrix of size |R|×|L|, such
that if path r ∈ R contains link j, then
AR[r, j] = 1 and AR[r, j] = 0 otherwise

rank(AR) the rank of routing matrix AR

kr probing cost of path r
c(PR) =∑

r∈PR
kr

total cost of a set of probing paths PR ⊆ P

K limit on probing cost

of all possible probing paths (e.g., routing paths between all
the monitors), let A be the routing matrix of size |P |×|L|,
such that if path r ∈ P contains link j, then A[r, j] = 1 and
A[r, j] = 0 otherwise. We can write a linear system of equa-
tions relating the link’s additive metric (e.g. delay) to path
metrics as Ax = y. The objective of network tomography is
to infer x from A and y. Table 2 summarizes the notation
used in our formulation.

3.2 Measures of Monitoring Performance
The linear system of equations (introduced in Section 3.1)

may not be invertible as the routing matrix A may not have
a full column rank. To quantify the extent to which this
system can be solved, we introduce two measures: iden-
tifiability and rank. The rank of P is calculated by the
rank of the routing matrix A, denoted by rank(A), which is
the cardinality of the largest set of probing paths, such that
each path in the set contains “new information” about the
links (every other path is a linear combination of paths in
the set and thus does not provide new information).

A link j in L is identifiable using a set P of probing paths
if its metric can be uniquely determined from the metrics
of the paths in P . The identifiability of a network under
probing paths P is the number of links that are identifiable
using P . Let N = Null(A) denote the null space of A, i.e.
for any vector n ∈ Null(A), A · n = 0. The next lemma

specifies how to compute the set of identifiable links given
A.

Lemma 1. [19] For an arbitrary routing matrix A, let N
represent the null space of A. Link li ∈ L is identifiable, if
and only if ∀n ∈ N we have ni = 0.

Therefore, to find the set of identifiable links, LI ∈ L, we
first compute the null space of A and find all indices with
zero values in the null space. The identifiability achieved by
probing P is then the cardinality of LI .

3.2.1 Relationship between Identifiability and Rank
While identifiability is a more accurate measure of the

usefulness of the paths for network tomography, rank is eas-
ier to optimize as is shown later (see Section 4.2). Below,
we establish the relationship between the two measures.

Let a set P of routing paths {r1, ..., rn} be given. Cor-
responding to any subset PR ⊆ P of these elements, let
rank(AR) be the rank of the routing matrix corresponding
to the selected paths in PR. We define L1 to be any subset
of identifiable links (L1 ⊆ LI) and provide the necessary
and sufficient condition for a subset of paths to identify all
identifiable links.

Theorem 1. Given a subset of paths PR ⊆ P and a sub-
set of links L′ ⊆ L, let AR be a sub-matrix of A gener-
ated by selecting all the rows corresponding to paths in PR,
and AR,L′ be a sub-matrix of AR generated by selecting all
the columns corresponding to links in L′. A subset of paths
PR ⊆ P can identify a subset of links L1 ⊆ L if and only if

rank(AR) = |L1|+rank(AR,L\L1
) , (1)

Proof. In Section 8 (APPENDIX).

An illustrative example: Figure 1 shows an example of
a network with 5 links and four candidate monitors M =
{m1, ...,m4}. Using all possible paths between candidate
monitors we have the following routing matrix.

A =

l1 l2 l3 l4 l5


1 1 0 0 0 : rm1,m2

1 0 1 0 0 : rm1,m3

1 0 0 1 1 : rm1,m4

0 1 1 0 0 : rm2,m3

0 1 0 1 1 : rm2,m4

0 0 1 1 1 : rm3,m4

A∗,L1 A∗,L\L1

The rank of this matrix is 4 while the null space shows only
3 identifiable links l1, l2, l3. If we only probe paths in R =
{rm1,m2 , rm1,m3 , rm2,m3}, the corresponding routing matrix
AR satisfies Theorem 1.

AR =

l1 l2 l3 l4 l5( )
1 1 0 0 0 : rm1,m2

1 0 1 0 0 : rm1,m3

0 1 1 0 0 : rm2,m3

AR,L1 AR,L\L1

Meanwhile, it is also clear that probing these paths suffices
to identify l1, l2 and l3. We can solve the identifiable links
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Figure 1: A simple network example with 5 links and 4
monitors {m1, . . . ,m4}. Candidate paths: rm1,m2 , rm1,m3 ,
rm1,m4 , rm2,m3 , rm2,m4 , rm3,m4 .

using Gaussian elimination, where the reduced row echelon
form (rref(A)) is


1 0 0 0 0 l1 : (rm1,m2 + rm1,m3 − rm2,m3)/2
0 1 0 0 0 l2 : (rm1,m2 + rm2,m3 − rm1,m3)/2
0 0 1 0 0 l3 : (rm1,m3 + rm2,m3 − rm1,m2/2
0 0 0 1 1 l4 + l5
0 0 0 0 0 0
0 0 0 0 0 0

As shown, the reduced row echelon form contains an identity
matrix for columns corresponding to identifiable links and
by choosing {rm1,m2 , rm1,m3 , rm2,m3}, the conditions of the-
orem 1 are satisfied. Further, the total probing cost reduces
from 15 to 6.

3.3 Optimization Problems

3.3.1 Max-IL-Cost problem
Let I(PR) be the set of identifiable links using paths in

PR and |I(PR)| be the number of identifiable links using
paths in PR. The constrained path selection optimization
problem aims at maximizing the number of identifiable links
(Max-IL-Cost) with a limited probing cost K, which can be
formulated as follows:

Maximize |I(PR)| (2a)

subject to
∑
r∈PR

kr 6 K, (2b)

PR ⊆ P, (2c)

where kr is the probing cost of path r. As a concrete ex-
ample, we can define the probing cost of each path to be its
total number of hops. Then the total probing cost represents
the total number of transmissions generated by probing the
selected set of paths.

ILP formulation for Max-IL-Cost: To better under-
stand properties of Max-IL-Cost, we re-write it as an inte-
ger linear programming (ILP). The basis of our formulation
is the notion of minimal solutions (simply called solutions
in [21]). Each minimal solution to link l ∈ L is a sub-
set of paths P ′ ⊆ P such that (i) P ′ can identify l, but

(ii) no proper subset of P ′ can identify l. As an exam-
ple, consider the network in Figure 1. Consider the follow-
ing two sets of paths P1 = {rm1,m2 , rm1,m3, rm2,m3} and
P2 = {rm2,m3 , rm2,m4 , rm3,m4}, which are both minimal so-
lutions to link l2.

We can compute all the minimal solutions for each link
l by first finding a solution to l and then use a linear re-
placement method to generate other solutions, as described
in [21]. Let Pl be the set of all the minimal solutions to link
l ∈ L (Pl = ∅ if l is not identifiable). Then P =

⋃
l∈L Pl :=

{Ps}s∈S is the collection of all the minimal solutions for the
identifiable links. For ease of presentation, we index the so-
lutions in P and denote by S the set of solution indices.

Based on the minimal solutions, we can write the Max-
IL-Cost problem as the following ILP:

Maximize
Xl,Yr,Zs

∑
l∈L

Xl (3a)

subject toXl 6
∑

s:l∈I(Ps)

Zs, ∀l ∈ L, (3b)

∑
r∈P

Yr · kr 6 K, (3c)

Zs 6 Yr, ∀s ∈ S, r ∈ Ps, (3d)

Xl, Yr, Zs ∈ {0, 1}, ∀l ∈ L, r ∈ P, s ∈ S. (3e)

Here the binary variables Xl, Yr and Zs respectively repre-
sent the decision to select an identifiable link (if Xl = 1), a
probing path (if Yr = 1), and a minimal solution (if Zs = 1).

First, we show that given solutions to Yr’s, the ILP is easy
to solve.

Lemma 2. The ILP optimization problem can be relaxed
over the integer variables Xl and Zs and still gives an opti-
mal integer solution.

Proof. In Section 8 (APPENDIX).

Remark: While the problem can be relaxed overXl and Zs,
finding all minimal solutions has an exponential complexity.
Furthermore, similar to [21], optimizing Yr’s is hard to solve.
Therefore, we use the rank function as a proxy to identifia-
bility in Section 3.3.2 and show the upper/lower bounds for
identifiability.

3.3.2 Max-Rank-Cost Problem
Creating all the minimal solutions in Max-IL-Cost has

an exponential complexity which limits the scale of appli-
cability to small networks. Therefore, we replace the iden-
tifiability measure in this problem by rank. The resulting
optimization derived from Max-IL-Cost, referred to as Max-
Rank-Cost, is formulated as follows:

Maximize rank(AR) (4a)

subject to
∑
r∈PR

kr ≤ K, (4b)

PR ⊆ P. (4c)

The rank function has an important property that makes
its maximization easy to solve. To this end, we introduce
the following definition.

Submodularity Let P be a finite ground set. A set func-
tion f : 2P → R is submodular if for all sets Pa, Pb ⊆ P , we
have

f(Pa ∪ Pb) + f(Pa ∩ Pb) 6 f(Pa) + f(Pb). (5)
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Figure 2: An example that shows identifiability is not a
submodular or supermodular function.

Intuitively, f is a submodular function if it has the property
of diminishing return, i.e., the marginal gain of adding an
element e to a set Pa is at least as high as the marginal gain
of adding e to any superset of Pa.

The significance of this property is that if f(P ) is mono-
tone (i.e., increasing as we add elements to P ) and sub-
modular, then there is a generic greedy algorithm in [12] for
maximizing f(P ) subject to a budget on P , which is within
a (1− 1/e)-factor of the optimal. It is known that the rank
function is submodular.

Lemma 3. [24] The rank function is monotone and sub-
modular.

However, the number of identifiable links |I(P )| is not
submodular. To see this, consider the example in Figure 2,
which shows a network with 4 monitoring nodes (m1, m2,
m3, m4). Consider the following path sets: Pa = {l2}, and
Pb = {(l1, l2), (l3, l2)}, where (li, lj) denotes a 2-hop path
traversing links li and lj . Then it is easy to see that I(Pa) =
{l2}, I(Pb) = ∅, I(Pa∪Pb) = {l1, l2, l3}, and I(Pa∩Pb) = ∅.
Thus,

|I(Pa ∪ Pb)|+|I(Pa ∩ Pb)|> |I(Pa)|+|I(Pb)|,

violating submodularity.

3.3.3 Min-Cost-IL Problem
The problem of preserving identifiability using minimum

probing cost is the dual of Max-IL-Cost problem. As a spe-
cial case, Zheng et al. [21] considered the same problem when
kr = k (i.e. all the paths have an identical probing cost).
They show that even the special case is NP-hard by giv-
ing a reduction from set cover problem. They proposed a
heuristic-based approach to cover all links by enumerating
all possible combination of equations/paths that can cover
each identifiable link. The constructed bipartite graph is
then used to select the minimum number of probing paths
that can cover all links where set cover is a special case of
the problem. They assume each probing path has the same
cost, while Min-Cost-IL allows non-uniform, heterogenous
costs. Furthermore, while [21] also requires the coverage of
non-identifiable links, our proposed algorithm only selects
minimal sets that identify identifiable links. The constrained
path selection optimization problem to minimize the prob-
ing cost to identify all identifiable links (Min-Cost-IL) is

formulated as follows:

Minimize
∑
r∈PR

kr (6a)

subject to |I(PR)|= |I(P )|, (6b)

PR ⊆ P. (6c)

ILP formulation for Min-Cost-IL: Similar to (3), we re-
write Min-Cost-IL as an integer linear programming (ILP)
as follows:

Minimize
Yr,Zs

∑
r∈P

Yrkr (7a)

subject to 1 6
∑

s:l∈I(Ps)

Zs, l ∈ I(Ps), (7b)

Zs 6 Yr, ∀s ∈ S, r ∈ Ps, (7c)

Yr, Zs ∈ {0, 1}, ∀r ∈ P, s ∈ S. (7d)

The optimization minimizes the total cost of selected paths.
The first constraint indicates that at least one of the min-
imal solutions for each identifiable link should be selected.
The second constraint indicates that if a minimal solution is
selected, all paths in the minimal set should also be selected.

3.3.4 Min-Cost-Rank Problem
Similar to section 3.3.2, we define the Min-Cost-Rank prob-

lem as minimizing the probing cost (total hop-count) sub-
ject to preserving rank. Let P = {r1, ..., r|M|(|M|−1)/2} be
the total set of paths using all monitors M and let PR ⊆ P
be a subset of selected paths. We define the routing matrix
AR of size |R|×|L| to be a matrix consisting of 0 and 1s,
such that if r ∈ PR contains link j then AR[r, j] = 1 and
AR[r, j] = 0 otherwise. We aim to select a subset of paths,
PR ⊆ P such that the rank of both matrices be the same.

Minimize

|M|(|M|−1)/2∑
r=1

krYr (8a)

subject to rank(AR) = rank(A) (8b)

Yr ∈ {0, 1} (8c)

Where the binary variable Yr represent the decision to select
a probing path r in AR and kr is the probing cost of path
r.

4. PATH SELECTION ALGORITHMS
In this section, we give different algorithms for the four

optimization problems. We propose a greedy heuristic and
an iterative branch-and-bound algorithm for the Max-Cost-
IL and the Min-Cost-IL problems. We also show a greedy
algorithm that is optimal for Min-Cost-Rank and a modified
greedy algorithm that achieves a (1−1/e)-approximation for
Max-Rank-Cost.

4.1 Algorithms for Identifiability Optimiza-
tion

4.1.1 Greedy-Max-IL-Cost and Greedy-Min-Cost-IL
We explain how to select a given set of paths using a

set of feasible monitors and a pre-defined routing algorithm.
To compare with the existing greedy-based heuristic which
was proposed in [21], we construct a bipartite graph that
reflects the coverage of probing path and the target links.



Algorithm 1: Greedy-Max-IL-Cost

Data: A set of feasible paths P , Limit on the number
of paths K, Minimal combination of path sets
that can identify an identifiable link l:
Zs = {Sl l ∈ E} where Sl = {ri, ..., rj} is the
set of paths that can identify link l ∈ E

Result: A set paths PR ⊂ P that maximizes the
number of identifiable links in G(V,E), A set
of identified links IL = {l ∈ E}

1 IL = ∅;
2 PR = ∅;
3 while ∃Sl ∈ Zs that

(K −
|PR|∑
i=1

kri) > (Cost of New Paths in Sl) do

4 Select an un-selected set

Si = argmaxNew Identified Links in Si

Cost of New Paths in Si
;

5 for i = 1 to New Identified Links(Si)
IL = IL ∪ l l ∈ I(Si);

6 for rj ∈ Si

7 PR = PR ∪ {rj};
8 return IL and PR

Algorithm 1 shows a greedy-based approach for the men-
tioned bipartite graph model that iteratively chooses the set
of paths that can identify more links with smallest cost. At
each iteration step, the algorithm selects a minimal solution
Si that maximizes the value of the following function:

New Identified Links in Si

Cost of New Paths in Si
, (9)

where the numerator is the number of uncovered identifiable
links that can be covered by selecting Si and the denomina-
tor is the cost of unselected paths in the selected set Si.
Remark: Greedy-Min-Cost-IL is similar to the greedy heuris-
tic proposed in [21] but with two key differences. Unlike [21]
that uses uniform cost for all selected paths, we allow an ar-
bitrary cost for each path. Furthermore, unlike [21] that
requires the selected paths to cover all links, we only require
the paths to identify all the identifiable links.
We use a second greedy-based approach that we don’t show
(due to space limitation) for the dual problem (Min-Cost-IL)
by changing the breaking condition. The breaking condition
in line 3 of algorithm 1 is changed to while(IL 6= I(P )),
meaning that we continue adding a new probing set Si until
all identifiable links are covered.

4.1.2 Iterative Branch-and-Bound
The ILP formulation (3, 7) allows us to apply general ILP

solvers to Max-IL-Cost and Min-Cost-IL. Specifically, we
use an iterative branch-and-bound algorithm [25] to achieve
a configurable trade-off between complexity and optimality.
For brevity, we explain the algorithm for maximization and
minimization works analogously.

The algorithm first removes the integrality restrictions.
The resulting linear programming (LP) relaxation of Max-
IL-Cost has a polynomial time complexity and gives an up-
per bound (UB) for the maximization. If the solution sat-
isfies all the integral constraints, then we have the optimal
solution. Otherwise, we pick a fractional variable, Yr, and
make two branches by creating one more constraint in the

Best found feasible 

solution (LB)

Solution from LP relaxation (UB)

Gap
Feasible solutions

Figure 3: The iterative branch and bound algorithm that
shows the gap between the incumbent and the upper bound
for Max-IL-Cost.

optimization: Yr = 0 or Yr = 1. We continue this procedure
by making more branches to get closer to the optimal. The
branch with the largest objective value that satisfies all the
integrality constraints is called an incumbent. Also, at any
iteration during the branch-and-bound algorithm we have a
valid current upper bound, which is obtained by taking the
maximum of the optimal objective values of all of the cur-
rent leaf nodes. We stop branching once the gap between
the incumbent’s objective function (LB) and the current
upper bound is smaller than a threshold (Gap), or we can
stop branching after passing a given time limit. Optimal-
ity is achieved when the gap is zero. In the first case the
algorithm gives a solution with an approximation ratio of
LB/(LB +Gap) since we have

LB

OPT
≥ LB

LB +Gap
. (10)

In the second case, there is no guarantee on the approxima-
tion ratio but we have a guarantee on the execution time of
the algorithm. Similarly, for a minimization problem (e.g.,
Min-Cost-IL), the incumbent (the branch with the small-
est objective value and an integral solution) gives a upper
bound (UB) on the optimal solution, and the LP relaxation
gives a lower bound (LB). If the algorithm stops when UB−
LB ≤ Gap, then the incumbent gives a UB/(UB − Gap)-
approximation since we have

UB

OPT
≤ UB

UB −Gap . (11)

The advantage of this algorithm is its flexibility. We can
control the stopping rule of the branch-and-bound procedure
to achieve trade-off between optimiality and complexity.

4.2 Algorithms for Rank Optimization
In this section, we propose two greedy-based approaches,

called Greedy-Min-Cost-Rank for Min-Cost-Rank problem
and Greedy-Max-Rank-Cost for Max-Rank-Cost optimiza-
tion problem. We show that in terms of the rank objective,
Greedy-Min-Cost-Rank provides an optimal solution for
Min-Cost-Rank problem. In addition, Greedy-Max-Rank-
Cost gives 1− 1/e approximation for Max-Rank-Cost prob-
lem.

We first review the definition and properties of matroids
[26] as they will prove to be useful in the remainder of the
paper. Matroids play an essential role in combinatorial op-
timization and provide efficient and strong tool for solving
computationally intractable problems.



Definition A Matroid is a pair M = {L, I} of a finite
ground set L and a collection I ⊆ 2L of subsets of L such
that [27,28]:

• ∅ ∈ I

• ∀Ix ⊂ Iy ⊆ L, if Iy ∈ I then Ix ∈ I

• ∀Ix, Iy ∈ I , |Ix|< |Iy| → ∃r ∈ Iy \ Ix where Ix ∪
{r} ∈ I

We define M = {P, I}, where P is the set of all paths, I
contains the sets PR ⊆ P such that paths in PR are linearly
independent.

We are able to achieve optimal solution for Min-Cost-
Rank and 1 − 1/e near-optimal approximation solution
for Max-Rank-Cost. The first is due to the fact that the
sets of linearly independent paths form a matroid, and we
are selecting a basis of this matroid with minimum cost.
The approximation solution for Max-Rank-Cost is due to
the submodularity of the rank function introduced in 3.3.2.

4.2.1 Greedy-Min-Cost-Rank
We now consider one of the interesting properties of ma-

troids. We show that finding a maximal basis B of ma-
troid, I, of minimum weight can be solved optimally us-
ing a greedy-based heuristic. The greedy-based algorithm
is similar to Kruskal’s algorithm [29] that finds a minimum
spanning tree in the graph. The algorithm iteratively adds
a path with minimum cost to the set of selected paths until
the rank of the selected paths is equal to the rank of the
original routing matrix.

Theorem 2. [26] For any routing path elements P and
any probing cost function ki, Greedy-Min-Cost-Rank (Algo-
rithm 2) is optimal for Min-Cost-Rank, i.e., it returns a
basis of P with the minimum probing cost.

Complexity Analysis: Let F (|P |) be the time complexity
of testing whether a ground set is independent or not (line 5-
6) which is the time complexity of checking whether the rank
function is increasing or not. The Greedy-Min-Cost-Rank
algorithm runs in O(|P |log(|P |) + |P |.F (|P |)). Using Gaus-
sian Elimination algorithm to compute the rank function
[30], that has a time complexity of min(|L|, |P |)× (|P |×|L|)
the complexity of the algorithm is O(|L|2×|P |2), where |P |=
|M|×(|M|−1)

2
.

Lemma 4. If Greedy-Min-Cost-Rank returns a basis B
for A∗,LI where rank(AB,L\LI

) = 0, then B is the mini-
mum cost set of paths that identifies all identifiable links,
i.e. optimal solution to Min-Cost-IL.

Proof. In Section 8 (APPENDIX).

However, if Greedy-Min-Cost-Rank returns a minimum cost
basis X for A∗,LI where rank(AX,L\LI

) = j 6= 0 and the
selected paths’ cost is K1, then K1 is the lower bound for
Min-Cost-Rank.

Theorem 3. For any routing matrix A, and a set of iden-
tifiable links LI , let Greedy-Min-Cost-Rank returns a ba-
sis BA∗,LI

for A∗,LI with the minimum cost KLB = k1 +
k2 + ... + k|LI |, and let Greedy-Min-Cost-Rank returns a
basis BA for the routing matrix A with the minimum cost
KUB = k′1 + k′2 + ...+ k′rank(A). Also let Kopt be the optimal
cost solution of Min-Cost-IL, we have:

KLB ≤ Kopt ≤ KUB (12)

Algorithm 2: Greedy-Min-Cost-Rank approach for
Min-Cost-Rank problem

Data: A set of paths P = {r1, ..., r|M|(|M|−1)/2}, a set
of cost functions for each path
Cost = {k1, ..., k|M|(|M|−1)/2}.

Result: A subset of paths R∗ ⊆ P that preserves the
rank, i.e. rank(R∗) = rank(P ) with minimum
probing cost.

1 P ∗R = ∅;
2 TotalCost = 0;
3 sort P in increasing order of cost ;
4 forall ri ∈ P do
5 IncreaseRankri = rank(P ∗R ∪ {ri})− rank(P ∗R) ;
6 if IncreaseRankri > 0 then
7 P ∗R = P ∗R ∪ {ri} ;
8 TotalCost = TotalCost+ ki ;

9 if rank(P ∗R) ≥ rank(P ) or |I(P ∗R)|= |LI | then
10 break ;

11 return P ∗R, T otalCost

Proof. In Section 8 (APPENDIX).

Remark: Note that the difference between the lower bound
KLB and the upper bound KUB is no larger than k′|LI | +

... + k′rank(A). Since we have more constraint for selecting
the first |LI | paths for A∗,LI than A, we always have

k′1 + k′2 + ...+ k′|LI | ≤ k1 + k2 + ...+ k|LI | (13)

Therefore,

KUB −KLB ≤ k′|LI | + ...+ k′rank(A)

≤ (rank(A)− |LI |) ∗ k′rank(A) (14)

4.2.1.1 Tightness of the bound.
For special routing matrices, the lower or upper bound is

tight and coincides with the optimal for identifiability. To
prove that, we first construct a routing matrix where the
lower bound is tight. For this scenario, consider a rout-
ing matrix A, where the minimum cost basis BA∗,LI

for

A∗,LI does not pass any of the non-identifiable links (i.e.
rank(AB,L\LI

) = 0). In this scenario, the lower bound is
tight and coincides with the optimal. The minimum cost
basis BA∗,LI

for A∗,LI returned by Greedy-Min-Cost-Rank

is always optimal for Min-Cost-IL (i.e., it identifies all links
in LI with minimum cost), if rank(ABA∗,LI

,L\LI
) = 0.

For the second scenario, we consider a network topol-
ogy, where every monitor is connected to another monitor
through one hop. Therefore, routing matrix is full rank and
all links are identifiable. In this scenario, we need to select
all paths to identify all links and thus the upper bound is
tight and coincides with the optimal. The minimum cost ba-
sis BA for A returned by Greedy-Min-Cost-Rank is always
optimal for Min-Cost-IL if rank(A) = rank(BA) = |LI |.

4.2.2 Greedy-Max-Rank-Cost
Since the rank function is submodular, we can apply a

modified greedy algorithm called Greedy-Max-Rank-Cost that
gives (1 − 1/e)-approximation of the Max-Rank-Cost prob-
lem.



Algorithm 3 shows a Greedy-Max-Rank-Cost approach
that enumerates all subsets of up to 3 paths, and iteratively
augments each of these subsets by adding one path at a time
to maximize the increment in rank per unit cost within the
probing budget. The path set with the maximum rank is
then selected as the overall solution. Since the rank function
is monotone and submodular (Lemma 3), we can leverage
an existing result for budgeted submodular maximization.

Theorem 4. [12] Greedy-Max-Rank-Cost (Algorithm 3)
achieves (1−1/e)-approximation for the Max-Rank-Cost prob-
lem, i.e., the rank of its solution P is no smaller than (1−
1/e) times the maximum rank.

Complexity Analysis: In the worst case scenario, the
algorithm has to find the maximum increase of the rank
function |P |5 times. Therefore, the complexity of the al-
gorithm is O(|P |5F (P )). Where F (P ) is the complexity of
calculating rank of P . Using Gaussian Elimination algo-
rithm to compute the rank function [30], the complexity of
the algorithm is O(|L|2×|P |6).

Algorithm 3 provides upper/lower bounds on the maxi-
mum identifiability that can be achieved under the given
probing budget.

Theorem 5. Let PR be the set of paths returned by Greedy-
Max-Rank-Cost for a probing budget K, which induces a
routing matrix AR,∗ and identifies IR links. Then the maxi-
mum number of links Iopt that can be identified under budget
K, given by the optimal solution of Max-IL-Cost, is bounded
by:

IR ≤ Iopt ≤ min{rank(AR,∗) ·
e

e− 1
, |LI |}, (15)

where LI is the set of identifiable links using all possible
paths P .

Proof. In Section 8 (APPENDIX).

5. EVALUATION
In this section, we consider several scenarios to compare

the probing cost of our proposed algorithms compared to the
case where we use all feasible probes or the optimal (OPT)
brute-force solution. For each scenario, we randomize the
results by running 10 different trials, where we vary the ran-
dom selection of monitors from the entire set of nodes. We
implement our low cost monitoring algorithms in python
and used the Gurobi optimization toolkit, on a 120-core, 2.5
GHz, 4TB RAM cluster [31]. We assume shortest path rout-
ing (based on hop count), with ties broken arbitrarily.

We use different network topologies including a small (Abi-
lene) and a medium topology (BellCanada) taken from the
Internet Topology Zoo [22, 23]. We also consider AS28717
topology (CAIDA) taken from the CAIDA (Center for Ap-
plied Internet Data Analysis) dataset [32]. The network
topologies used in our evaluation are shown in Figure 4. Ta-
ble 3 shows the characteristics of these topologies.

5.1 Identifiability Maximization
In the first set of simulations, we consider the impact of

probing cost limit on the number of identifiable links. We
first compare the upper and lower bound of Theorem 5 with
maximum number of identifiable links using all candidate

Algorithm 3: Greedy-Max-Rank-Cost approach for
Max-Rank-Cost problem

Data: A set of paths P = {r1, ..., r|M|(|M|−1)/2}, a set
of cost functions for each path
Cost = {k1, ..., k|M|(|M|−1)/2}, Limit on the
probing cost K.

Result: A subset of paths PMax ⊆ P that maximizes
rank(PMax) subject to a limited monitoring
cost K

1 PMax2 = ∅;
2 TotalCost = 0;
3 PMax1 = argmax{rank(Px) : Px ⊆ P, |Px|≤ 3, c(Px) ≤

K};
4 forall Pg ⊆ P, |Pg|= 3, c(Pg) ≤ K do
5 P ′ = P \ Pg;
6 P = Pg ;
7 while P ′ 6= ∅ do
8 forall ri ∈ P ′ do
9 IncreaseBonusri =

(rank(PMax2 ∪ {ri})− rank(PMax2))/ki

10 rMaxIncrease = argmaxri∈P ′IncreaseBonusri
11 if kMaxIncrease + TotalCost 6 K then
12 P = P ∪ {rMaxIncrease} ;
13 TotalCost = kMaxIncrease + TotalCost ;
14 P ′ = P ′ \ ({rMaxIncrease} ∪ {r ∈ P ′ : kr >

K − TotalCost})

15 if rank(P ) > rank(Pmax2) then
16 PMax2 = P

17

18 return argmaxP∈{PMax1,PMax2}rank(P )

Table 3: Network characteristics used in our evaluation.

Network
Name

# of nodes # of edges Average Node degree

Abilene 11 14 2.5
BellCanada 48 64 2.62
CAIDA 825 1018 2.46

paths. We randomly select 9, 10 and 9 monitors from the en-
tire set of nodes in Abilene, BellCanada and CAIDA topolo-
gies respectively. Figures 5a, 5b and 5c show the lower and
upper bound on the number of identifiable links and the
optimal number of identifiable links for each topology. We
note that the optimal number of identifiable links is always
upper bounded by the minimum of (i) maximum identifia-
bility and (ii) the upper bound in Theorem 5. As shown, the
difference between the optimal number of identifiable links
in the upper and lower bound is very small which shows
that Greedy-Max-Rank-Cost gives a solution close to opti-
mal. Further, we note that the lower bound is closer to the
optimal and gives a tighter bound in terms of number of
identifiable links.

We next compare the number of identifiable links in Greedy-
Max-IL-Cost heuristic (Algorithm 1), Greedy-Max-Rank,
and the optimal case (OPT). We use gurobi optimization
toolkit to solve the ILP problem formulation (equation 2).
We also use our iterative branch-and-bound algorithm and
stop the search when Gap ≤ 0.5 · LB. We recall that, the
larger the gap is, the lower is the number of iterations of
the optimization algorithm is and therefore we have an ap-



(a) Abilene. (b) BellCanada. (c) CAIDA.

Figure 4: Network topology of graphs used in the evaluation a) Abilene, b) BellCanada and c) CAIDA topology.
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Figure 5: Upper and lower bound on the number of identifiable links as a function of limit on the probing cost in a) Abilene
(9 monitors), b) BellCanada (10 monitors) and c) CAIDA topology (9 monitors).
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Figure 6: Number of identifiable links as a function of limit on the probing cost in a) Abilene (9 monitors), b) BellCanada
(10 monitors) and c) CAIDA topology (9 monitors).
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Figure 7: Probing cost vs number of feasible probing paths in a) Abilene (5-11 monitors), b) BellCanada (10-29 monitors)
and c) CAIDA (9-42 monitors) topology.
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Figure 8: Upper and lower bound on the probing cost as a function of number of candidate paths in a) Abilene (5-11 monitors),
b) BellCanada (10-29 monitors) and c) CAIDA (9-42 monitors) topology.
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Figure 9: Number of identifiable links as a function of limit on the probing cost in a) Abilene (5-11 monitors), b) BellCanada
(10-29 monitors) and c) CAIDA (9-42 monitors) topology.

proximation of the solution which is farther from optimal.
Figures 6a, 6b and 6c show scenarios where we increase the
limit on the probing cost of monitors for the Abilene, Bell-
Canada and CAIDA topology. As we increase the probing
cost limit, more links are uniquely identified and all algo-
rithm eventually converge to maximum identifiability, while
Greedy-Max-Rank is closest to the optimal.

5.2 Cost Minimization
In the next set of simulations, we evaluate the perfor-

mance of Greedy-Min-Cost-Rank algorithm that preserves
rank and the greedy-based heuristics that preserve iden-
tifiability. We consider Abilene, BellCanada and CAIDA
topology and run Greedy-Min-Cost-Rank and Greedy-Min-
Cost-IL algorithms that preserve rank and identifiability re-
spectively. We also run our branch-and-bound formulation
and stop branching once Gap ≤ 0.5 · UB. In the first set of
experiments, we increase the number of candidate paths by
increasing the number of randomly selected monitors and
evaluate the cost saving of our Greedy-Min-Cost-Rank al-
gorithm with respect to the case where we use all candidate

paths. By choosing M random monitors, we have M×(M−1)
2

candidate paths. We increase the number monitors from 5
to 11 in Abilene, 10 to 29 in BellCanada and 9 to 42 in
CAIDA topology. Figures 7a, 7b and 7c show the simula-
tion results for this scenario. As shown, probing all candi-
date paths generates a large amount of traffic and incurs a
high cost, while our Greedy-Min-Cost-Rank algorithm sig-
nificantly reduces the cost. We also compare the accuracy
of Greedy-Min-Cost-Rank by running the algorithm on (i)
the entire routing matrix A, and (ii)a subset of the routing
matrix with columns corresponding to the set of identifiable

links A∗,LI ; the former gives the upper bound and the lat-
ter gives a lower bound on the probing cost according to
Theorem 3. Figure 8 shows the upper and lower bound on
the probing cost as we increase the number of candidate
paths in each network topology. The simulation results for
CAIDA topology, shows that the number of identifiable links
is equal to the rank of the routing matrix A and thus the
upper bound and lower bound are equal. Therefore, the
solution to Greedy-Min-Cost-Rank for this topology is opti-
mal. In Abilene and BellCanada topology, the lower bound
and upper bound are closer to the optimal respectively.

We next evaluate the probing cost of each algorithm com-
pared to optimal. Figures 9a, 9b and 9c show the probing
cost of each network topology as we increase the number
of candidate paths. As shown, our Greedy-Min-Cost-Rank
algorithm is closer to the optimal in all topologies and coin-
cides with the optimal in CAIDA.

6. CONCLUSION
This paper studies the optimal selection of monitoring

paths to balance identifiability and cost. We consider the
constrained optimization problem of 1) maximizing identi-
fiability under limited probing budget, 2) maximizing the
rank function under a limited probing budget, 3) minimiz-
ing the probing cost subject to preserving identifiability,
and 4) minimizing the probing cost subject to preserving
the rank. While (1) and (3) are hard to solve, (2) and (4)
posses desirable properties that allow efficient computation
while providing good approximation to (1) and (3). We
proposed an optimal greedy-based approach for (4) and pro-
posed a (1− 1/e)-approximation algorithm for (2). Our ex-
perimental analysis reveals that, compared to several greedy



approaches, our rank-based optimization performs better
in terms of identifiability and probing cost. Furthermore,
our solution can reduce the total probing cost by an order
of magnitude while achieving the same monitoring perfor-
mance.
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8. APPENDIX
Proof of Theorem 1. We first show the necessary con-

dition, i.e. if a set of routing paths PR ⊆ P identifies all
identifiable links in L1, then rank(AR,∗) = rank(AR,L1) +
rank(AR,L\L1

) and rank(AR,L1) = rank(A∗,L1) = |L1|.
Suppose that the routing matrix AR,∗ is of size n× |L|.
Without loss of generality (WLOG), suppose that the num-
ber of identifiable links in L1 is |L1|= k and the first k
columns of AR correspond to these k identifiable links (one
can exchange the columns in AR to have this property). This
means that the reduced row echelon form of AR,∗ should be
as follows:

rref(AR,∗) =

[
Ik×k 0k×(|L|−k)

0(n−k)×k M(n−k)×(|L|−k)

]
(16)

Where, Ik×k is the identity matrix and 0k×(|L|−k) and 0(n−k)×|L|
are matrices containing all zero entries and M(n−k)×(|L|−k)

is a matrix of general values. Therefore, the rank of AR,∗ is
as follows:

rank(AR,∗) = k + rank(M) (17)

It is clear that:

rank(AR,L1) = k,

rank(AR,L\L1
) = rank(M) (18)

Therefore,

rank(AR,∗) = k + rank(M) =

rank(AR,L1) + rank(AR,L\L1
) (19)

Next, we prove the sufficient condition, i.e. if for a selected
subset of paths PR ⊆ P (1) is satisfied, then, PR can solve
all identifiable links.

Since rank(AR) ≤ rank(AR,L1) + rank(AR,L\L1), and
rank(AR,L1) ≤ |L1|, (1) implies that rank(AR,L1) = |L1|,
i.e., rows of AR,L1 contain a basis of the row space of A∗,L1 .
Therefore the reduced row echolen form of AR,∗ should con-
tain the identity matrix Ik×k as follows:

rref(AR,∗) =

[
Ik×k Bk×(|L|−k)

C(n−k)×k M(n−k)×(|L|−k)

]
(20)

We show that the submatrices Bk×(|L|−k) and C(n−k)×k

must be zero matrices. If C(n−k)×k contains a non-zero
entry, we can make them zero by using a sequence of el-
ementary row operations. Note that (1) implies that

rank(rref(AR,∗)) = rank(

[
Ik×k

0(n−k)×k

]
)+

rank(

[
Bk×(|L|−k)

M(n−k)×(|L|−k)

]
) (21)

To prove that Bk×(|L|−k) = 0, we re-write the reduced row
echelon form of AR,∗ as follows:

rref(AR,∗) =

[
Ik×k Bk×(|L|−k)

0(n−k)×k M(n−k)×(|L|−k)

]
=

[
Ik×k b1 ... b|L|−k

0(n−k)×k m1 ... m|L|−k

]
, (22)

where, bi and mi are the i-th column of Bk×(|L|−k) and
M(n−k)×(|L|−k) respectively. Let [e1, e2, ..., ek] be the columns

of

[
Ik×k

0(n−k)×(k)

]
. Also let [q1, q2, ..., q|L|−k] be the columns

of

[
B
M

]
, where qi =

[
bi
mi

]
.

We define the indicator functions δi and δ′i as follows:

δi =


1, if qi is independent of

{e1, ..., ek} ∪ {q1, ..., qi−1}
0, Otherwise.

δ′i =


1, if qi is independent of

{q1, ..., qi−1}
0, Otherwise.

Lemma 5. We claim that

δi = δ′i fori = 1, ..., |L|−k, (23)

i.e., qi is linearly independent of {e1, ..., ek} ∪ {q1, ..., qi−1},
if qi is linearly independent of {q1, ..., qi−1}.

To see this, we note that the left hand side (LHS) and right
hand side of Equation (21) are as follows:

LHS of (21): rank(rref(AR)) = k +

|L|−k∑
i=1

δi (24)

RHS of (21): rank(rref(AR)) = k +

|L|−k∑
i=1

δ′i (25)

It is clear that δi ≤ δ′i, ∀i = 1, ..., |L|−k, because if qi is
linearly independent of {q1, ..., qi−1} ∪ {e1, ..., ek} it has to
be independent of {q1, ..., qi−1} which is a subset of the for-
mer. Thus, if ∃i ∈ {1, ..., |L|−k} such that δi < δ′i, (24)
will be smaller than (25), violating Equation (21). Thus,
δi = δ′i,∀i = 1, ..., |L|−k. Using the above claim, we prove
bi = 0, i = 1, ..., |L|−k by induction. For i = 1, if row
k + 1 in rref(AR,∗) contains a pivot in column k + 1 (i.e.
q1 contains a pivot), then by definition of the reduced row
echelon form, other entries in column k + 1 should be zero
and thus b1 = 0. If row k+1 in rref(AR,∗) does not contain
a pivot in column k+1 (i.e., not contain a pivot or contain a
pivot in column j > k+1), then the non-zero entries (if any)
in row k + 1 and every row below row k + 1 must be to the

right of column k + 1, i.e. m1 = 0. Therefore, q1 =

[
b1
m1

]
is linearly dependent with {e1, ..., ek}. By (23), q1 = 0 and
thus b1 = 0.

For i > 1, assume bj = 0 for j = 1, ..., i− 1. If qi =

[
bi
mi

]
contains a pivot, then the pivot must be in a row below row
k (as (22) already indicates that the pivots in rows 1, .., k
appear before column qi). Thus by definition of reduced
row echelon form bi = 0. If qi does not contain a pivot, then
qi can be written as linear combination of {e1, ..., ek} and
{qil}

i
l=1 where il is the index for those columns in {q1, ..., qi}

which contain a pivot. Thus, qi is linearly dependent of
{e1, ..., ek} ∪ {q1, ..., qi−1}. By Lemma 5, qi is linearly de-
pendent of {q1, ..., qi−1}. Since bj = 0 for j = 1, ..., i− 1, bi
must be zero.

Therefore, using the reduced row echolen form of AR,∗ in
(20), each link in L1, corresponding to one of the first k
columns in rref(AR), can be uniquely determined from the
set of selected paths PR. We therefore, conclude that the
necessary and sufficient condition for PR ⊆ P to identify a
set of links L1 is rank(AR,∗) = |L1|+rank(AR,L\L1

).



Proof of Lemma 2. Suppose there exists an optimal
solution of the LP-relaxation of Max-IL-Cost over Zs and
Xl, where ∃l ∈ L with 0 < Xl < 1. Therefore, ∃s : l ∈ I(Ps)
such that Zs > 0. From (3-d), it implies that if Zs > 0,
we must have Yr = 1 ∀r ∈ Ps. Therefore, we can make
Zs = 1, and Xl = 1 to increase the value of the objective
function without violating any constraint. This contradicts
with the assumption that this solution is optimal. Similar
argument shows a contradiction if ∃s ∈ S s.t. 0 < Zs <
1. Therefore, the optimal solution of the LP relaxation over
Zs and Xl always gives an integer solution.

Proof of Lemma 4. A path set identifies all the iden-
tifiable links if and only if it satisfies the conditions of Theo-
rem 1, i.e. rank(AR,∗) = |LI |+rank(AR,L\LI

). Note that R
is a solution to Min-Cost-Rank since we know rank(AR,∗) =
|LI |. Thus, the optimal solution to Min-Cost-IL is identical
to the optimal solution to Min-Cost-Rank, given by Greedy-
Min-Cost-Rank by theorem 2.

Proof of Theorem 3. The lower bound is obvious, since

we showed that Greedy-Min-Cost-Rank returns the optimal
minimum basis for A∗,LI , there is no lower cost set of paths
that is both a basis for A∗,LI and satisfies the conditions of
theorem 1.
For the upper bound, note that any basis BA for the routing
matrix A identifies all links in LI and thus has lower cost
than Kopt.

Proof of Theorem 5. The lower bound IR ≤ Iopt triv-
ially holds due to the optimality of Iopt. For the upper
bound, we denote by R∗ the set of path indices in the op-
timal solution of Max-IL-Cost. Then by Theorem 1, Iopt ≤
rank(AR∗). Meanwhile, by Theorem 4, we have that

rank(AR∗) ≤ rankopt ≤ rank(AR) · e

e− 1
, (26)

where rankopt is the rank of the optimal solution of Max-
Rank-Cost. This gives the upper bound on Iopt. Also, note
that Iopt is always smaller than the maximum identifiability
(|LI |) using all possible paths in P .


