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ABSTRACT

Computing time derivatives is a frequent stage in the processing of biomechanical data.
Unfortunately, differentiation amplifies the high frequency noise inherent within the signal
hampering the accuracy of signal derivatives. A low-pass Butterworth filter is commonly used to
reduce the sampled signal noise prior to differentiation. One hurdle lies in selecting an appropriate
filter cut-off frequency which retains the signal of interest while reducing deleterious noise. Most
biomechanics data processing approaches utilize the same cut-off frequency for the whole sampled
signal, but the frequency components of a signal can vary with time. To accommodate such signals,
the Automatic Segment Filtering Procedure (ASFP) is proposed which uses different automatically
determined Butterworth filter cut-off frequencies for separate segments of a sampled signal. The
Teager-Kaiser Energy Operator of the signal is computed and used to determine segments of the
signal with different energy content. The Autocorrelation-Based Procedure (ABP) is used on each
of these segments to determine filter cut-off frequencies. This new procedure was evaluated by
estimating acceleration values from the test data set of Dowling (1985). The ASFP produced a root
mean square error (RMSE) of 16.4 rad.s (26.6%) whereas a single ABP determined filter cut-off
frequency applied to the whole Dowling (1985) signal, representing the common approach,
produced a RMSE of 25.5 rad.s? (41.4%). As a point of comparison, a Generalized Cross-
Validated Quintic Spline, a common non-Butterworth filter, produced a RMSE of 23.6 rad.s™
(38.4%). This new automatic approach is advantageous in biomechanics for preserving high

frequency content of non-stationary signals.

Keywords: signal processing, filtering, non-stationary signals, inverse dynamics
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INTRODUCTION

Computing time derivatives is a frequent stage in the processing of biomechanical data. Prior to
differentiation, high-frequency noise components must be reduced in the sampled signal
(Woltring, 1985), which is commonly performed using a low-pass Butterworth filter (e.g., Winter,
2009; Robertson and Dowling, 2003). One hurdle of this approach lies in selecting an appropriate
filter cut-off frequency which retains as much of the signal of interest as possible while reducing
deleterious noise. The importance of estimating accurate time derivatives for use in inverse
dynamics, for example, indicates that this cut-off frequency selection is critical (Mai et al., 2019;

Bezodis et al., 2013; Kristianslund et al., 2012).

Procedures have been presented which automatically determine the cut-off frequency for a
Butterworth filter (e.g., Winter 2009; Yu et al., 1999, Challis, 1999), which have the advantage
that they remove the subjectivity of filter cut-off frequency determination. However, most of these
methods have assumed all of a signal of interest lies below one frequency and therefore it is
appropriate to use a single filter cut-off frequency for an entire signal. If a certain portion of a
signal has higher frequency components than other portions, too low a cut-off frequency can
inappropriately attenuate these frequencies. While a higher cut-off frequency might be appropriate
for one portion of the signal, for other portions it will fail to appropriately attenuate some of the
noise. Non-stationary signals of this nature are common in biomechanics, for example, in gait
where leg swing and support portions of a stride have differing frequency components, indeed
even the support phase is non-stationary (e.g., Gruber et al., 2017). As such, the ability to filter
segments of signals at different cut-off frequencies would permit retention of more of the signal
of interest, while simultaneously ridding more of the signal from noise. An adaptive Butterworth
filter developed by Erer (2007) aimed to address this by filtering each sample at a different cut-off
frequency. Their frequency determination method, however, is sensitive to subjectively selected
parameters (see Online Supplementary Material for details). As filter parameters can influence
derivative estimates, there is a need for a procedure which can account for and process non-

stationary signals objectively and automatically.

The purpose of this study is to present a new procedure which segments a signal based on the
signal’s time-varying energy, then filters each segment separately with automatically determined

cut-off frequencies from the Autocorrelation Based Procedure (ABP; Challis, 1999). This new



56
57

58

59

60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85

procedure is evaluated for its ability to produce better derivative estimates from a noisy non-

stationary signal compared with commonly adopted procedures.

METHODS

In overview, a new procedure for processing non-stationary signals by dividing them into segments
depending on their energy content is presented. The ABP (Challis, 1999) is conducted on each
segment independently to produce cut-off frequencies for each segment. This new Automatic
Segment Filtering Procedure (ASFP) is evaluated on a test data set and its performance compared

with commonly used methods for filtering and differentiating data.

The Procedure
To divide a signal into segments based on its energy content, signal energy was computed as a
function of time. The Teager-Kaiser Energy Operator (TKEO; Kaiser, 1990) is an algorithm which
calculates the energy of the signal and can be used as a surrogate for more complex time-frequency
analysis,

TKEO()) = x? = Xis1%Xi—q [1]
Where i is the i sample in a signal x.
This operator was utilized as a means of segmenting a signal. The goal of segmenting was to
determine where portions of the signal contain frequency content that differs from the remaining
signal. Therefore, TKEO portions which were three absolute deviations (Leys et al., 2013) from
the median of the TKEO signal were deemed new segments. Change points were defined as the
time index when the TKEO intersected this outlier criterion ({tcp,, ..., tcp, } Where n indicates the
total number of intersections identified). As the TKEO is sensitive to noise (Kaiser, 1990), an

ABP-determined low-pass filter was applied prior to its calculation.

The ABP (Challis, 1999) provided a means of objectively determining Butterworth filter cut-off
frequencies for each of the segments ({cofs,, ..., cof;, } for segments {sy,..., S} where m =n +
1 represents the total number of segments). The full signal, as opposed to only the segment itself,
was filtered at each segment-specific cut-off frequency to avoid end-point issues when applying

the Butterworth filter (Smith, 1989). Double-differentiation via first-order finite difference
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equations produced an acceleration signal for each segment-specific cut-off frequency

{aco forre o1 Qcofy, }. Reconstruction of the final acceleration signal required the joining of adjacent

segments (Figure 1). To do so, overlap sections which were half the length of the shortest segment
in the signal were created and straddled each change point. The overlap section’s values were
calculated by first defining a vector of linearly decreasing weight terms from 1 to 0 along the
section’s length. The weight term value at a time instance was multiplied by the difference between
segment values within the overlap section at this same instance. These weighted differences were
then added to the later segment values.

<<<Insert Figure 1 around here.>>>

Evaluation

The data set from Dowling (1985) containing a noisy angular displacement signal and a criterion
angular acceleration signal was used as a benchmark. The signal is non-stationary as it contains
both an impact and periods of limited movement (Figure 2a). Errors were calculated using the root
mean square error (RMSE) between the criterion acceleration signal and the ASFP estimate, as
well as the percentage RMSE (%RMSE; Challis, 1999). As an additional comparison, the ASFP
was compared to a single filter estimate derived from applying the ABP to the entire signal
(Challis, 1999). Finally, as an additional point of comparison, a Generalized Cross-Validated

Quintic spline (GCVQS; Woltring, 1986) was used to estimate acceleration values.

RESULTS

<<<Insert Figure 2 around here.>>>

<<<Insert Table 1 around here.>>>
Five automatically determined segments of the Dowling (1985) signal resulted from analysis using
the Teager-Kaiser Energy Operator (Figure 2b). Following this segmenting, different filter cut-
offs frequencies were used for each segment respectively (Figure 3¢). The ASFP produced smaller
error results than commonly used filtering techniques (Table 1). The single filter ABP (Challis,
1999), which filtered the signal at 9.6 Hz, produced the largest error at the signal minimum,
followed by the GCVQS, whereas the ASFP resulted in the smallest error at this minimum (Table

2). At the signal maximum, this new procedure produced the smallest absolute error, followed by
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the single filter ABP (Challis, 1999), then the GCVQS (Woltring, 1986; Table 2). Overall, the
ASFP produced a better approximation of the criterion acceleration signal compared with other
commonly used procedures by automatically segmenting the signal and applying separate filter

cut-off frequencies to each respective segment.

<<< Insert Table 2 around here.>>>

DISCUSSION

Complications inherent to using a single low-pass Butterworth filter on a non-stationary signal
have been addressed, and the Automatic Segment Filtering Procedure (ASFP) to process signals
of this nature has been presented. The Teager-Kaiser Energy Operator was used to elucidate
segments of the signal which contained differing magnitudes of energy. These differing
magnitudes indicate the segments have differing signal to noise ratios, thus requiring different
filter cut-off frequencies. Segmenting allowed for the use of an automatically determined filter
cut-off frequency for each segment. Overall, the procedure demonstrated better second derivative

estimates of a noisy, non-stationary signal compared with commonly used approaches.

The first two change points automatically determined here appear to match closely those identified
by Dowling (1985), indicating in this region the current procedure is a good approximation of the
signal properties which Dowling aimed to treat separately. However, an additional segment was
identified in the current procedure that did not match his segment determination. Segmenting in
Dowling (1985) was at least partially subjective, with knowledge of the acceleration signal a
priori. The movement in this region apparently did not appear to warrant segmentation, but the
proposed procedure indicates the signal to noise ratio in this area was indeed different from the
remainder of the signal. Finally, Dowling’s (1985) segmenting was constrained by points where
the acceleration estimate was approximately zero, which may hamper the ability to detect all signal
segments which require different filtering methods. These results demonstrate the ASFP has

sufficient sensitivity to segment a non-stationary signal.
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Some considerations must be made when applying the current procedure. As mentioned by Kaiser
(1990), the TKEO is itself sensitive to noise. To address this, the TKEO was calculated after the
angular displacement signal was low-pass filtered using the frequency cut-off suggested by the
ABP computed on this raw signal (9.6 Hz; Challis, 1999). Relatively robust derivative estimates
were seen using varying filter cut-off frequencies for the TKEO calculation prior to derivative
estimation (e.g., range of filter cut-off frequencies from 3 — 15 Hz resulted in acceleration estimate
RMSE values between 15.5 and 19.4 rad.s?). Error results in this study, especially at the signal
minimum, are most sensitive to the location of change points in the TKEO. Determining these
locations relied on the signal exceeding three absolute deviations from the entire TKEO signal
median (Leys et al., 2013). The current signal contains a high frequency impact which lent itself
to this outlier detection technique. Some work has used adaptive segmentation thresholds which
change along with the signal (e.g., Aragwal and Gotman, 1999). Although not analyzed here, these
and other methods may warrant investigation in this setting. Choosing which algorithm to use for
segmenting after calculating the TKEO is context specific, but results demonstrated here show that
in general, segmenting the signal using the TKEO and applying segment-specific filter cut-off
frequencies may be more appropriate than applying one filter cut-off frequency for an entire non-

stationary signal that contains impact-like characteristics.

Making use of the proposed procedure for movements like running or jump-landings would see
high frequency impact phases filtered at a higher frequency than the remainder of the movement.
If the recommendations by Bisseling and Hof (2006) regarding filtering force plate and motion
capture data at the same frequency are to be followed, then segmenting the signal in this way would
allow greater high-frequency content from a force plate to be retained throughout these impact
phases while restricting the influence of noise in lower frequency phases. Movements that
inherently contain time-varying frequency content may in fact require a more flexible filtering
technique like the ASFP than a single filter cut-off frequency. Improving derivative estimates by
using this procedure may assist in determining “true” moments and forces through, for example,

inverse dynamics, where acceleration values are of importance.
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Table 1 - Error in estimating the criterion angular acceleration signal values determined by three
procedures: the Automatic Segment Filtering Procedure (ASFP), the Single Filter Autocorrelation
Based Procedure (ABP), and the Single Filter Generalized Cross-Validated Quintic Spline
(GCVQS). The errors are expressed as both the root mean square error (RMSE) and the percentage
root mean square error (%RMSE), between the criterion angular acceleration values and those

estimated by the three procedures.

Table 2 - Error in estimating the criterion signal minimum and maximum angular acceleration
values determined by three procedures: the Automatic Segment Filtering Procedure (ASFP), the
Single Filter Autocorrelation Based Procedure (ABP), and the Single Filter Generalized Cross-
Validated Quintic Spline (GCVQS). The errors are expressed in rad.s? and as a percentage
difference between the criterion angular acceleration values and those estimated by the three

procedures.



Table 1 - Error in estimating the criterion angular acceleration signal values determined by three
procedures: the Automatic Segment Filtering Procedure (ASFP), the Single Filter Autocorrelation
Based Procedure (ABP), and the Single Filter Generalized Cross-Validated Quintic Spline
(GCVQNS). The errors are expressed as both the root mean square error (RMSE) and the percentage
root mean square error (%RMSE), between the criterion angular acceleration values and those
estimated by the three procedures.

RMSE (rad.s?) %RMSE
ASFP 16.4 26.6
Single Filter (ABP) 25.5 41.4

Single Filter (GCVQS) 23.6 38.4




Table 2 - Error in estimating the criterion signal minimum and maximum angular acceleration
values determined by three procedures: the Automatic Segment Filtering Procedure (ASFP), the
Single Filter Autocorrelation Based Procedure (ABP), and the Single Filter Generalized Cross-
Validated Quintic Spline (GCVQS). The errors are expressed in rad.s? and as a percentage
difference between the criterion angular acceleration values and those estimated by the three
procedures.

Signal Minimum Signal Maximum
Error (rad.s?) Error (%) Error (rad.s) Error (%)
ASFP 57.7 15.0 -0.8 -0.7%
Single Filter (ABP) 197.8 50.8 1.3 1.1%

Single Filter (GCVQS) 133.2 65.2 -2.3 -1.8%




LIST OF FIGURES

Figure 1- Schematic of a single filter approach and the proposed Automatic Segment Filtering
Procedure (ASFP) applied to angular motion signal from Dowling (1985). For the single filter
approach, the Autocorrelation-Based Procedure (ABP) determines a single filter cut-off frequency
and subsequently uses it to filter the noisy angular displacement signal. The ASFP computes the
signal Teager-Kaiser Energy Operator (TKEO) then uses three times its median absolute deviation
(MAD) to define time indexes of change points in the signal. The number of change points is
defined by n and the number of segments used, m, is equal to n + 1. Values {cof; , . . ., cofs }
represent the filter cut-off frequencies for each respective segment; angular displacement and
acceleration values with these as subscripts indicate the signal was originally filtered at this cut-
off frequency. N represents the last sample in the signal. The first step of the ASFP is depicted
graphically in Figure 2b and final results displayed in Figure 2c.

Figure 2- a) Raw angular displacement signal from Dowling (1985). b) Teager-Kaiser Energy
Operator (TKEO) of angular displacement signal using the Autocorrelation-Based Procedure
(ABP). Vertical lines in panels b through e indicate change points, defined as the intersection of
the TKEO with three times its median absolute deviation (3 x MAD). c) Criterion angular
acceleration signal published by Dowling (1985). d) Angular acceleration estimate from a single
filter approach using the autocorrelation-based procedure (ABP). €) Angular acceleration estimate
from the proposed Automatic Segment Filtering Procedure (ASFP) with labels denoting the filter

cut-off frequency used for that segment of the raw signal.
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Figure Legends
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Figure 1- Schematic of a single filter approach and the proposed Automatic Segment Filtering
Procedure (ASFP) applied to angular motion signal from Dowling (1985). For the single filter
approach, the Autocorrelation-Based Procedure (ABP) determines a single filter cut-off frequency
and subsequently uses it to filter the noisy angular displacement signal. The ASFP computes the
signal Teager-Kaiser Energy Operator (TKEO) then uses three times its median absolute deviation
(MAD) to define time indexes of change points in the signal. The number of change points is
defined by n and the number of segments used, m, is equal to n + 1. Values {cof; , . . ., cofs }
represent the filter cut-off frequencies for each respective segment; angular displacement and
acceleration values with these as subscripts indicate the signal was originally filtered at this cut-
off frequency. N represents the last sample in the signal. The first step of the ASFP is depicted
graphically in Figure 2b and final results displayed in Figure 2c.

Figure 2- a) Raw angular displacement signal from Dowling (1985). b) Teager-Kaiser Energy
Operator (TKEO) of angular displacement signal using the Autocorrelation-Based Procedure
(ABP). Vertical lines in panels b through e indicate change points, defined as the intersection of
the TKEO with three times its median absolute deviation (3 x MAD). c¢) Criterion angular
acceleration signal published by Dowling (1985). d) Angular acceleration estimate from a single
filter approach using the autocorrelation-based procedure (ABP). €) Angular acceleration estimate
from the proposed Automatic Segment Filtering Procedure (ASFP) with labels denoting the filter

cut-off frequency used for that segment of the raw signal.
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