
Practical Private Shortest Path Computation Based
on Oblivious Storage

Dong Xie∗, Guanru Li∗, Bin Yao∗, Xuan Wei∗, Xiaokui Xiao†, Yunjun Gao‡, Minyi Guo∗,
∗Shanghai Key Laboratory of Scalable Computing and Systems, Shanghai Jiao Tong University, China

E-mail: {skyprophet@, lgr150@, yaobin@cs., wx1129@, guo-my@cs.}sjtu.edu.cn
†School of Computer Engineering, Nanyang Technological University, Singapore.

Email: xkxiao@ntu.edu.sg
‡College of Computer Science, Zhejiang University, China

Email: gaoyj@zju.edu.cn

Abstract—As location-based services (LBSs) become popular,
location-dependent queries have raised serious privacy concerns
since they may disclose sensitive information in query process-
ing. Among typical queries supported by LBSs, shortest path
queries may reveal information about not only current locations
of the clients, but also their potential destinations and travel
plans. Unfortunately, existing methods for private shortest path
computation suffer from issues of weak privacy property, low
performance or poor scalability. In this paper, we aim at a strong
privacy guarantee, where the adversary cannot infer almost
any information about the queries, with better performance
and scalability. To achieve this goal, we introduce a general
system model based on the concept of Oblivious Storage (OS),
which can deal with queries requiring strong privacy properties.
Furthermore, we propose a new oblivious shuffle algorithm to
optimize an existing OS scheme. By making trade-offs between
query performance, scalability and privacy properties, we design
different schemes for private shortest path computation. Even-
tually, we comprehensively evaluate our schemes upon real road
networks in a practical environment and show their efficiency.

Keywords—Data Privacy, Oblivious Storage, Shortest Path,
Road Network

I. INTRODUCTION

With the growing use of positioning system in mobile
devices, an expanding market for location based services
(LBSs) has been created. Clients of such services may use
their smart phones to get driving directions, to retrieve facilities
nearby (e.g. clinics, pharmacies and police stations) or to learn
social contacts close to them. However, location-dependent
queries raise serious privacy problems by revealing critical per-
sonal information on health status, shopping habits, etc. These
information might be tracked and misused by service providers
in many forms, such as commercial profiling, governmental
surveillance and intrusive advertising. In LBSs, a shortest
path query asks for the path with minimum cost between a
source s and a destination t in road networks. Unfortunately,
shortest path queries may disclose much more information (e.g.
potential destinations and travel plans of the clients) than other
LBSs queries (e.g. nearest neighbor queries).

In recent years, several solutions have been proposed to
address these privacy issues. However, all of them encounter
problems on weak privacy property, performance or scalability.
In particular, location obfuscation based methods [1] may
reveal information about query locations and shortest path

composition. Oblivious graph algorithms [2] suffers from low
performance and high space consumption. Currently, private
information retrieval (PIR) based solutions, CI and PI [3], are
the state of the arts of private shortest path computation. They
outsourced road network data to the server and only retrieve
useful information in query processing. Both of the solutions,
nevertheless, are inefficient and not scalable since they require
quadratic storage to the number of nodes and/or a large number
of costly PIR operations.

In this paper, we focus on developing efficient and privacy-
preserving solutions for shortest path queries. Specifically,
we employ the concept of oblivious storage (OS) [4], which
provides a general privacy model that not only guarantees
data confidentiality but also conceal data access patterns. With
the help of this model, we can process queries in a trusted
environment with useful data privately retrieved from untrusted
servers. However, to conceal access patterns, data stored in the
server need to be shuffled and re-encrypted periodically. This
leads to high amortized costs for I/Os. Thus, the performance
of an OS application would be heavily influenced by I/O
efficiency and storage capacity.

We design a new oblivious shuffle algorithm, Interleave
Buffer Shuffle (IBS), to optimize the OS scheme proposed in
[5]. This makes our data retrieval operations much faster than
that of the PIR protocol used in [3]. We also proposed two
schemes, Compact Key point Index (CKI) and Shortcut Passage
Index (SPI), for shortest path queries. By leveraging shortcuts
generated by Arterial Hierarchy (AH) [6] and adopting mod-
ified KD-tree as partitioning strategy, both schemes provide
much better performance and scalability than the state of the
art [3]. We also propose several novel optimizations on data
organizing and indexing.

In summary, our contributions lie mainly on the following
aspects:

• We design Interleave Buffer Shuffle (IBS) to optimize the
OS scheme proposed in [5].
• We develop specific schemes for shortest path queries,

which achieve much better performance and scalability
than the state of the art [3] with a strong privacy property
in practical scenarios.
• We enhance our schemes with novel optimizations on data

organizing and indexing.

• We conduct comprehensive experiments on real-world
road networks and assess trade offs between different
schemes.

The remainder of this paper is organized as following. We
first survey related works and techniques in Section II. Next,
we give a formal definition of the problem and describe our
system model in Section III. In Section IV, we present an
OS scheme with a new oblivious shuffle algorithm. Then, we
describe our scheme for private shortest path queries in Section
V and VI. Furthermore, we make discussion on providing
better privacy properties and several trade-offs for OS scheme
in Section VII. We show our experimental results in Section
VIII and conclude the paper in Section IX.

II. RELATED WORKS

In this section, we do a brief survey on classical shortest
path problem and existing solutions for private shortest path
computation based on different methodologies.
Shortest Path Queries on Road Networks: The typical
solution for finding shortest paths, Dijkstra’s algorithm [7],
is often inefficient on large road networks. To address this
problem, plenty of techniques have been proposed. Some of
them [8]–[11] pay more attention to the practical performance,
which can answer most shortest distance queries within several
milliseconds on a million-nodes road network [10]. However,
their performance against long distance queries may be not
good enough. Other solutions [12]–[15] focusing on theoretical
complexity are worst-case efficient, but they often require a
high preprocessing time and space overheads (e.g. Proposed
solution in [12] consumes about 1 GB space for a road network
with 105 nodes) .

Arterial Hierarchy (AH) [6] bridges theory and practice
together. On the theoretical side, AH answers any query in
Õ(k + logβ) time, where k is the number of nodes on the
shortest path, β = dmax/dmin, and dmax (dmin) is the largest
(smallest) distance between any two nodes in the road network.
On the practical side, it performs as the state of the art in terms
of query time with moderate space overhead.
Private Shortest Path Queries: The obfuscation method for
shortest path queries [1] introduces Obfuscator to the system
model, which is a trusted third-party mediator between clients
and the LBS. In this model, the client sends her shortest path
query from source s to destination t to the Obfuscator. The
Obfuscator extends s and t with a number of fakes to obfus-
cation sets S and T . These two sets are sent to the LBS with all
pairs from S×T treated as queries. After receiving candidate
paths from the LBS, the Obfuscator figures out the real answer
and sends it back to the client. According to [1], to improve
the performance, decoy sources and destinations should be
chosen close to s and t. Obviously, obfuscation method reveals
information about queries since the LBS provider knows that
the real source and destination is in a small set and has a rough
idea of their positions. Besides, this method discloses strong
clues about the length and composition of the shortest paths
as all query pairs proceeded would have similar length and
potentially share plenty of edges.

Data-oblivious graph algorithms [2] are proposed to solve
such information leakage. These algorithms will execute the
same sequence of instructions and generates indistinguishable

data access patterns for any inputs of the same length. In
[2], several data-oblivious graph algorithms, including that
for single source shortest paths (SSSP), have been proposed.
However, this algorithm needs the graph structure stored in an
adjacent matrix, which directly causes problems on scalability.
Moreover, computation cost of the data oblivious SSSP algo-
rithm is at the scale of O(|V |2), which is also not suitable for
large graphs.

Another approach to address this problem is the PIR-based
solution [3]. PIR is a primitive operation for retrieving data
from a server while the server can hardly learn which item is
retrieved. PIR offers cryptographic privacy guarantees based on
the reductions of problems that are computationally infeasible
or theoretically impossible to solve. Traditional PIR protocols
involve considerable computation and/or communication over-
heads on sizable datasets. Towards the practicality of PIR,
[16] raises a hardware-aided PIR protocol by introducing an
off-the-shelf hardware secured co-processor(SCP). With the
help of this protocol, [3] constructs two schemes, CI and
PI, for shortest path queries. However, their overheads on
preprocessing and auxiliary space are also unacceptable for
big road networks.

Recently, Samanthula et al. propose a privacy-preserving
protocol for shortest path discovery [17] based on a Dijkstra-
like algorithm. However, it requires several minutes to answer
a shortest path query over a small graph of 5000 vertices. In
addition, related to the private shortest path query problem,
an approach to answer approximate shortest distance queries
using encrypted distance oracles has been proposed in [18].

III. PROBLEM FORMULATION AND SYSTEM MODEL

In this section, we formally define shortest path queries
and our privacy objective. Moreover, we show an overview of
our system model and its designing paradigm.
Shortest Path Query: Let G = (V,E) be a weighted graph
which represents a road network. Each node v ∈ V is located
in Euclidean space with coordinates, and each edge e ∈ E is
associated with a positive weight w(e). A path P (s, t) where
s, t ∈ V is a sequence of edges e1, e2, · · · , en starting with s
and ending with t. The cost of a path is defined as the sum
of edge weight on it. A shortest path query SP (s, t) is asking
for a path from s to t with the least cost.
System Model: We propose a general system model for pri-
vacy sensitive applications, which consists of three components
as following:

• Outsourcing Storage. An outsourcing storage provides
a general key-value storage service (e.g. Amazon S3),
where users can store massive data and only retrieve
useful data needed by applications.
• OS Handler. Generally, data are encrypted for confiden-

tiality. However, information can still be leaked from ac-
cess patterns. To obfuscate the access patterns, we employ
the conception of Oblivious Storage (OS). OS handler
is an instance of OS mechanism, which provides an
interface between the application and outsourcing storage
that secures the access patterns from leaking information
to the service provider of outsourcing storage.
• Application. The application part contains execution

logic designed for answering queries issued by clients. It

Application OS Handler
Outsourcing
Storage

Adversary View

Query
Stream

Answer
Stream

Fig. 1. Overview of the System Model

will run in a trusted environment. When receiving a query,
the application will retrieve useful data from outsourcing
storage through OS handler, compute the result and reply
to the client.

Designing Paradigm: Although simple to apply such system
model to any application, it is not free to use. Since OS will
introduce non-trivial I/O overheads, we have to make applica-
tions I/O efficient so as to achieve a reasonable performance.
In addition, the performance of OS Handler is also influenced
by the total amount of outsourced data. This requires us to
make outsourced data compact and wisely indexed. Another
important observation is that the application should be light
in computation since secured devices (personal computers,
mobile phones or secure co-processors) only have limited
computation power.
Adversary: The adversary in our model is the service provider
of outsourcing storage with polynomial bounded computa-
tional power. We assume that it has identity information of
clients and can extract access patterns for a specific application.
It is free for the adversary to have knowledge of the whole
privacy mechanism. The adversary is curious but not malicious,
i.e., it wishes to gain information from clients’ queries, yet it
would always process requests correctly.
Privacy Objective: Our goal is to prevent the adversary from
learning anything other than the length of access patterns from
its view. Note that, as many other works [19], [20], we do not
consider information leakage through the timing channel, such
as when or how frequently the client makes requests. In the
rest of this paper, we term this privacy objective as Strong
Query Privacy.

Note that an OS mechanism guarantees that the adversary
should be unable to distinguish any two possible access
patterns of the same length. Along with the confidentiality
provided by encryption, it is obvious that our system model
satisfies strong query privacy. In addition, our work can be
extended to achieve stronger privacy properties (to hide the
length of access patterns as well), which will be discussed in
Section VII.

IV. OBLIVIOUS STORAGE

In this section, we will introduce Oblivious Storage in
details and explain how we choose appropriate OS scheme for
our system model. Furthermore, we propose a new oblivious
shuffle algorithm, Interleave Buffer Shuffle (IBS), to improve
the performance and fix privacy issues of existing work [5].

A. OS Model

The conception of Oblivious Storage (OS) was first pro-
posed in [4] as a practical approach of Oblivious RAM
(ORAM) [22]. ORAM is a general model for the scenario

when CPU has to access data stored in an untrusted RAM.
Based on this original model, OS introduces application as
a system component and relax the limits on client memory
from O(1) to a sub-linear scale. In recent years, as OS has
stronger privacy objectives and more reasonable restrictions,
term ORAM is also used to refer to oblivious storage as well.

Formally, in OS model, clients store their data outsourced
and wish to keep the data private while running applications.
Though traditional encryption schemes provide confidential-
ity, they cannot prevent information leakage through access
patterns. To solve this, OS stores and fetches data in atomic
units (referred as blocks). Note that we have to make all blocks
the same size. Otherwise, the adversary can distinguish them
easily by their sizes. In addition, each block is associated with
an unique identifier. We pack a block and its identifier as an
item. Throughout this paper, we use notation N to denote the
total number of items that OS needs to support, which we refer
as capacity.

From the perspective of architecture, OS model consists of
a Server and a Client. Server, also referred as outsourcing
storage in Figure 1, is a general key-value storage service
providing following basic operations:

• get(k): Return the value of the item with key k.
• put(k, v): If the server contains an item with key k, then

replace its value with v. Otherwise, add a new item (k, v)
to the server.

• getRange(k1, k2, p): Return the first p items in the server
with keys in range [k1, k2]. If there are fewer than p such
items, then all of them are returned.

• delRange(k1, k2): Remove all items with keys in the
range [k1, k2] from the server.

Client, also referred as OS handler in Figure 1, holds
a small amount of private memory where the client can
perform computations protected from the server. In original OS
model, client may pose two operations, get(k) and put(k, v),
to retrieve or update items. In this paper, we only consider
get(k) operations that will never return null (we call it a no-
miss assumption). We do this since it is the only requirement
for supporting our upper-level applications (i.e. shortest path
queries). In fact, our OS scheme described later can be easily
extended to a miss-tolerant version and support put(k, v)
operations with techniques introduced in [5].
Privacy. The main goal of OS is to hide access patterns. In
this paper, we adopt the same privacy definition as [5], which
consists of two aspects:

• Confidentiality. The adversary should not be able to
know the contents of each item.

• Hardness of Correlation. The adversary should be un-
able to distinguish any two access patterns of the same
length.

B. Choice of OS Schemes

In the past decades, numbers of OS schemes are proposed
to protect user’s access patterns. We roughly classify them into
two categories based on their data lookup techniques:
Shuffle based OS schemes: [22] proposes two basic OS con-
structions: square-root solution and hierarchical solution. Both

TABLE I. COMPARISON OF PERFORMANCE

Model Operation Performance Storage Failure
Online Amortized Client Server Probability

IBS OS O(1) O(
√
N/α) O(α

√
N) N +

√
N No Failure

Practical OS [5] O(1) O(
√
N) O(

√
N) N +

√
N o(1)

Usable PIR [16] O(log4N ∗ logN) O(log4N ∗ logN) O(
√
N) ≥ 4N Negligible1

Path-ORAM2[20] O(
log2N

log (Z/ logN)
) O(

log2N

log (Z/ logN)
) O(logN · Z) · ω(1) 16NZ N−ω(1)

1 The probability of failure is bounded by (e
b
)b m

1−e/b
, where b = logN and 2 logN ≤ m ≤ log7N [21].

2 Z is the size of each block and ω(1) is a security parameter [20].

of them make use of server-end dummies and data shuffling
to achieve privacy properties. Based on these constructions,
plenty of schemes [4], [5], [16], [19], [23] have been proposed.
Index based OS schemes: In this category of schemes [20],
an index structure is used for data lookup. Thus, it requires
storing such index in client’s memory. When the client memory
cannot afford to store the index, it can be outsourced to the
server in a similar way as data blocks at the cost of increased
communication overhead.

Shuffle based OS schemes normally organize server storage
in one or several layers. To protect user’s privacy, they shuf-
fle data blocks and dummies around the layers periodically.
Schemes based on square root solutions [5], [22] take simple
one-layer constructions, which helps them provide the lowest
online latency and the least server-side storage consumption.
However, they suffer from long system unavailable time caused
by full data shuffles. To solve this problem, schemes based on
hierarchical solutions [4], [19], [21] delay full data shuffles
by introducing more layers and shuffle data between them.
Nevertheless, complex storage structure and more frequent
(partial) shuffles make these schemes need more server-end
storage and get slower in online latency. Note that PIR protocol
[16] adopted in [3] actually rests on a hierarchical solution
based OS scheme.

The representative of index based OS schemes is Path-
ORAM [20]. In Path-ORAM, the server-side storage is orga-
nized as a binary tree where each node contains a constant-size
bucket for storing data. A data query will retrieve all blocks on
the path which contains the query target, push them into client
memory and then put another group of blocks back to the tree.
Unlike shuffle based schemes, Path-ORAM have no system
unavailable time as it does not involve data shuffles. Though
its communication cost is acceptable in practice, overheads on
server-side storage may pose as a big cost to the user.

Note that there are several works [24], [25] focus on OS
schemes for secured multi-party computation (SMC), where
several parties jointly perform a computation task on their
private data such that all parties can obtain the computation
result, but no party can learn the data from another party.
Nevertheless, we employ OS under an outsourcing storage
setting, thus such OS schemes are not suitable to our problem.
Table I compares several OS schemes theoretically on query
performance, storage consumption and failure probability. (IBS
OS is the optimized OS scheme we introduce in this paper)
We also conduct an experiment in Section VIII-A to show the
performance of different schemes in practice.

As shown in Table I, IBS OS has the best online operation
performance and the least server-side storage consumption.

The main drawback is that it may cause a non-trivial system
unavailable time periodically after numbers of operations. And
it is only acceptable (within few seconds) when the capacity
is not huge. In contrast, Path-ORAM does not involve any
system unavailable time and has moderate online performance.
Nevertheless, it requires much more server-side storage than
other schemes. Note that the schemes to be introduced in V
and VI for shortest path queries can work easily with any
OS schemes. Thus, depending on the scale of the application,
we make choices between IBS OS and Path-ORAM. If the
size of outsourced data is moderate, IBS OS is the best
choice. Otherwise, we pick Path-ORAM for its worst-case
performance guarantee.

C. Square-Root Solution

Before we introduce our new data shuffle algorithm, we
briefly describe the construction of a square-root solution. This
OS construction framework requires the client has a memory
size of M =

√
N blocks at least. In fact, the client may holds

more available memory. We can take this into consideration
by using a notation α so that the size of client memory can be
denoted as αM . (A typical value for α is 10 [5], [16], [26].)

Initially, the client encrypts and stores N original items
and αM dummy items to the server. Note that we need to
assign identifiers for each dummy item as well. We denote
them as −1,−2, · · · ,−αM for convenience. For the sake of
obliviousness, each item (i, b) is mapped to a substitute key
using a pseudo-random hash function hr, where r is a secret
random nonce chosen by the client. Besides, each block b
is encrypted as EnSK(b), where En is a general encryption
function with a secret key SK only known by the client. Thus,
each item (i, b) will finally be stored as a new key-value pair
(hr(i), EnSK(b)) in the server.

When performing get(i), the client first searches her own
memory for an item with the identifier i. If she does not
find one, she would request the item from the server by
committing a request get(hr(i)). Note that the server will
always return an item (hr(i), EnSK(b)) since we are under
a no-miss assumption. Next, the client decrypts EnSK(b) to
get the block b and pushes the item (i, b) into the memory. On
the other hand, if the client finds the item in her memory, she
takes that item and issues a dummy request get(hr(−j)) to the
server, where j is a counter for next dummy key. In this case,
when the item returns, the client would insert that dummy item
into memory as well. Therefore, from the adversary view, the
client is always requesting a distinct item with a random key.

After performing αM accesses, the client memory will be
full. Then, the client blocks her requests temporarily and enters

a rebuilding phase. In the rebuilding phase, the client first
cleans up its memory and sets counter j back to 1. Next, she
shuffles the data in the server using her own private memory.
During the data shuffle, the client will choose a new random
nonce r′ and another secret key SK ′ to encrypt each item
(i, b) into a new version (hr′(i), EnSK′(b)). As soon as the
rebuilding phase is finished, the client can continue to access
next αM items.

As the key technique to achieve Hardness of Correlation,
data shuffle procedure should prevent the server from tracking
any item. We can formulate this requirement as below:

Definition 1 (Oblivious Shuffle) If a procedure generates a
uniformly random permutation of K items while the adversary
is unable to track any item during the process, we call such
procedure an oblivious shuffle.

Since oblivious shuffle will significantly affect the per-
formance of OS schemes, large numbers of works [4], [5],
[16], [27] have put efforts on designing efficient algorithms.
[5] proposes Buffer Shuffle Method (BSM), which achieves
linear computation (and communication) complexity. However,
it may cause information leakage with a small probability,
namely o(1). To address this privacy issue, we design Inter-
leaved Buffer Shuffle, which achieves a better performance as
well.

D. Interleaved Buffer Shuffle

Interleaved Buffer Shuffle (IBS) is an oblivious shuffle
algorithm requiring private memory of size O(

√
K). This

algorithm can be stated in three stages:
Padding. To shuffle K items, we first insert several padding
items to the original sequence so as to extend its length to the
nearest square number T 2 (i.e. T = d

√
Ke).

Permuting. Permuting stage will generate a random permuta-
tion of T 2 items coming from the padding stage, as shown in
Algorithm 1.

In this algorithm, we first randomly permute each T
items and map them to T different sets. After first round of
permutation, each set would have T items from T different
original groups. Then, we permute items in each set once more
to get the final result.

We choose the modern version of Fisher-Yates shuffle [28]
in step 5 and step 16, which can generate a random permutation
of T items in O(T) time. Besides, since the server can track
the items by their contents, we also need to re-encrypt each
item before putting it back to the server.

Lemma 1 Procedure permuting() generates a uniformly ran-
dom permutation of T 2 items for any integer T .

Proof: For convenience, we define step 1 - step 11 of
Algorithm 1 as round 1 and step 12 - step 22 as round 2,
and let A0 denotes the original order of T 2 items and A1, A2

denotes the order after round 1 and round 2 respectively.

To proof this lemma, we only need to show that ∀1 ≤ i ≤
T 2, 1 ≤ j ≤ T 2, Prob((A0)i = (A2)j) = 1/T 2.

Algorithm 1: permuting()
1: generate a new random nonce r′ and secret key SK ′.
2: for i = 1→ T do
3: retrieve T items by getRange().
4: delete the returned items by delRange().
5: generate a random permutation P of the T items.
6: for j = 1→ T do
7: re-encrypt item Pj with r′ and SK ′.
8: bound a prefix “j :” to item Pj .
9: put item Pj back to the server.

10: end for
11: end for
12: generate a new random nonce r′′ and secret key SK ′′.
13: for i = 1→ T do
14: get items with prefix “i :” by getRange().
15: delete the returned items by delRange().
16: generate a random permutation P of the T items.
17: for j = 1→ T do
18: remove the prefix of item Pj .
19: re-encrypt item Pj with r′′ and SK ′′.
20: put item Pj back to the server.
21: end for
22: end for

For any item (A0)i in A0, after round 1, there are T
possible locations across T different sets in A1 where each
location has a probability of 1/T . Note that, during round
2, each set in A1 is operated independently with each other.
Namely, each possible location of (A0)i in A1 is permuted in
another universe of T items, which results in ∀1 ≤ i ≤ T 2, 1 ≤
j ≤ T 2, P rob((A0)i = (A2)j) = 1/T × 1/T = 1/T 2.
De-padding. After the permuting stage, the client asks the
server to delete the padding items so as to get the final result.
To show this is a random permutation of the original items,
we introduce the following lemma.

Lemma 2 Suppose permutation B1 has K+P items in which
P items forms set D. If B2 is a random permutation of B1,
B2\D is a random permutation of B1\D.

Proof: As B2 is a random permutation of B1, we have
Prob(B2) =

1
(K+P)! . Taking out P items of set D, the new

permutation B2\D has probability Prob(B2\D) =
P !CK

K+P

(K+P)! =
1
K! to appear in all permutations of B1\D.

Theorem 1 Interleaved Buffer Shuffle is an oblivious shuffle.

Proof: According to Lemma 1 and Lemma 2, IBS gen-
erates a uniformly random permutation of K items for any
integer K, which means the adversary cannot track an item
by location. Combined with the fact that each item is unable
to be identified by its content because of re-encryption, IBS
satisfies Definition 1.
Analysis on IBS. To shuffle K items with IBS, we need an
additional server storage of size O(

√
K) and a client memory

of size O(
√
K). As to the computation (and communication)

cost, IBS is obvious linear to the number of the items.
Comparison with BSM. Buffer Shuffle Method (BSM) also

works in several rounds like IBS. In each round, BSM retrieves
all data by groups, shuffles retrieved data within each group
and puts them back to the sever, just as how IBS works.
The difference is that BSM does not map data from one
group to different groups for the next round. Such difference
makes BSM cannot generate random permutations with equal
probabilities. By the proof from [5], with probability 1− o(1)
after 4 passes, one cannot guess the location of an initial key-
value pair with probability greater than 1/K+o(1/K), where
K is the number of items to be permuted.

Recall that IBS only needs to retrieve and put back each
item 2 times whereas BSM needs 4 at least to bound fail
probability within o(1). Moreover, IBS provides a theoretical
provable oblivious property. In contrast, although increasing
round number can reduce the probability of information leak-
age, BMS cannot achieve perfect oblivious property in a
limited number of rounds.
Analysis on OS Scheme. By applying IBS to the square-root
solution, we now have a full implementation of our OS scheme
(termed as IBS OS). In the following, we analyze this scheme
from the aspects of space consumption, computation overhead
and privacy guarantee.

Space Consumption: In order to construct a square-root
solution, the server needs to hold at least K = N + αM
items. Moreover, as required by IBS, we need to insert
additional items to extend K to its nearest square number T 2.
Mathematically, the maximum number of padding items used
in IBS is Pmax = T 2−(T −1)2−1 = 2d

√
Ke−2. Therefore,

to build an oblivious storage of capacity N , our OS scheme
requires O(N +

√
N) space in the server and O(

√
N) on the

client side.

Computation Overhead: For each online request of OS,
our scheme only needs to retrieve one item. Taking the
rebuilding phase into consideration, amortized overhead for
each request is O(

√
N/α) as the cost for IBS is O(N).

Note that the OS service would be unavailable when it is
in the rebuilding phase, which may be not that trivial as N
grows. To handle this, we can adopt techniques like replicas
into our scheme to cut down such unavailable time. We will
discuss this in Section VII.

Privacy Guarantee: With IBS, we can prove our scheme
guarantees the privacy objectives required by the OS model.

Theorem 2 Our OS scheme with Interleaved Buffer Shuffle is
a privacy-preserving Oblivious Storage implementation.

Proof: Apparently, Confidentiality is guaranteed by the
encryption.

For Hardness of Correlation, suppose a sequence of data
accesses get(hr(i1)), get(hr(i2)) ... get(hr(in)) is observed.
We just need to prove the probability that the adversary can
figure out sequence i1, i2 · · · in is 1/Kn. According to Theo-
rem 1, the adversary is unable to track any item after a shuffle
process. Together with the facts that all requests between two
shuffles are distinct and items cannot be recognized by their
encrypted contents, we can conclude that the adversary can
only identify the requested item correctly with a probability
of 1/K. Hence, all possible access sequences of length n can

v1

v2

v3

v4

v5

v6

v7

v8v9
v10

v11

edge weight = 2

edge weight = 1

(a) Road network G.

level 2

level 1

level 0
v1

v2
v3

v4
v5

v6

v7

v8
v9

v10
v11

(b) Node hierarchy H .

Fig. 2. AH Overview [6]

be deduced by the adversary with the same probability 1/Kn.

V. COMPACT KEY POINT INDEX

With the provable privacy properties guaranteed by the
OS model, we can now start designing schemes for shortest
path computation based on the system model and its designing
paradigm described in Section III.

[3] proposes two schemes, CI and PI, based on a hardware-
aided PIR protocol. Since they share similar challenges in
scheme designing with ours, a simple solution is to apply their
schemes directly to our system model. Nevertheless, both of
their schemes have problems in prohibitive communication or
storage cost over large road networks. CI requires too many
block retrievals for a single shortest path query, while PI
involves huge storage overheads. Besides, both of them have
very long preprocessing time. To address these problems, we
develop two new schemes, CKI and SPI, which need fair num-
bers of I/Os and moderate storage overheads. Moreover, our
preprocessing overhead is reasonable for large road networks.

In this section, we will describe our first scheme, Compact
Key point Index (CKI), which aims at minimizing outsourced
data size while achieving a reasonable low query latency. CKI
leverages shortcuts generated by an index structure, Arterial
Hierarchy (AH) [6], to reduce block retrievals. Road network
data and its AH index are partitioned into data blocks and
then outsourced to the server. While answering shortest path
queries, CKI does Dijkstra-like traversals on the AH index
with required data blocks retrieved through the OS handler.

A. Overview of AH

AH [6] is an index structure designed for answering
shortest path queries over road networks. It performs as the
state of the art in terms of query time with moderate space
overheads and preprocessing time. AH introduces the concept
of arterial edge to select important edges and nodes from
the road network. By applying this concept, AH assigns a
level to each node, where nodes with higher level are of more
importance. Based on these levels, AH generates shortcuts to
speed up query processing. Specifically, a shortcut 〈u,v〉 is
created if the shortest path from u to v only passes through
nodes whose levels are lower than both u’s and v’s. In addition,
each shortcut 〈u,v〉 is associated with a key point w, where w
is on the shortest path from u to v and the length of 〈u,v〉
equals the sum lengths of 〈u,w〉 and 〈w,v〉 (〈u,w〉 or 〈w,v〉
can be a shortcut or an edge).

For example, we have the road network G as shown in
Figure 2(a). AH constructs a three-level hierarchy H as shown
in Figure 2(b), where each level contains a disjoint subset of
the nodes. H includes not only all edges, but also two shortcuts,
〈v9,v10〉 and 〈v10,v11〉. Length of each shortcut equals to that
of the original shortest path between two ends.

To find shortest paths on this index, we can perform
two Dijkstra-like traversals starting at the source and the
destination. During the traversal, we could always avoid trav-
eling from a higher-level node to a lower-level node while
maintaining the correctness of the algorithm. For instance, to
answer query SP (v1, v10), we should start two traversals from
v1 and v10. In particular, v1 can only reach v10 and v11, since
(i) v11 is the only node adjacent to v1, and (ii) we could only
traverse to a non-lower-level node v10 from v11. We get the
shortest path as soon as two traversals meet. Recall that every
shortcut 〈u,v〉 is associated with a key point w. Hence, the
original shortest path in G can be constructed by recursively
replacing each shortcut 〈u,v〉 by its corresponding two-hop
path 〈u,w〉 and 〈w,v〉.

B. Data Partitioning

Though AH outperforms most alternatives in terms of
query time, it is a memory-based index and does not care about
how to format itself into fix-sized data blocks for I/O efficiency.
As a result, we cannot apply AH directly to our system model.
To build our scheme, we need to design partitioning strategies
for road network data and its AH index.

Recalling the designing paradigm proposed in Section
III, outsourced data should be compact and wisely indexed.
This requires us making full use of each data block. More
importantly, partitioning strategy should be friendly to query
processing. In particular, it is better to put adjacent nodes in
the same block to minimize the number of retrieved blocks.
Last but not least, partitioning information (i.e. how we split
the data) is expected to be concise since we want to keep
them locally with the application. In CKI, we adopt a modified
2-dimensional KD-tree as our partitioning strategy. Nodes
of the road network are clustered naturally with KD-tree.
Furthermore, partitioning information only contains splitting
coordinates which is tiny and easy to be kept locally.

A KD-tree partitions the whole space by spatial coordi-
nates. Each KD-tree leaf is mapped to a spatial region and
holds all nodes of the road network within it. Initially, there is
only one leaf mapped to the whole space. Each time, we find
a split line to split one leaf into two leaves of even size. To
say the size of a leaf, we mean the total amount of essential
information (including their coordinates, AH levels, adjacent
edges, etc.) carried by the nodes in it. For example, in Figure
3, the KD-tree is constructed with split lines x = 4 (the first
splitting coordinate), y = 5 and y = 6 (the second splitting
coordinates in left and right children), etc. We keep splitting
the leaves until the size of each leaf is no more than the block
size (chosen by the user). If a leaf only contains one node,
we stop splitting it as well. Finally, each leaf contains a set of
nodes and is assigned to a data block. Note that, a node may
carry large amount of information that cannot be fitted in a
single block since we are also storing shortcuts. In that case,
we simply assign two or more blocks to it.

x

y

10

2.5 7

5

2 4 6

6

Fig. 3. KD-tree partitioning

KD-tree can organize road network data and its AH in-
dex into fixed-size blocks indeed, yet it also cause serious
problems on low block space utilization. We observe from
the experiment (in Section VIII-C) that simply adopting KD-
Tree leaves about 20%-40% block space unused. To solve this
problem, we modify the construction of KD-tree by changing
splitting mechanism and merging small blocks together. This
effectively increases the utility of data block space. Besides,
level information generated by AH index also helps us to
achieve better partitioning locality. We leave the details of
these optimizations in Section V-D.

Recall that AH constructs the final answer recursively
by replacing each shortcut with its corresponding two-hop
path. If we put key points along with the shortcuts, we
have to retrieve all blocks that contain nodes of the original
shortest path. Unfortunately, most information carried by these
blocks is useless. In addition, more information carried by
a node potentially means less nodes in a single block. As
a consequence, more blocks are required for a query, which
would eventually pose a big impact on performance. Since the
procedure of building original shortest path is completely inde-
pendent of Dijkstra-like traversals, we pick all key points out
and partition them with KD-tree separately to avoid retrieving
useless information.

After partitioning, road network data and its AH index are
separated into following parts:

Road Network Data (Fd). Fd contains road network data
and all shortcuts generated by AH. Edges and shortcuts are
clustered according to their source nodes. For each edge or
shortcut 〈u,v〉, Fd stores (i) v and its AH level, (ii) edge weight
and (iii) spatial coordinates of v. We employ modified KD-tree
to partition this part of data to fixed-size blocks.

Key Point Data (Fk). For each shortcut 〈u,v〉, Fk stores its
key point w and which block contains w in Fk. Key point data
are partitioned with modified KD-tree as well so that they are
clustered according to shortcuts’ source node.

Header (Fh). Header holds the partitioning information which
guides CKI to fetch required data from Fd and Fk. It also
contains global information like the number of nodes and edges
in the road network.

As to the location of these data, Fd and Fk are outsourced
by the OS scheme, while Fh are kept locally with the appli-
cation.

C. Query Processing

Given source s, destination t and their coordinates as a
shortest path query, CKI first constructs a shortest path with
both edges and shortcuts based on data retrieved from Fd. CKI
first figures out which blocks in Fd contain s and t by looking
up Fh. Then, we fetch found blocks through OS handler
and start performing two Dijkstra-like traversals concurrently
starting from s and t. During the traversal process, if any
information cannot be found locally, the block containing it
will be fetched by OS handler. Note that CKI would not go to
a lower-level node due to the property of AH index, which
greatly reduces the amount of nodes we need to try. Two
traversals stop as soon as they meet and a shortest path (with
shortcuts) is found.

The remaining part is to recursively replace shortcuts by
their original shortest paths based on data from Fk. For each
shortcut 〈u,v〉, CKI first gets which block containing u in Fk

by looking up Fh with u’s coordinates. Then, CKI fetches
that block and get the key point w of the shortcut. Such block
will also provide which block in Fk contains w. Thus, it can
continue to replace 〈u,w〉 and 〈w,v〉 recursively.

D. Optimizations

In this section, we show our optimizations for reducing
storage consumption and enhancing query performance.
Small blocks combination: As mentioned in Section V-B,
we choose KD-tree as our partitioning technique. However,
simply adopting KD-tree leads to low block space utilization
(around 60%). The reason is that we need to assign exactly
one block size (denoted by B) to each leaf. However, there
might be leaves with size much smaller than B, leaving most
block space unused.

To address this issue, an intuitive method is to merge sev-
eral low utilized blocks together into one block. We propose a
simple greedy algorithm to do this. Assume n blocks b1, ..., bn
are sorted by their information size in ascending order and
the pointer p has an initial value n. Consider b1, ..., bn in
ascending order of their subscripts: for each bi, we find the
biggest j ≤ p such that the sum size of bi and bj does not
exceed the block size B, then set p = j and merge bi into bp.
If we cannot find such j, no blocks can be combined and the
algorithm terminates. If a leaf with size L cannot fit in one
block (L > B), we simply regard it as a leaf of size r = (L
mod B) and run the same algorithm.
Unbalanced partitioning: Normally, KD-tree only splits a
leaf equally. Thus, most leaves are more than 50% utilized.
However, only blocks with utilization under 50% can be
optimized by small blocks combination. In order to enhance
its effect, we construct a KD-tree with unbalanced leaves.

Suppose we have a leaf of size S ∈ (B, 2B] and we want
to find a split line to split it into two leaves. Without loss
of generality, we assume this line is vertical and the road
network nodes in that leaf (a1, ..., an) are sorted according
to their horizontal coordinates. In a standard KD-tree, split is
made at the biggest i where the summed size from a1 to ai is
less than S/2. All nodes to the left of ai (including ai) form
the left child and the rest form the right child. In unbalanced
partitioning, we change the splitting point to the biggest i so

that the summed size from a1 to ai is less than B. This will
produce a leaf of size close to B and another close to S −B.
With a higher probability, some blocks with utilization under
50% will be generated.

Unbalanced partitioning itself does not affect space con-
sumption since the number of blocks remains unaltered. But it
is powerful when cooperating with small block combination.
Combining these two optimizations effectively reduces gener-
ated data size by nearly 20% as shown in our experiments (see
Figure 6) .
Hierarchical partitioning: In addition, we propose an op-
timized partitioning mechanism for road network data Fd.
The main idea rests on the following observation: during the
traversal, we always avoid traveling from high levels to low
levels. As a consequence, we do not need the information
about low-level neighbors of a node. Therefore, instead of
partitioning entire road network together, we partition nodes
on each level separately and integrate them into Fd.

Hierarchical partitioning is powerful against long distance
queries. Since processing such queries usually needs more
exploration in high levels, this optimization can help us avoid
retrieving useless low-level nodes in query processing. Experi-
mental results (Figure 6) show that this optimization decreases
the number of retrieved blocks and query latency for long
distance queries by 20%.

VI. SHORTCUT PASSAGE INDEX

CKI achieves a moderate space consumption according to
our experiments (see Figure 5(a)). In addition, it can find a
shortest path with shortcuts in very few steps, which makes
it appealing for shortest distance queries. Nevertheless, CKI
faces the problem that some shortcuts may correlate to nodes
spanning over a huge amount of Fk blocks when recursively
constructing the original shortest path. Fetching all these
blocks poses a considerable impact on query latency. Shortcut
Passage Index (SPI) is proposed to address this problem. With
additional space consumptions, SPI is able to retrieve only one
block in average for the reconstruction of a shortcut.

In SPI, data in Fd and its partitioning information in
Fh remain unmodified, but Fk is substituted by the shortcut
passage data Fp:
Shortcut Passage Data(Fp): SPI pre-computes original paths
of all shortcuts and stores them in Fp. In other words, Fp keeps
a list of nodes a1, a2, ..., an for each shortcut 〈u,v〉 where path
(u, a1, ..., an, v) is a shortest path from u to v in original road
network. With the help of Fp, SPI can directly replace each
shortcut by its original path rather than constructs the path
recursively with key points.

It is obvious that KD-tree is no longer suitable for Fp since
we do not need to keep locality when indexing these shortcuts.
Moreover, low space utilization of KD-tree will result in a large
space consumption. Thus, we assign each shortcut to a block
and then run the greedy algorithm described in small blocks
combination. By our experiments, such algorithm gives us a
space utilization more than 95%, which is much higher than
that of KD-tree.

Note that Fh grows into a considerable size because
the greedy algorithm does not provide a concise partitioning

information. To solve this problem, we store the partitioning
information of Fp inside Fd. Specifically, we insert an iden-
tifier i to each shortcut stored in Fd, where i identifies the
Fp block where we can find the original path of that shortcut.
Hence, the partitioning information of Fp can be omitted from
Fh.

Obviously, OS capacity required in SPI is much larger
than that of CKI. As a result, I/O cost to fetch a data block
through OS handler becomes higher. Nevertheless, SPI has
better performance in terms of query performance, especially
on online query latency, for long distance queries.

VII. DISCUSSION

Further improvement on privacy. In Section III, we defined
our privacy objectives with regardless of access pattern length
and information leakage through timing channel. When these
assumptions do not hold, the adversary would be able to learn
some information (e.g. result length) about the queries.

To prevent such information leakage, we can extend our
scheme by padding all possible access patterns through OS
handler to the same length. Specifically, we denote this length
as a padding goal PG. If a query only requires cnt blocks
(cnt < PG) during its process, we need to issue another PG−
cnt dummy block requests. Combining with this method, our
schemes guarantee that each query would always ask for the
same number of blocks from the view of adversaries.

Obviously, PG should be large enough to support every
possible query. In Section VIII-E, we employ the most straight-
forward way to find one, which is to pre-compute shortest
paths for all possible {source, destination} pairs and set the
maximum number of block retrievals as PG.

We can also fix this problem, to some extent, by randomly
issuing several dummy block requests after query processing.
Though such method cannot achieve perfect privacy as padding
access patterns to a padding goal, it is more light-weighted and
gives better performance.

As to the problem on timing channel, existing work [29]
provides mechanisms for bounding OS timing channel leakage
to a user-controllable limit.
Tradeoffs on OS Schemes. Recall that there is a rebuilding
phase in the construction of IBS OS, which will cause system
unavailable for a period of time. As the capacity of OS
increases, this unavailable time will become non-trivial.

Many works [4], [19], [30] have conducted study on
background shuffling and eviction in OS construction using
techniques like piggy-backed eviction or choosing a propor-
tional shuffle rate to data accesses. These works amortize
shuffle overhead upon online request latencies. If we want to
keep the dominate online performance of IBS OS, we can
introduce several replicas dealing with requests in turn while
others are in their rebuilding phases. This is the most direct
method to cut off system unavailable time without sacrificing
any performance on online latency, while the drawback is that
it requires more resources on both server and client.

VIII. EXPERIMENT

In this section, we evaluate our proposed schemes in
practice. All our experiments are conducted between two

TABLE II. DATASET CHARACTERISTICS

Name Corresponding Region Number of Nodes Number of Edges
SCA California (small) 21048 43386
DE Delaware 48812 119004
VT Vermont 95671 209286
NA North America 175813 358204
CO Colorado 435666 1042400
FL Florida 1070376 2687902
CA California 1595557 3919120
TX Texas 2037133 5061230

machines (server and client) connected to a 100Mbps LAN.
The server is a 64-bit Windows workstation with an 8-core
Intel E5-2643 processor and 64GB RAM. It hosts an instance
of MongoDB as outsourcing storage service. The client, a PC
with Intel Q8400 CPU and 4GB RAM, hosts the application
and the OS handler. All preprocessing are done by the server.

We adopt SHA-256 and AES/CFB from Crypto++ Library
[31] as our hash function and encryption function respectively
in all implemented OS schemes. We take 4KB as the block
size, use a key length of 128 bits for AES encryption, and set
α (defined in the square-root construction) to 10. Thanks to
the authors of [3], we obtain the original implementation of
CI and PI.

All datasets used in our experiments are shown in Table
II. These datasets, each of which corresponds to a part of real
road network, are available at [32], [33]. Following previous
work [6], [12], we generate ten sets of shortest path queries
Q0, Q1, ..., Q9 for each dataset, where Qi contains 1000 pairs
of (s, t) as queries and the shortest distances for each query
are between 2i−10lmax and 2i−9lmax. (lmax is the maximum
distance of any two nodes in the dataset.)

The remainder of this section is organized as following:
We first conduct an experiment to examine our choice on OS
schemes in Section VIII-A. Then, we evaluate storage and
preprocessing overheads of both our schemes and the state
of the art [3] in Section VIII-B. Next, we show the efficiency
of our optimizations in Section VIII-C. In Section VIII-D, we
show the query performance of CKI and SPI based on different
OS schemes and give a comprehensive comparison between
our schemes and the state of the art [3]. Finally, we evaluate
the performance of our schemes after adopting padding goals
to achieve further privacy properties in Section VIII-E.

A. Comparison of OS schemes

We implement three OS schemes: Path-ORAM, hierar-
chical OS based PIR [16] (referred as PIR for convenience
below) and IBS OS as representatives for index, hierarchical
and square-root based OS schemes. We evaluate them with
the respect of two factors, online latency and amortized time,
against OS capacity1. Online latency denotes the average query
latency excluding system unavailable time, while amortized
time takes the overhead of oblivious shuffle procedure into
consideration.

As shown in Figure 4(a), online latency of PIR and Path-
ORAM grow sub-linear to capacity, while that of IBS OS
stays at a constant around 1.6 milliseconds. IBS OS achieves
dominate online performance because it only needs to retrieve
one item for online requests. As to Path-ORAM, since no

1Unit for OS capacity is the number of items.

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

Capacity

O
n
lin

e
 L

a
te

n
c
y
 (

m
s
)

(a) Online Latency

10
1

10
2

10
3

10
4

10
5

10
6

10
1

10
2

10
3

Capacity

A
m

o
rt

iz
e
d
 T

im
e
 (

m
s
)

(b) Amortized Time

Fig. 4. Comparison of OS schemes

system unavailable time is involved, all its efforts for shuffling
data are amortized to online latency. PIR introduces several
layers and shuffle the data between them to delay full data
shuffles. This requires PIR retrieving an item from each level,
which slows down its online performance.

In Figure 4(b), we observe that IBS OS outperforms the
other two in amortized time when capacity is below 106. This
seems counter intuitive as the amortized complexity of IBS
OS (O(

√
N)) is apparently greater than those of Path-ORAM

(O(log n)) and PIR (O(log2 n)). The reason why we have this
result is that IBS OS has a much lower constant factor thanks
to the simple construction of square-root solution and the good
performance of IBS.

B. Storage and Preprocessing

Figure 5(a) shows the summed storage size of all out-
sourced data. Note that PI is only available in the first 3
datasets since its storage overhead is terribly high, which
increases quadratically with the size of road network. Partic-
ularly, the storage size of PI exceeds 27GB for dataset CO
whose raw data size is only around 30MB. CI costs the least
on small datasets, yet its storage size grows faster than that of
our schemes. In contrast, the space consumption of CKI and
SPI keeps low and increases linearly with |V |.

SPICI PI CKI

10
4

10
5

10
6

10
3

10
4

10
5

10
6

10
7

Number of Nodes

S
to

ra
g
e
 (

K
B

)

(a) Summed Storage Size

10
4

10
5

10
6

10
0

10
1

10
2

10
3

10
4

10
5

Number of Nodes

P
re

p
ro

c
e
s
s
in

g
 T

im
e
 (

s
)

(b) Pre-computation Costs

Fig. 5. Space and Pre-computation Costs

Figure 5(b) presents our results on preprocessing time .
CKI’s preprocessing time keeps the lowest on all dataset and
exhibits a linear increase with |V |. SPI grows slightly faster
due to a sorting procedure on all edges and shortcuts. On
the other hand, CI’s (also PI’s) preprocessing time is super-
linear to |V |, which limits its scalability on large road network.
Specifically, CI costs more than a week to generate outsourced
files for dataset CO.

C. Efficiency of Optimizations

As CKI and SPI share similar structures for Fd, optimiza-
tions make similar effects on them. Thus, we only show the

DE VT NA
0

10

20

30

40

50

Dataset

S
p
a
c
e
 (

M
B

)

(a) Summed Storage Size

DE VT NA
0

1

2

3

4

5

Dataset

A
m

o
rt

iz
e
d
 T

im
e
 (

s
)

(b) Amortized time
Fig. 6. Storage Size and Amortized Time

results of CKI here. We implement four versions of CKI as
below:

• CKI-None: CKI using plain KD-tree partitioning, i.e.
without any optimization.

• CKI-S: CKI using the KD-tree with small block combi-
nation.

• CKI-SU: CKI using the KD-tree with small block combi-
nation and unbalanced partitioning.

• CKI-All: CKI with all optimizations, which is the version
we use in the rest of other experiments.

Figure 6(a) shows space consumption on datasets DE,
VT and NA. For comparison, we also present the size of
raw data (i.e. unformatted data). CKI-None constantly has
the highest storage overhead with the lowest space utilization
between 60% and 80%. As we mentioned in Section V-D, only
using small block combination (CKI-S) does not help much,
but it remarkably reduces storage overheads together with
unbalanced partitioning (CKI-SU). Meanwhile, we notice that
hierarchical partitioning also slightly decreases the storage
overhead even though it is originally introduced to cut down
query time.

To show how these optimizations influence query perfor-
mance, we run queries from Q9 for dataset DE, VT and NA.
Though first two optimizations would not make any difference
in query processing, reduction on OS capacity leads to better
query performance. On the other hand, applying hierarchical
partitioning greatly reduces query latency, which is consistent
with our discussion in Section V-D.

D. Query Performance

We build these CKI and SPI based on both IBS OS and
Path-ORAM. This gives us a better view of choices on OS
schemes within a real application. In addition, to show the
efficiency of our schemes against CI and PI, we build CI and
PI based on their original PIR protocol and IBS OS. Recalling
that Path-ORAM does not involve any system unavailable time,
its online latency equals exactly to its amortized time. To show
our results under a better axis scale, we only put the results
for Path-ORAM in Figure 9.

As shown in Figure 7, SPI evidently outperforms the others
in terms of online latency, and is especially efficient against
long distance queries: SPI’s online latency is lower than that
of CKI by 25%-50% on query set Q9. Furthermore, online
latency of SPI increases little on query sets Q7, Q8, Q9 for
most datasets (sometimes even decreases), which indicates the
efficiency of AH shortcuts and our passage index. In contrast,

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

0.02

0.04

0.06

Query Set

O
n
lin

e
 L

a
te

n
c
y
 (

s
)

CI+PIR Time: 6.54 s

PI+PIR Time: 2.53 s

CI+IBS OS Time: 1.56 s

PI+IBS OS Time: 0.31 s

(a) SCA

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

0.02

0.04

0.06

0.08

0.1

Query Set

O
n
lin

e
 L

a
te

n
c
y
 (

s
)

CI+PIR Time: 12.89 s

PI+PIR Time: 3.02 s

CI+IBS OS Time: 2.62 s

PI+IBS OS Time: 0.31 s

(b) DE

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

0.05

0.1

Query Set

O
n
lin

e
 L

a
te

n
c
y
 (

s
)

CI+PIR Time: 21.71 s

PI+PIR Time: 5.37 s

CI+IBS OS Time: 4.01 s

PI+IBS OS Time: 0.49 s

(c) VT

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

0.05

0.1

0.15

0.2

Query Set

O
n
lin

e
 L

a
te

n
c
y
 (

s
)

CI+PIR Time: 32.85 s

PI+PIR Time: 13.27 s

CI+IBS OS Time: 5.53 s

PI+IBS OS Time: 1.05 s

(d) NA

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

0.1

0.2

0.3

0.4

Query Set

O
n
lin

e
 L

a
te

n
c
y
 (

s
)

CI+PIR Time: 59.33 s

PI+PIR Time: 13.77 s

CI+IBS OS Time: 8.73 s

PI+IBS OS Time: 1.1 3 s

(e) CO

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

0.2

0.4

0.6

0.8

Query Set

O
n
lin

e
 L

a
te

n
c
y
 (

s
)

(f) FL

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

0.2

0.4

0.6

0.8

1

Query Set

O
n
lin

e
 L

a
te

n
c
y
 (

s
)

(g) CA

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

0.2

0.4

0.6

0.8

1

1.2

Query Set

O
n
lin

e
 L

a
te

n
c
y
 (

s
)

(h) TX

Fig. 7. Online Latency

although providing stronger privacy properties, CI and PI run
much slower than our schemes on all datasets even when we
replace PIR by IBS OS.

For amortized time in Figure 9, SPI is suppressed by CKI
on most short distance query sets (e.g. Q0 to Q6). The reason
is that SPI has a relatively large storage consumption, which
leads to longer shuffle time. Nonetheless, SPI still performs
well against long distance queries (Q7, Q8, Q9), while CKI’s
amortized time grows fast on these query sets. Again, the
response time of CI and PI is higher than that of CKI and
SPI.

As to CKI and SPI based on Path-ORAM, we observe
that the Path-ORAM version slightly outperform the IBS OS
version in amortized time on large datasets (e.g. FL, CA,
TX). We observe that Path-ORAM based schemes have non-
trivial online latencies (10-30 seconds) even on moderate size
datasets. Nevertheless, it does not involve any system unavail-
able time, which gives much better worst-case performance
guarantee on large datasets. In contrast, IBS OS based schemes
suffer from long system unavailable time on large datasets,
which is around 6 minutes for CKI and 25 minutes for SPI on
dataset TX.

E. Further Privacy Improvement

In Section VII, we mention that our schemes can achieve
further privacy properties by padding all possible access pat-
terns to the same length. The most straight-forward way is to
find the maximum number of block retrievals. Specifically, in
the preprocessing phase, we run our schemes for all source-
destination pairs {s, t} and record all cnts,t which is the
number of OS block retrievals in that query. Finally, we set
the padding goal to max{cnts,t|∀s, t ∈ V }. Processing all
possible source-destination pairs is time-consuming, but we
can easily speed up such procedure by paralleling it in a cluster.

We denote CKI and SPI with padding as CKI* and SPI*.
Figure 8 shows their query performance on datasets DE and
VT. Note that both online latency and amortized time of CKI*

Dataset

DE VT

O
n
lin

e
 L

a
tn

c
y
 (

s
)

0

0.5

1

1.5

2

2.5

3

(a) Online Latency
Dataset

DE VT

A
m

o
rt

iz
e
d
 T

im
e
 (

s
)

0

5

10

15

20

25

(b) Amortized time

Fig. 8. Schemes with Improved Privacy

and SPI* are greater than those of CKI and SPI as shown in
Section VIII-D, as padding access patterns involves dummy
block retrievals. Even though, the performance of CKI* and
SPI* is still better than CI and PI in all settings.

IX. CONCLUSIONS

In this paper, we introduce a general system model based
on OS to support queries requiring strong privacy. To achieve
better performance and privacy guarantee, we propose a novel
oblivious shuffle algorithm and apply it on a general OS con-
struction. Moreover, we design specific schemes for shortest
path queries. Our schemes achieve good performance and
scalability while still guaranteeing a strong privacy property.
According to experimental results, our schemes perform well
on real datasets and greatly advance previous work [3] on
performance and scalability. In future works, we will focus
on involving more privacy concerns and designing schemes
for other location-dependent queries.

X. ACKNOWLEDGEMENT

Bin Yao (corresponding author) is supported by
the National Basic Research Program (973 Program,
No.2015CB352403), the NSFC (No. 61202025, 61428204),
the Scientific Innovation Act of STCSM(No.13511504200,
15JC1402400) and the EU FP7 CLIMBER project (No.
PIRSES-GA-2012-318939). Xiaokui Xiao was supported

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

1

2

3

4

5

Query Set

A
m

o
rt

iz
e
d
 T

im
e
 (

s
)

CI+PIR Time: 29.91 s

PI+PIR Time: 17.34 s

CI+IBS OS Time: 3.87 s

PI+IBS OS Time: 1.22 s

(a) SCA

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

2

4

6

8

10

Query Set

A
m

o
rt

iz
e

d
 T

im
e

 (
s
)

CI+PIR Time: 65.84 s

PI+PIR Time: 22.45 s

CI+IBS OS Time: 6.72 s

PI+IBS OS Time: 1.78 s

(b) DE

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

2

4

6

8

10

Query Set

A
m

o
rt

iz
e

d
 T

im
e

 (
s
)

CI+PIR Time: 118.15 s

PI+PIR Time: 42.25 s

CI+IBS OS Time: 10.61 s

PI+IBS OS Time: 4.06 s

(c) VT

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

5

10

15

20

Query Set

A
m

o
rt

iz
e

d
 T

im
e

 (
s
)

CI+PIR Time: 188.80 s

PI+PIR Time: 110.15 s

CI+IBS OS Time: 15.30 s

PI+IBS OS Time: 14.45 s

(d) NA

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

10

20

30

Query Set

A
m

o
rt

iz
e

d
 T

im
e

 (
s
)

CI+PIR Time: 368.88 s

PI+PIR Time: 121.18 s

CI+IBS OS Time: 26.48 s

PI+IBS OS Time: 27.78 s

(e) CO

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

20

40

60

Query Set

A
m

o
rt

iz
e

d
 T

im
e

 (
s
)

(f) FL

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

20

40

60

80

100

Query Set

A
m

o
rt

iz
e
d
 T

im
e
 (

s
)

(g) CA

Q0 Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9
0

20

40

60

80

100

Query Set

A
m

o
rt

iz
e
d
 T

im
e
 (

s
)

(h) TX

Fig. 9. Amortized Time

by grant ARC19/14 from MOE, Singapore and a gift from
MSRA and AT&T, respectively.

REFERENCES

[1] K. C. Lee, W.-C. Lee, H. V. Leong, and B. Zheng, “Navigational
path privacy protection: navigational path privacy protection,” in CIKM,
2009.

[2] M. Blanton, A. Steele, and M. Alisagari, “Data-oblivious graph algo-
rithms for secure computation and outsourcing,” in ACM Symposium
on Information, Computer and Communications Security, 2013.

[3] K. Mouratidis and M. L. Yiu, “Shortest path computation with no
information leakage,” PVLDB, 2012.

[4] D. Boneh, D. Mazieres, and R. A. Popa, “Remote oblivious storage:
making oblivious RAM practical,” Technical Report, 2011.

[5] M. T. Goodrich, M. Mitzenmacher, O. Ohrimenko, and R. Tamassia,
“Practical oblivious storage,” in ACM Conference on Data and Appli-
cation Security and Privacy, 2012.

[6] A. D. Zhu, H. Ma, X. Xiao, S. Luo, Y. Tang, and S. Zhou, “Shortest
path and distance queries on road networks: Towards bridging theory
and practice,” in SIGMOD, 2013.

[7] E. W. Dijkstra, “A note on two problems in connexion with graphs,”
Numerische mathematik, 1959.

[8] H. Bast, S. Funke, and D. Matijevic, “TRANSIT-ultrafast shortest-path
queries with linear-time preprocessing,” in DIMACS Implementation
Challenge, 2006.

[9] H. Bast, S. Funke, P. Sanders, and D. Schultes, “Fast routing in road
networks with transit nodes,” Science, 2007.

[10] R. Geisberger, P. Sanders, D. Schultes, and D. Delling, “Contraction
hierarchies: faster and simpler hierarchical routing in road networks,”
in Experimental Algorithms, 2008.

[11] A. V. Goldberg and C. Harrelson, “Computing the shortest path: a search
meets graph theory,” in SODA, 2005.

[12] L. Wu, X. Xiao, D. Deng, G. Cong, A. D. Zhu, and S. Zhou,
“Shortest path and distance queries on road networks: an experimental
evaluation,” PVLDB, 2012.

[13] P. N. Klein, S. Mozes, and O. Weimann, “Shortest paths in directed
planar graphs with negative lengths: a linear-space o(nlog2n)-time
algorithm,” ACM Transactions on Algorithms, 2010.

[14] S. Mozes and C. Sommer, “Exact distance oracles for planar graphs,”
in SODA, 2012.

[15] J. Sankaranarayanan, H. Samet, and H. Alborzi, “Path oracles for spatial
networks,” PVLDB, 2009.

[16] P. Williams and R. Sion, “Usable PIR,” in Network and Distributed
System Security Symposium, 2008.

[17] B. K. Samanthula, F.-Y. Rao, E. Bertino, and X. Yi, “Privacy-preserving
protocols for shortest path discovery over outsourced encrypted graph
data,” in 2015 IEEE International Conference on Information Reuse
and Integration (IRI), 2015.

[18] X. Meng, S. Kamara, K. Nissim, and G. Kollios, “Grecs: Graph
encryption for approximate shortest distance queries,” in ACM SIGSAC
Conference on Computer and Communications Security, 2015.

[19] E. Stefanov, E. Shi, and D. Song, “Towards practical oblivious RAM,”
CoRR, 2011.

[20] E. Stefanov, M. van Dijk, E. Shi, C. Fletcher, L. Ren, X. Yu, and S. De-
vadas, “Path O-RAM: An extremely simple oblivious RAM protocol,”
in ACM Conference on Computer and Communications Security, 2013.

[21] E. Kushilevitz, S. Lu, and R. Ostrovsky, “On the (in) security of hash-
based oblivious ram and a new balancing scheme,” in ACM-SIAM
Symposium on Discrete Algorithms, 2012.

[22] O. Goldreich and R. Ostrovsky, “Software protection and simulation on
oblivious rams,” Journal of the ACM, 1996.

[23] D. Q. Jinsheng Zhang, Wensheng Zhang, “S-oram: A segmentation-
based oblivious ram,” in ACM Symposium on Information, Computer
and Communications Security, 2014.

[24] X. S. Wang, Y. Huang, T.-H. H. Chan, A. Shelat, and E. Shi, “Scoram:
Oblivious ram for secure computation,” in ACM SIGSAC Conference
on Computer and Communications Security, 2014.

[25] C. Liu, X. S. Wang, K. Nayak, Y. Huang, and E. Shi, “Oblivm:
A programming framework for secure computation,” in 2015 IEEE
Symposium on Security and Privacy, 2015.

[26] S. Papadopoulos, S. Bakiras, and D. Papadias, “Nearest neighbor search
with strong location privacy,” PVLDB, 2010.

[27] M. T. Goodrich and M. Mitzenmacher, “Privacy-preserving access of
outsourced data via oblivious RAM simulation,” in Automata, Lan-
guages and Programming, 2011.

[28] R. Durstenfeld, “Algorithm 235: random permutation,” Communications
of the ACM, 1964.

[29] C. W. Fletchery, L. Ren, X. Yu, M. Van Dijk, O. Khan, and S. Devadas,
“Suppressing the oblivious ram timing channel while making informa-
tion leakage and program efficiency trade-offs,” in HPCA, 2014.

[30] E. Stefanov and E. Shi, “ObliviStore: high performance oblivious cloud
storage,” in IEEE Symposium on Security and Privacy, 2013.

[31] Http://www.cryptopp.com/.
[32] Http://www.cs.utah.edu/ lifeifei/SpatialDataset.htm.
[33] Http://www.dis.uniroma1.it/challenge9/download.shtml.

