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Scalable Spatial Scan Statistics for Trajectories

MICHAEL MATHENY, DONG XIE, and JEFF M. PHILLIPS, University of Utah

We define several new models for how to define anomalous regions among enormous sets of trajectories. These are based on

spatial scan statistics, and identify a geometric region which captures a subset of trajectories which are significantly different

in a measured characteristic from the background population. The model definition depends on how much a geometric region

is contributed to by some overlapping trajectory. This contribution can be the full trajectory, proportional to the length

within the spatial region, or dependent on the flux across the boundary of that spatial region. Our methods are based on

and significantly extend a recent two-level sampling approach which provides high accuracy at enormous scales of data.

We support these new models and algorithms with extensive experiments on millions of trajectories and also theoretical

guarantees.

CCS Concepts: • Theory of computation → Computational geometry; • Computing methodologies → Anomaly

detection; • Mathematics of computing→ Maximum likelihood estimation.
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1 INTRODUCTION
Large data sets of trajectories have driven much recent research with the goal of understanding the intentions and

causes of various correlations hidden within the data. These data objects are structured to capture movements,

interactions, and possibly the intentions of humans and other objects. Yet, when one considers these trajectories in

unison, they usually appear as just a tangled mess. And as the data grows (e.g., millions of objects with billions of

data points), this task does not seem to aggregate and statistically simplify, rather it just becomes more unwieldy

and unmanageable.

We consider newmethods that use the underlying geometry of the trajectories to identify statistically significant

spatial anomalies. Critically, these models deviate from density-based models (like DBScan [11]) which would only

identify populous regions (of course a lot of traffic exists in New York or Beijing!). Rather, our new models and

algorithms identify geometric regions where some labeled aspect (e.g., trajectories of sick people) significantly

deviates from what is expected or is in contrast to the trajectories of the background population. And our

approaches work at enormous scale – required for modern large data sets, and for the statistics to be meaningful.

Developing suchmodels for trajectories, comparing to a background population, is highlymotivated: identifying

significant population or demographic shifts, pinpointing the likely location responsible for disease due to

prolonged exposure among a dynamic population, or geolocating a nefarious wifi access point affecting cell

phones which transiently pass by. There are no existing mechanisms for addressing some of these goals specific

to trajectory data, and certainly not for massive data sets.
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When base objects are points (not trajectories), such comparative anomaly tasks are typically resolved with a

Spatial Scan Statistic (SSS) [16]. This is one of the most common tasks within Geographic Information Science, with

applications to detecting hotspots with elevated levels of disease, crime, or demographic traits [4, 12, 16, 24, 30].

These identify a region with maximum log-likelihood score Φ, out of a large prescribed family of regions C, and

have been shown empirically and theoretically to have high statistical power [4, 16]. But this search of all regions
C ∈ C (usually associated with a geometric family of shapes) is computationally onerous, and the most common

and widely-used software SatScan [17] is only able to scale by restricting the class of regions to ones specifically

chosen by the user. Moreover, there are only a few limited extensions towards trajectory data [19, 25] and these

rely heavily on heuristic aggregation.

Our Contributions.We introduce three new models to allow for geometric analysis of trajectory data. These

models (derived in Section 3) identify geometric regions where many trajectories of interest have passed through

(full model), spent time in (partial model), or began or ended in (flux model). These models are new and well-

motivated, but they have not before been a computationally feasible objective to consider at scale.

We design sampling and scanning algorithms (in Section 6) that allow for extremely scalable methods for

identifying anomalous patterns captured in the above geometric models. Our methods are not limited by the data

size, instead they depend on the error—spatial and combinatorial—that researchers are willing to approximate

the final statistical quantity to. The scalability as well as statistical power of these models are demonstrated on

enormous data sets containing up to several million trajectories with over 1 billion waypoints (in Section 7).

Of the three models, we develop a reduction for the flux and partial model to a scalable point-based scanning

framework (see Section 6). However for the third model, full, such reductions are not possible, and considerable

new scanning and sampling mechanisms are developed: Section 4 designs compact coresets for each trajectory

that preserves spatial guarantees and converts trajectories to labeled point sets. Section 5 provides trajectory

specific sampling theorems (VC-dimension bounds for trajectory-based range spaces) necessary to apply the

underlying sample approach. Section 6.2 develops algorithms that use new data structures to scan the data

resulting from trajectory coresets and their samples in a scalable way. The overall accuracy and runtime bounds

for of our sampling, coreset, and scanning algorithms are ultimately summarized in Table 2.

2 PRELIMINARIES, NOTATION, AND OVERVIEW
We begin with an overview of the mathematical modeling, geometric, statistical, and algorithmic preliminaries

and their notation to frame our new contributions.

Trajectory models.We model a trajectory t via waypoints Pt = ⟨p1, . . . ,pm⟩ as the tracing out of the ordered
sequence of connected segments s1, . . . , sm−1, with sj = pjpj+1. Trajectory t has total arclength L(t) (or when t
is clear, just L). Computationally and also as a way of defining regions, we often consider trajectories via just

some set of ordered waypoints p1, . . . ,pm constructed via one of the methods discussed in Section 4 instead of as

an ordered sequence of connected segments. For the partial model the parameterization of the trajectories is

important, and we use arclength by default. We could alternatively use a time-based parametrization, but we

otherwise do not explicitly model timing information in this paper.

Range spaces. To study spatial anomalies applied to trajectories we need a way to model how or when a

trajectory interacts or intersects with a potential region of interest. To do this we review the definition of a

range space. A range space is a pair (X ,A) consisting of a set of objects X (the ground set) and a set A ⊂ 2
X
of

subsets of X (the ranges), that is a subset of all possible subsets 2X . Range spaces are essential objects in both

data structures (e.g., for range searching [2]) and machine learning (for sample complexity of learning [13, 31]).

For example, classically let X be points in R2, and AC be the subsets induced by intersection with a disk C ∈ C.

For this paper, we will define new families AC induced by a set of shapes C, focusing on those induced by

halfspaces, disks, or axis-aligned rectangles. In particular, we are interested when the ground set is a set of
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trajectories T (or derived appropriately from T ). The new models (we will define in Section 3) will specify the

definition of intersection T ∩ C , for prescribed spatial regions C ∈ C, to induce a set AC ∈ AC . That is each

induced subset of trajectories AC ∈ AC corresponds with a potentially anomalous region of interest.

Statistical discrepancy. In all of the forthcoming models, each trajectory t ∈ T has a recorded value r (t) and
baseline value b(t). It is typically sufficient to consider all trajectories t ∈ T have b(t) = 1 (that is they are all

part of an observed background population) and that r (t) ∈ {0, 1} where the set Tr = {t ∈ T | r (t) = 1} are

the trajectories of interest – although these can change in accordance with objective function ϕ in a variety of

statistical settings [1, 17]. Even when we study parts of trajectories and segments of trajectories, these traits

(especially the recorded value r (t)) is held fixed for the entire trajectory.

Then let r (C) = |Tr∩C |

|Tr |
(resp. b(C) = |T∩C |

|T |
) be the fraction of all recorded trajectories (resp. all trajectories)

within the range C . Modeling r as Poisson, the log-likelihood of the recorded rate being different than the

baseline rate is Φ(C) = ϕ(r (C),b(C)), where ϕ(r ,b) = r log r
b + (1 − r ) log 1−r

1−b . However, in general, we can

computationally reduce to a simpler subproblem [1, 21] with a “linear” model e.g., ϕ(r ,b) = |r −b |. Ultimately, the

spatial scan statistic is maxC ∈C ϕ(C). It uses the magnitude of Φ(C∗) to determine if the most anomalous region

C∗
is statistically significant; specifically, the typical way is via permutation testing where about 1000 data sets

with same spatial patterns but different r ,b values are generated at random, and the distribution of found Φ(C∗)

values are compared to the one with the input r ,b values. We will specifically be interested in an approximate

variant:

Definition 2.1 (ε-Approx. Spatial Scan Statistic). Consider a range space (X ,AC) defined by a family of
shapes C, and a discrepancy function Φ : C → R. An ε-approximate spatial scan anomaly is a shape Ĉ ∈ C so that

Φ(Ĉ) + ε > Φ(C∗)

where C∗ = argmaxC ∈C Φ(C). Then the corresponding ε-approximate spatial scan statistic is Φ(Ĉ).

Two-level sampling. The algorithmic goal in this paper is to find an ε-approximate spatial scan anomaly for

trajectory range spaces (with forthcoming definitions in Section 3). Our scanning algorithms are based on

recent work for calculating ε-approximate spatial scan statistics on simple geometric shapes over point sets at

scale [20, 22]. The main ideas are to construct a two-level sampling of a large data set into sets S and N ; see Figure

1. The larger “sample” set S = Sr ∪ Sb (where Sr is the recorded set and Sb is the baseline set, and S is of size s) is
used as proxy for the density of the data in any range, and the smaller “net” data sets N (of size n) is used to

define the combinatorial set of ranges we will consider. That is, N defines a subset of shapes C ∈ CN ; those which

include combinatorial distinct subset of points in N , and then S is used to estimate the Φ(C) value via C ∩ S . To
achieve ε error in Φ(C), we (roughly) need to set n = ν/ε and s = ν/(2ε)2, where ν is the VC-dimension of the

Trajectories T N defines CN Measure S \ C on S

Fig. 1. A sparse sample of the data defines a set of regions and these regions can be efficiently measured on a larger sample
that maintains the density of the original data set.
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Fig. 2. Models of how 3 trajectories intersect (in red) with circular shape (in green). From left to right: point-based model;
partial range model; full range model; flux model.

range space [20]. Then there exist shape specific methods to quickly scan and evaluate the ranges (induced by N )

and values (from S) [20].

3 NEW TRAJECTORY RANGE MODELS
We introduce three new models of how to define range spaces when applied to trajectory-derived ground sets and

geometric ranges which define the region of interest. These models capture: (i) regions with a high percentage of

measured trajectories passing from inside to outside (the flux model), (ii) regions with a high percentage of the

total arclength of measured trajectory data (the partial range model), and (iii) regions with a high percentage of

measured trajectories pass through them (the full range model).

3.1 Flux Model
The simplest version of this problem is the flux model. We search for a shape C ∈ C where a proportionally high

number of trajectories start inside the shape C , and end outside of the shape C , or vice versa.

Mathematical Definition. In this setting, we can reduce each trajectory to two waypoints: the first and the last.

To satisfy a range intersection (t∩C for rangeC), the first must be inside and the last must be outside (or vice-versa

with opposite effect). That is we define two sets Xb = {p1 | t ∈ T , t = ⟨p1, . . . ,pm⟩} (the beginning set) and

X e = {pm | t ∈ T , t = ⟨p1, . . . ,pm⟩} (the end set). Then we attempt to find the range argmaxC ∈C |C∩X e |−|C∩Xb |

or vice-versa.

Motivating scenarios. This model arises when finding a region that differentiates two types of movements.

Consider the GPS tracking of an animal like deer, and these paths are either slow (normal walking) or fast

(running, perhaps escaping a predator). Then a region corresponding to the start of many fast trajectories may

correspond with the region occupied by a predator. Alternatively, if trajectories document addresses of people

over time (for instance, this information is maintained for residents of the state of Utah in the Utah Population

Database [29], which has tracked addresses for 50 years), this can be used to identify significant migratory

patterns of parts of the population. Regions of unusually high flux in any fixed window of time may also be

useful for managing crowd control in packed sporting or music events.
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Flux Model Example:
In the image on the left, let the trajectories represent fare

paths of a Kakao Taxi driver in Seoul over a day. The red

trajectories represent significant tips, and the blue ones all

other fares paths. Identifying a region (in green) where red

(high tip) routes started, and left from, without too many blue

routes of the same form, will indicate a good place to try to

find profitable customers. This would correspond with the

disk maximizing Φ under the flux model.
1

3.2 Partial Range Model
In the partial range model, we want to find a shape C ∈ C where the weight a trajectory contributes to C is

proportional to the normalized length of the trajectories inside. A trajectory’s intersection with a shape C ∈ C is

fractional; specifically µ(t ∩C) is the fraction of the total arclength of t within C . That is if 1/3 of a trajectory t
intersectsC , then µ(t ∩C) = 1/3 or if 1/50th of the total length of all trajectories intersectC then µ(T ∩C) = 1/50.

The contribution µ(t ∩C) depends on the parametrization of t . This could be by arclength, by time, by fuel used,

or any other quantity. In this paper we simply use arclength in our experiments.

Mathematical Definition. More formally, the set C ∩ T corresponds to the set of points comprising partial

trajectories which are insideC . The true ground set X is then X = {x ∈ R2 | x ∈ sj ∈ t ∈ T }. That is X is a subset

of R2 so each point x ∈ X lies on some segment sj ∈ t on some trajectory t ∈ T . This corresponds to an infinite

(not combinatorially defined) range space [31] as (X ,AC) where AC = {AC = X ∩C | C ∈ C}.

Motivating scenarios. The partial range model is important to help automatically identify regions which

statistically lead to some measured characteristic, proportional to how long the object generating the trajectory

spends in that region. For instance, consider a mysterious sickness that health officials suspect is tied to prolonged

exposure to some chemical event. By finding a compact region where many of the inflicted people spend a

considerable amount of time, compared to all in that region, this will provide a candidate location for the epicenter

of that exposure. Alternatively, consider a measured set of unprofitable (or highly profitable) taxi/Uber drivers;

can we identify regions of a city where they spend a proportionally higher percentage of their time. These and

similar scenarios are directly modeled by the partial range scan statistic, and hence demand scalable solutions.
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Partial Range Model Example:
Let the left image model the daily commutes of patients

that have checked into Paris hospitals. The red curves

correspond with patients who reported a serious lung

and stomach symptoms when they arrived to work, con-

sistent with exposure to a dangerous chemical. The blue

trajectories are other patients with more standard and

mainly benign symptoms. A region where more red tra-

jectories spent significant time, and blue trajectories did

not spend much time, would help pinpoint the region

with largest potential to be the source of these symptoms.

And finding such region corresponds with the disk that

maximizes Φ under the partial range model.
1

3.3 Full Range Model
In the full range model, we seek to find the shape C ∈ C which intersects the most trajectories of interest,

compared to some baseline set of trajectories. A trajectory’s contribution to C is not proportional to intersection

size, but instead all or nothing.

Mathematical Definition The contribution of a trajectory t ∈ T in a shape C ∈ C is binary. The intersection

t ∩ X is 1 if there is any point where the trajectory t enters the shape C , and is only 0 if the trajectory is never

inside the shape. And as such ranges AC ∈ AC are defined AC = {t ∈ T | t intersects C}, for some shape C ∈ C.

There is no need to parameterize the trajectories in this scenario.

We will consider simplified trajectories by creating a small set of labeled points P ′
t to represent them. In this

scenario, we say t intersects shape C if any p ′j ∈ P ′
t intersects C .

Motivating scenarios. This model arises when just the fleeting intersection with a spatial region is enough to

trigger a measured event for that entire trajectory. Consider a set of cars with slow leaks from nails in their tires

(found at the end of the day); a region many of them passed through would more likely be someplace with nails

on the road. Or consider a set of people’s cell phones which a virus, suspected to be infected when they pinged

some wifi access point; then just passing near that access point may be enough to trigger the event, and finding a

region with high-density of cases of the virus would provide a probable location of the offending access point.

Or consider tracking a set of animals (e.g., cows, migrating birds) where a subset become sick; then a full range

spatial anomaly may indicate a contaminated watering hole.
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Full Range Model Example:
Consider the set of limousine trajectories from a day in

Beijing in the image. The red trajectories may represent

taxis which reported navigation systems malfunctioning,

while the blue ones did not. You suspect a jamming devise,

with a fixed radius, was placed by a competitor. Detecting

the circular shape (in green) which maximizes the fraction

of red trajectories which pass through, while minimizing

the fraction of blue, is the most likely model for where a

jamming devise could have been located. This corresponds

precisely to finding the disk with largest Φ value under

the full range model.
1

3.4 Remaining Challenges
Several significant tasks remain to adapt the two-level sampling framework for spatial scan statistics to these

newly defined trajectory scanning models. First, we require to spatially approximate the trajectories – the raw

trajectories are either unnecessary or too difficult to work with; we describe our methods in Section 4. Second,

we need to formalize the definitions of regions CN from the set N , and bound the VC-dimension ν with respect to

the resulting range spaces; we do so in Section 5. Given these mechanisms, we next show that for the partial and

flux models, we can devise direct reductions to point set variants in Section 6.1. Given these reductions, we can

invoke existing fast scanning algorithms [20]. However, for the full model such reductions are not possible, and

we will need to develop new methods to quickly iterate over all these ranges on S ; that is how to quickly “scan"

over the net. This varies with the geometric properties of the shapes; we focus on halfspace, disk, and rectangle

ranges, and devise new scanning methods for each of them in Section 6.2.

4 SPATIAL APPROXIMATION
As described, for a shape C ∈ C and trajectory t , the critical operation in the full model is determining t ∩C = ∅.

This is far more efficient if we can approximate t by a set of k approximate waypoints P ′
t = {p ′

1
,p ′

2
, . . . ,p ′k }, and

then use P ′
i ∩ C as a proxy for t ∩ C . The critical aspects of such an approximation is to keep the size of the

approximation k small, even for long trajectories, and to ensure that the answer to the intersection between a

shape C and the point set P ′
t approximates C ∩ t .

Specifically, we desire an α-spatial approximation (or just α-approximation for short). For a trajectory t and
any range C ∈ C, we say P ′

t is an α-spatial approximation of t under two conditions (see Figure 3(Left)):

(1) (no false positives) If t does not intersect C , then P ′
t does not intersect C .

(2) (limited false negatives) If for all unit vectors v , t +vα intersects C , then P ′
t intersects C; here t + αv is a

shift of the entire trajectory in a direction v by α .

For the full model, the α-approximation corresponds well to no false positives and reasonable false negatives. For

the partial model, we want the addition property that |C ∩ P ′
t | is proportional to µ(C ∩ t); and for this in some

cases we sometimes add weights or make other small adjustments to the points in P ′
t . As we will see in Section 6

for the flux model we can always find a set P ′
t with k = 2 and achieve no error.

1
Map tiles by Stamen Design, under CC BY 3.0. Data by OpenStreetMap, under ODbL.
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Fig. 3. Left: Converting a trajectory into a set of points which approximate its shape preserves an α -spatial guarantee, since
we can find a nearby disk that still intersects the trajectory. Right: The relation between α , γ , and r in proof of Lemma 4.3 for
some line segment p1p2 on the boundary of one of our kernels.

We next list a series of trajectory approximations we study (some approaches are well-known and standard), and

describe how to achieve and α-approximation under each method if possible. All bounds assume all trajectories

lie in a [0, 1] × [0, 1] domain, otherwise α is scaled accordingly.

All Waypoints. This baseline simply sets P ′
t = Pt and retains all waypoints. This does not deal with long

segments well, and does not achieve an α-approximation except for halfspaces, but may be appropriate for data

collected at regular and short intervals.

Random Sampling. This baseline randomly samples k points from segments proportional to arclength. Let L
be the total arclength of a trajectory t . Based on VC-dimensional [31] and ε-net [13] arguments, if (R2,C) has
constant VC-dimension (as with disks, halfspaces, and rectangles) then for k = O((L/α) log(L/α)), with constant

probability it is an α-approximation.

Even. In this sketch, we select k = L/α points evenly spaced according to arclength, where again L is the total

arclength of a trajectory. This deterministically creates an α-approximation. To preserve the proportionality

property for the partial model, we treat the trajectories as if they are chained together to adjust the first selected

point from each trajectory – so the first points on trajectory tj is a distance α from last point on trajectory tj−1.

DP algorithm. The Douglas-Peucker (DP) algorithm [14] is frequently used in practice as a compression step

for trajectory simplification. This method iteratively removes waypoints from the original trajectory in a greedy

fashion until removing another one would cause the Hausdorff distance between the original and the simplified

one to exceed a chosen parameter α . This ensures, for instance, that no query shape C ∈ C can intersect the

original trajectory t at a depth α into C without also intersecting the simplified trajectory. For halfspaces this

provides an α-approximation (see Lemma 4.1). However for rectangles and disks, this guarantee is only over the

trajectory’s segments, but not the waypoints P ′
t , so it does not provide an α-approximation as desired.

Convex Hull. This sketch puts all vertices on the convex hull of Pt in P ′
t . This is a 0-approximation (has no

error) for halfspaces (see the next lemma), but does not have guarantees for other shapes.

Lemma 4.1. A halfspace h ∈ C intersects a trajectory if and only if it intersects at least one of its waypoints.

Proof. A halfspace h intersects part (but not all) of a trajectory if and only if its boundary intersects one (or

more) of its segments. If it intersects all of the trajectory, it must contain all waypoints. For a boundary plane

to intersect a segment sj , it must be that one of its waypoints pj ,pj+1 is inside the halfspace and the other is

not since the segment is a convex object with these points as the only extreme points. Hence, we can check

intersection of a trajectory t with h by checking if any of its waypoints are in h; otherwise all of the waypoints
and the entire trajectory must be outside of h. □
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Approx Hull. In this sketch, we create P ′
t as the α-kernel coreset which approximates the convex hull of Pt [3].

This provides an α-approximation for halfspaces with only O(1/
√
α) points, independent of arclength, but with

restriction that all trajectories are in [0, 1] × [0, 1].

Lifting and Convex Hull for Disks. For disks, there is a reduction via a data transformation (the Veronese Map

v) that provides similar approximations as the convex hull approach for halfspaces. Given a point set P ∈ R2, the
intersection of that point set with a disk is preserved under a map to R3 where disks are mapped to halfspaces.

For p = (px ,py ) ∈ R
2
we replace it with v(p) = (px ,py ,p

2

x + p
2

y ) ∈ R
3
. Every disk becomes a halfspace in R3 and

contains the same subset of points as the disk did in R2.
After this transformation, set P ′

t as the points on the convex hull (or in the α-kernel coreset [3]) in R3. However,
because Lemma 4.1 does not apply to disks, this does not have any approximation guarantee. That is, a disk C in

R2 which intersects a segment but no waypoints, transforms to a halfspace hC ∈ R3 which contains part of a

segment (these segments are now quadratic curves, and are not straight), but still no waypoints.

Gridding. This sketch considers an (implicit) regular, orthogonal grid in R2 for each trajectory with cells of size

α × α . We retain one point on the trajectory t in each cell that t intersects. For a trajectory t of arclength L, this
retains at most k = O(L/α) points in P ′

t .

Lemma 4.2. The number of cells of a regular grid with grid cells of size ℓ × ℓ that a polyline can enter is O(L/ℓ).

Proof. We will group cells into 9 groups and analyze each separately. Each cell is in the same group as other

cells two hops over in one of the 8 directions (left, right, 45 deg, etc...). Each cell touches 8 other cells which are

not in its group, and each one is in a distinct group. Now within each group, to intersect a cell and enter another

one the trajectory must travel a distance of Ω(ℓ), since it will have to pass the complete vertical or diagonal

distance of a cell. Thus, within a group a trajectory of length L can touch at most O(L/ℓ) cells. And in 9 groups,

the total number of cells is at most 9O(L/ℓ) = O(L/ℓ). □

Grid Kernel. For disks it makes sense to adjust the approximation for different radii as smaller values of k are

needed for very large radii disks which can potentially intersect many trajectories. By constructing multiple

approximations and scanning each with different radii significant speedups in practice can be realized.

We adjust the gridding technique for disks, and specifically for a family Cr which only considers disks of radius

at least r . We consider grid cells of size γ × γ with γ =
√
2αr − α2/2. Within each grid cell we retain multiple

points in P ′
t , specifically those on a (α/(2

√
2γ ))-kernel coreset of the points in that cell.

Lemma 4.3. For a trajectory with arclength L, at most O(L/(r 1/4α3/4)) points are put in P ′
t for Grid Kernel, and it

is an α-approximation for Cr .

Proof. The maximum distance between two points in a grid cell is

√
2γ . Thus the (α/(2

√
2γ ))-kernel incurs at

most

√
2γ · (α/2

√
2γ ) = α/2 error between the convex hull of all points in that cell, and the hull of the approximate

ones.

However, a disk may intersect part of a trajectory without intersecting any of the waypoints on the convex

hull. But, if the longest possible edge in convex hull is

√
2γ then a disk of radius r not containing a waypoint can

protrude into the hull at most a distance (see Figure 3(Right))

r −

√
r 2 + (

√
2γ/2)2 = r −

√
r 2 + (

√
2αr − α2/2/

√
2)2

= r −
√
r 2 + (αr − α2/4)

= r −
√
(r + α/2)2 = r − r + α/2 = α/2.

The sum of these two errors is at most α/2 + α/2 = α , as desired.
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Fig. 4. Full scanning coresets from left to right: DP for halfplanes, Approx Hull for halfspaces, Grid Kernel for disks (radius r ),
Grid Kernel for disks (radius 2r ), and Even.

The total number of points associated with a trajectory of length L is: the number of cells it intersects O(L/γ )

times the number of points in each cell O(1/
√
(α/(2

√
2γ ) = O(

√
γ/α). In total this is

O
(L
γ
·
√
γ/α

)
= O

( L
√
αγ

)
= O

( L√
α
√
αr

)
= O

( L

α3/4r 1/4

)
. □

5 TRAJECTORY SAMPLING
To enable efficient scanning for the full model we require that the number of regions grows polynomially with

the number of trajectories as otherwise random sampling cannot be used to attain an additive approximation

bound. For the trajectory range spaces we consider it was not previously known if this was true. A bound on the

VC-dimension of these range spaces would ensure this. It turns out the VC-dimension bounds are tied in some

manner to k , the number of points representing each trajectory; the number of possible subsets is then a function

of the range complexity (ν , e.g., dimension d) and the trajectory complexity (k).
We now consider that each trajectory t is represented by exactly k labeled points P ′

t (if it is less than k , we can
duplicate the last point to increase to k). That is P ′

t ⊂ R
d×k

. Next consider an alternative range space (Rd×k ,Ak )

where the ground set is the approximate waypoints. The number of ranges induced on a set of labeled points

(two ranges are the same if they contain the same set of labels) is upper bounded by the number of unique subsets

on themk unlabeled points. Therefore the growth function onm sets is upper bounded byO((mk)ν ) =mO (ν logk )
,

where the base range space (Rd ,A) has VC-dimension ν .

Lemma 5.1. The growth constant for (Rd×k ,Ak ) is O(ν logk) where ν is the growth constant of the range space
(Rd ,A). Hence the VC-dimension is O(ν logk).

In our context, this means after trajectories in R2 are represented by at most k points, then the VC-dimension

for ranges defined by disks, halfspaces, or rectangles have VC-dimensionO(logk). Similar logarithmic dependence

on k has recently been shown for range spaces defined between pairs of trajectories [8].

So as long as the number of trajectory waypoints is bounded by k , the sample sizes for S and N (needed in the

two-level framework [20, 22]) are increased by a rather benign near-logarithmic in k . We will invoke this in the

context of scanning algorithms in Section 6.2.

Bounded k is needed. It seems hopeful that a better bound independent of k may be possible, but we can show

that for halfspaces, disks, and rectangles it is possible to construct cases where the complexity of the trajectories,

and hence the VC dimension is unbounded. To see this we will first restrict to the set of rangesHd induced by

halfspaces in Rd . Indeed, we can replace each trajectory with a convex set by Lemma 4.1, so we only need to

work with a ground set of all convex sets C. However, if the complexity of the trajectories, and hence the convex

sets, is unbounded, then so is the VC-dimension even in R2, as the next lemma shows.
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Because disks in Rd are special cases of halfspaces in Rd+1 (by the Veronese map), this bound holds for disks

as well.

Lemma 5.2. The VC-dimension of (C,H2) is unbounded, and hence so is the VC-dimension of (T ,H2) with no
restriction on k .

Proof. For any integer z, we can design a set of z convex sets c1, c2, . . . , cz ∈ C in R2 so that we can shatter the
set; that is, every subset of C can be induced by a range. Recall the VC-dimension of a range space is the size of

the largest subset of the ground set which can be shattered. Let each c j be a nearly identical convex polygon with

2
z
vertices. Each of the 2

z
vertices, which are in nearly the same location for each polygon, corresponds with one

of the 2
z
different subsets we seek to define. If the vertex is in a polygon that should be in the subset, shift it

slightly counter-clockwise; if it is not in the subset, shift it slightly clockwise. Then a halfspace can include the

vertex with all points shifted counter-clockwise (those intended for the subset) and nothing else in any polygon.

Since we can do this independently for all 2
z
subsets for any z, we can shatter a subset of any size z.

Now because a halfspace intersecting a trajectory t is equivalent to intersecting any of its waypoints (see

Lemma 4.1), then it is equivalent to intersecting the convex hull of those waypoints. Thus, we can generate the

same construction with a trajectories with k = 2
z
waypoints for any value z, and thus if we have no bound on k ,

we have no bound on the VC-dimension of (T ,H2). □

For rectangles we can construct a similiar proof.

Lemma 5.3. The VC-dimension of (T ,R2) is unbounded if there is no restriction on k .

Proof. Again for any integer z, we can design a set of z trajectories t1, t2, . . . , tz ∈ T in R2 so that we can

shatter the set. Each ti will have z! vertices such that for each trajectory ti it has t !/2 vertices where each vertex

takes part in a permutation of t1, t2, . . . , tz on the line y = x and similarly t !/2 vertices on the line y = x + 1

partaking in their own set of permutations. Between the two lines every permutation can be constructed. The

corner of a rectangle can then cut off a subset of each permutation independendently of intersecting another

subset and since all possible 2
z
subsets are contained in the permutations, every subset of trajectories can be

induced. Thus if we have no bound on k , we have no bound on the VC-dimension of (T ,R2). □

6 SCALABLE ALGORITHMS FOR FINDING TRAJECTORY ANOMALIES
We next describe how to efficiently scan over the trajectory range spaces to efficiently find ε-approximate spatial

scan anomalies on the various range spaces defined for trajectories, and statistical discrepancy functions Φ. In the

case of the flux and partial models, we provide new direct reductions to the point-set based scanning algorithms.

For the full model these reductions are not possible, and we require the development of several new insights –

different ones for each scanning shape. In particular, for scanning under the full model with disks (perhaps the

most intuitive definition) we develop new ways (the MultiScale Disk approach) to represent and approximate the

range space which becomes much more efficient that what was even previously known about point-set based

scanning.

6.1 Reductions for Partial and Flux Models
We first describe two reductions for the flux model and partial range model to algorithms for scanning over

points instead of trajectories.

Flux model reduction. For the flux model, the reduction starts again by sampling trajectory subsets S,N ⊂ T .
Now we convert each trajectory t ∈ S (or in N ) to a point set in SP (or NP ) as follows. We first convert every

trajectory t into only its two endpoints p1 and pk and place both of these points in SP (or in NP ). In S we require r
(recorded) and b (baseline) values, and we only focused on the simpler variant which considers the linear model
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ϕ(r (C),b(C)) = |r (C) − b(C)|. Then we set b(pk ) = b(t), r (pk ) = −r (t) and b(p1) = −b(t), r (p1) = r (t). Note now
that if both p1,pk ∈ C , then the total contribution r (C) and b(C) is 0; the points cancel each other out. When only

p1 ∈ C , then the contribution is r (p1) − b(p1) = r (t) − b(t) as desired, and if only pk ∈ C , then the contribution is

r (pk ) − b(pk ) = −r (r ) + b(t) = −(r (t) − b(t)), also as desired.

Theorem 6.1. A flux model scan statistic for the linear statistical discrepancy function Φ on trajectories can be
reduced to a point-based scan statistic on the endpoints.

Partial model reduction. For the partial range model, the key quantities for Φ(C) are r (C) and b(C), the fraction
of all possible contributions from trajectories from the recorded and baseline sets. Since in the partial range

model we restrict to parts of trajectories, independently of which trajectory they are part of, we can convert to a

point set input as follows. Given the full sets of trajectories T , we denote the continuous set of points in these

trajectories as XT . We then take uniform (or weighted) samples of XT to construct ST and NT .

Since the contribution of a point in ST towards Φ(C) is independent of the contribution of other points on the

trajectory (unlike the full model), running a point-based scanning model on ST ,NT will return the same Φ(C)
value for any C as the trajectory-based partial range model.

Theorem 6.2. A partial range model scan statistic on trajectories can be reduced to a point-based scan statistic on
a uniform sample over the trajectory by arclength.

6.2 Scanning under the Full Model
There are three major challenges in extending scanning algorithms to the full model – even after first converting

each trajectory t into a point set P ′
t of size k . The resulting approaches are multi-faceted, and different for each

scanning shape, and summarized in Table 2.

First, in order to obtain the runtime bounds of point-based two-level sampling algorithms, the sets N and

S , were of size roughly n = ν/ε and s = ν/(2ε2) in the point-based model, now need to be of size nk = n · k
and sk = s · k , respectively. Each object placed into the “net” or “sample” set now is required to be a set of k
points (on average) from each of the trajectories sampled. The scanning algorithms have linear time in sk and

moderate polynomial (degree 1 to 3) in nk , so this increases the runtimes beyond the point-based setting by a

moderate polynomial factor in k . The results for the various spatial approximation techniques are summarized in

Table 1. We will demonstrate that for halfspaces and rectangular ranges, this increase is tolerable if the right

α-spatial approximation is used. But for disks the resulting algorithms are not yet tractable, and so we design a

new multi-level approximate scanning approach which works in tandem with the α-spatial approximation.

Second, extra bookkeeping is required to maintain which point sets P ′
t are already intersecting a shape C

during the scanning process–so that a trajectory is not overcounted when multiple points intersectC . For this we
use a global integer counter array S .counter, where a non-zero counter serves as an indicator that the trajectory

t ∈ S is in the shape C in question. We maintain and only update Φ when a counter toggles between zero and

non-zero. This extra bookkeeping may seem a trivial change, but it prevents the use of some approaches, in

particular for rectangle scanning.

Third, to extend the approximation guarantee [21, 22] based on two-level sampling to this setting, we need to

bound the VC-dimension ν of the range space (T ,AC). In Section 5 we showed that for halfspaces, disks, and

rectangles, if there is no bound on k , then the VC-dimension is unbounded. However, we also showed for all of

these shapes that when each trajectory is represented by a point sets of size k (the ground set is Rd×k ), then the

VC-dimension is only O(d logk) in d dimensions. That is when the objects are point sets of size at most k , they
only increase the VC-dimension by a benign logk factor, and hence the coreset sizes for nk and sk . These sample

bounds are incorporated into Table 3.
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Runtime Overview in the Full Model
SSS runtimes for the full model vary by shape, error parameters, and methods of spatial approximation. From the

scanning perspective they depend on nk = nk and sk = sk , shown in the middle column of Table 2. Parameters n
is the small net size, and s is the large sample size are described in Table 3 for allowing ε-error in Φ. The spatial
approximation size k is described in Table 1, and depends on the method used to achieve an α-approximation.

The best runtime bounds for ε-error on Φ and α-spatial error are shown in the right column of Table 2.

Method Size = k Spatial Error Shapes

Convex Hull m 0 H2 (halfspaces)

DP Algorithm m α H2 (halfspaces)

Approx Hull O(1/
√
α) α H2 (halfspaces)

Grid Kernel O(L/(r 1/4α3/4)) α Cr (disks)

Random Sample O
(
(L/α) log L

α

)
α All

Even O (L/α) α All

Gridding O(L/α) α All

Table 1. The α-spatial approximation bounds for trajectory coreset algorithms with output of size k . Trajectories are of
length L and withm waypoints, and all in a domain [0, 1] × [0, 1]. Derivations of bounds in Section 4.

Shape Runtime Best Bounds in 1/α & 1/ε

Rectangles O(n3ksk ) Õ
(
L
α 4

1

ε2 log(
L
εα )

)
Halfspaces O(nksk lognk ) Õ

(
1

α
1

ε3 log
3( 1

εα )

)
Disks O(n2ksk lognk ) Õ

( ( L
α

)
3

1

ε4 log
4( L

εα )

)
Table 2. Overall algorithm runtimes in terms of sample size (nk = nk and sk = sk) or error parameters (statistical error ε ,
spatial error α , and arclength L). Õ(·) hides log log factors and is for constant probability of success. Derivations of bounds
are in Section 6.

Sample Size

Sparse Net N n = O
(
logk
ε log

logk
εδ

)
Dense Sample S s = O

(
1

ε2 (logk + log
1

δ

)
Table 3. Sample size bounds to obtain |Φ(C∗) − Φ(Ĉ)| ≤ ε with probability 1 − δ where C∗ is the true maximum and Ĉ is the
found approximation or trajectories of size k . Derivations of bounds in Sections 5 and Section 6.2.

Rectangles. We extend a O(n4 + s) time algorithm for scanning rectangles [20], which in our case becomes

O( 1

α 3
sk ). The faster algorithms from that paper [20] (takingO(n3) andO(n2 log logn) time) do not extend because

they require a special decomposition for implicit processing of the ranges which cannot accommodate the

maintenance of the counter.

This algorithm defines a non-uniform grid by using a scan line in the x and y direction to ensure each row

and column has at most εs trajectories or has at least α width whichever is larger. We recommend the Gridding
approach for an α-approximation since then many of these coordinates are duplicated reducing the effective

grid size. Then all of the points in S (of size sk ) are mapped into the appropriate grid cells, and duplicates for the
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same trajectory can be removed. Then we consider each of the at most n4k rectangles defined on this grid. We

can scan them efficiently by fixing every possible upper, bottom, and left side of the rectangle (there are O(n3k )
combinations), and then sliding the right side of the rectangle from the left edge until it hits the end of the grid.

The entire scanning of the right edge updates the counters at most sk times. So the total runtime is O(n3ksk ).

Spatially-approximatedRectangles.An important optimization for rectangles takes advantage of the α-spatial
approximation. Instead of considering all n3k rectangles, we only need to consider endpoints differing by at least

1/α , there are no more than O(1/α3) of these. Thus the total runtime becomes O(sk/α
3). This variant is used in

experiments.

We can also add a restriction where we short circuit the algorithm if the resulting subgrid will have height or

width greater than some set value. This restriction can significantly decrease the runtime.

Halfspaces. To create approximate sets for each trajectory we use the Convex Hull and the Approx Hullmethods

to reduce to size k point sets. The former induces no spatial error, and the later provides and absolute bound on

the size k (at k = O(1/
√
α)).

Let nk represent the total number of net points required, with n trajectories sampled into N and then on

average requiring k points P ′
t to approximate. Using a combinatorial arrangement view of halfspaces and point

sets, these can be scanned in O(ns) time [7], using advanced techniques from computational geometry. This can

be converted into a O(nksk ) bound in our setting. We review a simpler model here that takes O(ns logn) time on

point sets, and O(nksk lognk ) in our setting. Let Nk be the nk points approximating the n trajectories in N , and

similarly let Sk be the sk points from S . For each point q ∈ Nk sort all sk points in Sk radially around q. Then
consider halfspaces with q on the boundary, and scan through them radially around q updating the counters and

Φ as necessary.

Higher dimensional halfspaces can be reduced to lower dimensional halfplane problems by doing an affine

projection down into the 2-dimensional space. Using the halfplane algorithm to solve these problems gives

a runtime of O(nd−1k sk ). An optimization we call the “Hull Trick” does an additional pruning step after each

projection to 2 dimensions; it creates the convex hull in 2-dimensions, and only retains the points on the hull

before scanning.

Disks. After approximating trajectories by point sets, disk-scanning can be implemented as halfspace scanning

for d = 3 using the Veronese map. This gives runtime bounds of O(n2ksk ).
However, these shapes are significantly more sensitive to the α-spatial approximation technique, especially if

there are long edges. For instance in our experimental data we found disks might need 10 or even 50 times more

points to generate an α-approximation for a trajectory (see Table 4). As such we design a new scanning method

that works in concert with the Grid Kernel approach.

MultiScale Disks. The previous disk scanning algorithm is not tractable or scalable, but we can combine a large

number of tricks to handle these issues.

We consider scanning over disks with radius in a range [rmin, rmax], specifically where rmax = rmin2
z
for a

small integer z. We decompose this into z subranges, so in each the radius is in a range [r , 2r ] and handle these

subranges independently. In experiments, we set z = 4 (or in some cases z = 5) which covers a natural and

intuitive set of radii.

Then we scan in concert with the α-spatial approximation method Grid Kernel using parameter r . This reduces
the size of each trajectory approximation k , especially for large r ; see Table 4. Assuming the data has been mapped

to a [0, 1] × [0, 1] range, we can create a 1/r × 1/r grid, with cell edge length r . We now consider the O(1/r 2)
5 × 5 subsets of grid cells where the center cell has at least one point in the Nk set of points. Then for each such

center cell point q (a “pivot” point), we consider only disks with q on the boundary, and other boundary points

among those in this 5× 5 subset of Nk . Especially for small r , the restriction to this local subset of the data greatly
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reduces the number of points which are considered when constructing disks with respect to each pivot q: from
all nk net points to only those points from Nk inside this 5 × 5 subset. Furthermore this also significantly reduces

the number of sample points in Sk that must be tested for inclusion in each disk.

Together the effects of lower bounding the radius (to reduce k), and upper bounding the radius (to effectively

reduce the number of considered regions and the number of points to scan sk for each pivot), makes every range

[r , 2r ] of this MultiScale Disk approach quite tractable.

This method can be further improved with the Hull Trick, especially for complex trajectories. Focusing on the

disk scanning algorithm for all disks passing through the pivot q; this maps to the problem of scanning all 2d

halfspaces in a different lifted parameter space, as discussed in Section 4. This reduction allows us to apply the

Hull Trick from the Halfspace algorithm section or another halfspace coreset method from Table 1 to significantly

reduce the number of points that must be considered.

7 EXPERIMENTS
In this section we show scalability of all of the proposed algorithms, and their effects on the statistical power of

the scan statistics. We show for the partial and flux models, through our new direct reductions to recent work,

we can compute scan statistics in a scalable yet statistically powerful way. For the full model, the most naive

reductions to existing methods are not viable, but our proposed geometric and algorithmic observations for each

scanning shape lead to significant speed ups.

We demonstrate these improvements with two types of measurements. The first is directly showing the runtime

of the algorithms as a function of either the statistical error parameter ε or the spatial error parameter α . We

also measure the discrepancy error, where we attempt to find a large Φ(C) value, and we show at increasing

parameter settings how the largest Φ(C) region found approaches argmaxC ∈C Φ(C) as a function of the runtime.

This demonstrates that these algorithms are not just fast, but they become statistically powerful in tractable

runtimes.

7.1 Setup and Data
All of our code and the scripts used to generate experiments are publicly available on github and our project

website
2
. All of our code is written in C++ with an easy to use python wrapper that we hope will allow for

researchers to apply these algorithms to many other data sets. Current algorithm implementations are serial, but

the algorithms are embarrassingly parallel, so converting to a parallel implementation would be trivial.

Experiments were conducted using the python wrapper on computers with an Intel Core i7-3820 and 64GB of

memory. It ran Ubuntu 14.04 with kernel version 3.13.0-147. Code was compiled with GCC version 8.1.0, Boost

version: 1.69.0, and Python version 3.4.3. Experiments were run in successive fashion on a per node basis. No

experiments were run together on the same node at the same time to minimize the effect of other processes on

run time.

We perform experiments on two large trajectory data sets, described next, which have very different conditions.

One is diverse, and has trajectories of significantly different sizes and lengths, but the overlap is clustered. The

other has more uniform trajectory sizes and lengths, but they are all intermingled.

Open Street Map Trace Data. This data set is our default, and consists of a subset of close to 6 million traces

from Open Street maps with 1.282 billion total waypoints. We restrict the set to ones contained completely inside

of a rectangular region in Europe with latitude and longitude of [35, 60] × [−10, 25]. The large extent of these
traces means that there are comparatively sparse regions corresponding to rural areas and also densely packed

regions such as cities. Many trajectories are restricted to small regions compared to the full domain size.

2
https://mmath.dev/pyscan
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Name Beijing #Pts OSM #Pts

Grid Kernel r = .1km 489 117

Grid Kernel r = .2km 286 69.6

Grid Kernel r = .4km 191 47.3

Grid Kernel r = .8km 134 34.1

Grid Kernel r = 1.6km 96.9 25.4

Grid Kernel r = 3.2km 71.8 19.5

DP 24.6 8.74

Approx Hull 7.27 3.35

Convex Hull 10.0 9.50

Gridding 389 106

Even 395 110.9

Table 4. Setting α = 0.1km shows the average value of k (size of approximation) for α-approximation algorithms.

Beijing Taxi Data. This is a densely packed and highly overlapping set of roughly 3 million trajectories with

129 million total waypoints collected from taxi drivers in Beijing [18]. This data set has a very high sampling

frequency per trajectory with 75% of the points being collected less than 1 minute apart. Many roads have been

driven over by hundreds to even thousands of separate traces. Since small regions can be densely packed with

trajectories, local scanning approaches that restrict the region of interest to be of small size work comparatively

worse. There are comparatively few sparse regions. A set of only 25 of these trajectories are shown in the

extended Full Range Model Example. We have restricted the trajectories to be confined to a region with latitude

and longitude of [39.788, 40.094] × [116.15, 116.612].

7.2 Spatial Approximation Size
We first empirically evaluate how well the various α-spatial approximation algorithms work on average. We

simplify all trajectories in each data set such that α is set to 0.1km – about one city block (when normalized to

[0, 1] × [0, 1], for Beijing this is α = 1/500 and for OSM it is 1/α = 30,000). We show the average value of k for

the various algorithms in Table 4. We observe that the OSM data is much easier to approximate than the Beijing

data – and in fact we use a larger α as default later which would lead to even smaller k values on average. Next

we observe that the methods designed for halfspaces (Convex Hull, Approx Hull, and DP) generate very small

average values of k of 3 to 10 (or 25 for DP on Beijing). For large values of r , Grid Kernel can start to approach k
of around 20 or 30 for OSM, but otherwise the methods for rectangles and disks (Grid Kernel large r , Gridding,
and Even) have larger average k of around 100 for OSM, and over 300 for Beijing. This factor of 10 difference in k
can cause dramatic slow-downs in the experiments.

7.3 Scalability Experiments
We next demonstrate how various parameters affect the runtime, and how various algorithms compare in

scalability. The runtime as a function of 1/ε for flux model and partial model algorithms are shown in Figure 5;

setting s = 1/(2ε)2 and n = 1/ε as suggested [22]. The partial data is sampled using the Even mechanism. Some

runtime curves become linear as S becomes the entire data set (12 million), and only n increases.

We observe that the rectangle-based algorithms are quite scalable, and are able to set 1/ε ≈ 1,500 and still

complete in about 1minute. The generic two-level sampling algorithm for halfspace scanning is almost as scalable,

and performs better than rectangle when the “Ham" coreset [21] is used. However, the scanning algorithms

for disks require several minutes to deal with even 1/ε ≈ 100, and becoming intractable for anything larger. In
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summary, using our new reductions to the point-based algorithms, under the partial and flux models, rectangles

and halfplanes scanning for trajectory anomalies is already scalable.

Full Scanning on OSM. The algorithms for the full intersection model are significantly more nuanced. These

runtimes are shown as a function of 1/ε and 1/α in Figure 6. While the other is varied we set 1/α = 6000 and

1/ε = 100 (for Disk and for Best in Class) and 1/ε = 20 (for Baseline and for Halfplane). Rectangles are restricted

to having max side length less than 1/150 to make them have roughly the same size as the restricted disk variants

in all OSM plots. Note that all runtimes are on a logarithmic scale.

The Baseline rows shows the scalability of the basic algorithms using Even α-spatial approximation. Again, for

halfspace and rectangle scanning, the runtimes are tolerable, but the disk scanning becomes already intractable

for moderate parameter values. Note that now the runtimes are quite noisy due to the high variance in the

trajectories length in the OSM data – even if k is small on average, for some trajectories sampled it might be

quite large.

The Halfplane row shows the difference in runtimes for the All Waypoints, Convex Hull, and Approx Hull
methods for spatial approximation. The All Waypoints and Convex Hull have 0 spatial error (by Lemma 4.1), so

horizontal lines with error bars are shown. Convex Hull provides a dramatic improvement over All Waypoints, of

2 to 3 orders of magnitude (i.e., from several minutes to less than a second). The Approx Hull approach shows

smaller but tangible improvement over using all hull points, but adds some spatial error.

The Disk row shows another dramatic improvement in scalability as we restrict the radii considered to

r ∈ [1/6000, 1/300] and apply other improvements. With no bound on the radius, the (Disk + Even) algorithms are

intractable. Still invoking Even, but using a 1/r × 1/r grid to prune the scanning to a radius range bound (Small

Disk + Even) allows for moderate values of 1/ε and 1/α to complete in minutes. But combining the MultiScale

Disk approach with the adaptive Grid Kernel spatial approximation allows the same moderate error parameter

runs to complete in 10s of seconds, and in about 1 or 2 minutes this approach can scale to 1/ε ≈ 400. Adding the

Hull Trick does not induce significant gains here.

Finally in the Best in Class, row we show the best algorithms runtime for each scanning shape: MultiScale

Disks for disks, Approx Hull spatial approximation for halfplanes, and Even spatial approximation for rectangles.

The improvement over the baseline for halfspaces and disks is dramatic. With these algorithms it is now possible

to set 1/α ≈ 100,000 and complete in about 10 seconds for any shape. Halfspaces and radius restricted disks can

set 1/ε ≈ 500 or 1000 and complete in about a minute or two; they are now very scalable in 1/ε . For Rectangles it
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Full Model Runtime on OSM
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Full Model Runtime on Beijing
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Fig. 7. Runtime for full model scanning as function of inverse spatial error, 1/α , or inverse statistical error, 1/ε , on Beijing
data.

can set 1/ε ≈ 250 and still complete in a minute or two. On the other hand, the algorithm for rectangles is more

tolerant to very small values of α .

Full Scanning on Beijing. The runtimes for the algorithms under the full model on the Beijing data set are

shown in Figure 7. We restrict r ∈ [1/50, 1/500] for radius-restricted disks, and for rectangles side length is

restricted to be less than 1/25. The first (Disk) row shows the improvement when scanning with radius-restricted

disks. Fixing 1/ε = 20, only the MultiScale Disk scanning with Approx Hull and the Hull Trick can complete

1/α > 2000 in under an hour, and indeed can scale to 1/α = 5000 in that time. Here the consistent long trajectories

greatly benefit from the extra Hull Trick pruning. Fixing 1/α = 500 only this disk scanning variant can reach a

moderate 1/ε = 50 in under an hour.

The second (Best in Class) row shows that now the rectangle scanning times are strictly worse than the radius

restricted disk times. The halfspace algorithms have similar runtimes as with the OSM data, and are now much

more scalable than the MultiDisk approach. Thus the tangled nature of the Beijing data affects the rectangle

scanning the most and the halfspace the least.

7.4 Statistical Power Tests
In this section we measure the statistical power of these scanning algorithms. We fix the spatial layout of

trajectories from the OSM or Beijing data sets, and introduce a spatially anomalous region under the various

models by adjusting the r and b values of trajectories. Such regions (either a halfplane, disk, or rectangle to

match the scanning region) are “planted” by choosing a shape C ∈ C and setting a desired rates for inside C as
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Fig. 8. Statistical power vs time for partial, flux, and full model on OSM data.

q = r (C)/b(C), for all data p = r (T \C)/b(T \C), and the anomaly size f = b(C)/b(T ). The optimal shape may

be different (usually slightly shifted), and so we evaluate these tests by tracking the value maxC ∈C Φ(C) (the
“Measured Discrepancy") found for various parameter settings. When this maximum value plateaus, it indicates

those parameters settings and runtime have high power and are sufficient to recover the anomalous shapes.

This process is much noisier than just measuring runtime as a function of parameter settings. So in plots we

show many data points and fit a trend line using a local average. In the same plots, different scanning shapes

naturally converge to distinct Measured Discrepancy values.

For all of these experiments we use a rate of p = .5 for the data outside of the planted region and a rate of

q = .8 for the data inside of the region.

Flux Scanning Power. The time required to achieve statistical power for the flux scanning model is shown in

Figure 8(Upper Left). It shows the Measured Discrepancy values for disk, rectangle, and halfspace algorithms

under the flux model on the Beijing data. We fix the planted shape to contain 5% of the data (f = 0.05). As
observed earlier, the disk regions are very slow to scan for under this model, and do not achieve high power until

2 hours of runtime. However, the rectangle and halfspace scanning algorithms converge to a high power setting

in about 10 seconds to 1 minute – hence for the flux model, we recommend these shapes.

Partial Scanning Power. Figure 8(Lower Left, and Middle Column) also shows the time require to achieve

high statistical power under the partial model on OSM data. We plant small ranges of size f = 0.005. Each
scanning shape (rectangle, disk, halfplane) is in a separate chart. They all eventually achieve high statistical power,

but the halfplane scanning algorithms only take about 1 − 2 seconds, while the disk and rectangle algorithms

require about 30 minutes. We can also observe that Even spatial approximation consistently converges faster

than Random Sampling.
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Full Scanning Power. Finally, Figure 8(Right Column) shows how long it takes to achieve high statistical power

under the full model. We plant regions in the OSM data with size f = 0.005. We show the results of scaling

runtime by varying 1/ε (setting 1/α = 6000) and varying 1/α (setting 1/ε = 200). For halfplanes, we use Convex
Hull which has no spatial error, so it only has its runtime vary as a function of 1/ε ; and it achieves high power

after about 1 hour. For rectangles, it achieves high power through larger 1/ε values in about 10 minutes in both

1/ε and 1/α scaling. For radius-restricted disks, we show the MultiDisk scanning with Grid Kernel (and Hull
Trick); it appears less tied to the choice of α as this setting is tied to the resolution of the grid approximation.

For a fixed 1/ε = 200, it sometimes, but does not consistently find a high score region indicating that the setting

1/ε = 200 might be too small, but as 1/ε increases after about 10 minutes it achieves high power.

8 PREVIOUS AND RELATED WORK
Our algorithms build upon the recent two-level sampling framework for spatial scan statistics by Matheny et
al. [20, 22]. This focused on making scalable ε-approximate spatial scan statistics over point sets. This line of work

provides improvements over non-approximate variants [16, 17], in terms of the number samples, and the runtime

of the scanning algorithms for the same shapes we study: halfspaces, disks, and rectangles. The introduction of

two-level sample makes these approaches tractable, and better coresets or faster scanning makes them extremely

efficient. However, these fast SSS methods only apply for point sets.

There exist other mechanisms for finding anomalous behavior among trajectories. These involve clustering

by density and then identifying outliers, training models on pre-labeled data, or identifying sets trajectories

with similar characteristics on predefined region families [5, 6, 15, 23, 27, 28, 32, 33]. These approaches do not

specifically identify spatial regions from characteristics of the trajectories or compare against a background

population.

A few papers have attempted to port scan statistics to trajectories, with goal of finding spatial anomalous

regions. Pang et al. [25] discretized cities into grids and recorded traffic conditions in each cell. They then

computed a likelihood ratio test over all sub-grids to detect the most anomalous region. And Liu et al. [19]
partition a city into regions defined by the road network, and their adjacency defines a graph. Then spatial

anomalous links in this graph are scanned over various times to find a time×region of high traffic. But neither of

these approaches directly operate on the trajectories, and fix regions ahead of time which restricts the set and

nature of possible anomalies.

An alternative approach (for point sets) removes the notion of shapes, and focuses on clustering the measured

objects to find potential anomalies [9, 10, 12, 26, 30]. However, this approach already does not have guarantees

about statistical accuracy for point sets, and the task of clustering trajectories appropriately (and in this case one

should be concerned about not over-fitting) has its own set of challenges, which are beyond the scope of this

paper.

9 CONCLUSION
We introduce three new models for quantifying spatial anomalies among large sets of trajectories using spatial

scan statistics and defined by geometric shapes. These identify regions which exhibit high flux, a large percentage

of the total arclength of a measured quantity, or a large percentage of a set of full trajectories of interest pass

through that region. These models have numerous applications in traffic analysis, disease outbreak monitoring,

epidemiology, and demography.

Through either combinatorial, geometric reductions, or new scanning algorithms, we are able to identify

these anomalous regions efficiently on data sets containing millions of trajectories with billions of way points.

This efficiency requires various insights tuned to the families of shapes we considered which include halfplanes,

disks, and rectangles. This includes careful ways to approximate trajectories by point sets, and fast enumeration
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methods. These approximations are backed by a theoretical analysis, which shows guaranteed bounded error in

the spatial trajectory approximation (α ) as well as in the measurement of the statistical quantities (ε). The runtime

depends only on these parameters. In the first two models the best techniques are reductions to algorithms for

point sets, while the model accounting for full trajectories requires significant new ideas. For the most natural

anomaly shape of disks, our MultiscaleDisk technique provides the best efficiency and accuracy trade-off.

And most importantly, we also measure the statistical power of the scanning algorithms. That is, if we plant

an anomalous region under each of the models, our scanning algorithms can with high probability, recover that

region (or a similarly anomalous one) in tractable amounts of time. Even on the millions of trajectories, high

statistical power is often achieved within minutes, or for more challenging variants, in hours. There are no

previous approaches which have demonstrated any statistical power on these tasks.
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