
AB-tree: Index for Concurrent Random Sampling and Updates
Zhuoyue Zhao∗
University at Buffalo
zzhao35@buffalo.edu

Dong Xie
The Pennsylvania State University

dongx@psu.edu

Feifei Li
Alibaba

lifeifei@alibaba-inc.com

ABSTRACT
There has been an increasing demand for real-time data analytics.
Approximate Query Processing (AQP) is a popular option for that
because it can use random sampling to trade some accuracy for
lower query latency. However, the state-of-the-art AQP system
either relies on scan-based sampling algorithms to draw samples,
which can still incur a non-trivial cost of table scan, or creates
samples of the database in a preprocessing step, which are hard to
update. The alternative is to use the aggregate B-tree indexes to
support both random sampling and updates in database with loga-
rithmic time. However, to the best of our knowledge, it is unknown
how to design an aggregate B-tree to support highly concurrent
random sampling and updates, due to the difficulty of maintaining
the aggregate weights correctly and efficiently with concurrency.
In this work, we identify the key challenges to achieve high concur-
rency and present AB-tree, an index for highly concurrent random
sampling and update operations. We also conduct extensive experi-
ments to show its efficiency and efficacy in a variety of workloads.
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1 INTRODUCTION
Approximate Query Processing (AQP) has become very appeal-
ing for real-time data analytics, especially on very large databases
where table scans or index range scans are too slow to complete.
It provides a unique trade-off between result accuracy and query
latency for analytical queries. A major approach of AQP is to es-
timate query results on top of random samples drawn from the
base tables in a database. There have been a number of works on
using different random distributions to produce accurate approxi-
mate answers for aggregation queries [3, 6, 13, 19, 25], as well as
designing algorithms for drawing random samples from the results
of multi-table joins [2, 5, 31]. In fact, one can answer simple ag-
gregation queries approximately with theoretical guarantees in a
sub-linear or even constant time relative to the data size [6, 9]. As
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a result, AQP can often save hours or even days of query time by
only aggregating a slice out of terabytes or petabytes of data.

All AQP techniques above treat the sample drawing mechanism
as a black box, assuming they can be efficiently implemented using
SQL or by extending existing DBMS with minor modifications. It,
however, is not true if wewere to performAQP for real-time data an-
alytics where concurrent data updates exist. Existing TABLESAMPLE
operator supported by the SQL in all major DBMS implementation
requires either linear scan (Bernoulli sampling) or relaxed statis-
tical guarantees (system or block sampling). Note that the latter
is unacceptable for AQP since it invalidates the error guarantees.
Most other sampling techniques such as stratified sampling, uni-
verse sampling and distinct sampling [13] require full table or index
range scans over base tables. This diminishes the benefit of AQP as
scanning can be a dominating factor of the query cost, especially
when the data are stored in external storage. Therefore, many AQP
systems [3, 6, 25] opt to draw samples offline and only update them
once in a while, making real-time analytics infeasible.

In order to support real-time data analytics with AQP, we need
the ability of drawing random samples online without scanning the
base tables. Luckily, it is well understood that aggregate B-trees can
be used for drawing random samples online in logarithmic time
relative to data size per random sample [5, 24, 31]. An aggregate B-
tree is a B-tree index whose internal nodes are annotated with some
aggregated weights of their corresponding subtrees. However, to
the best of our knowledge, it is unknown how to make correct and
efficient concurrent updates in aggregate B-trees without latching
the entire structure. That means, an AQP system that uses aggregate
B-tree may perform reasonably good over rarely updated data, but
its performance will drop rapidly as more data updates are involved.

The crux of this problem is that every single data update will
involve changes to the aggregated weights on all the internal nodes
along a tree path. It always leads to very high contention on higher
level nodes (especially the root). Besides, it may expose an incon-
sistent view of weights to concurrent readers, leading to biased
samples. We will show in Section 2.2 that the second issue may be
alleviated by imposing strict ordering of weight updates along a
path, but could still harm concurrency significantly when Struc-
tural Modification Operations (SMO, i.e., page split/merge) and
sampling operations are interleaved. Unfortunately, the conven-
tional wisdom of the existing high-performance concurrent B-tree
designs [4, 15, 16, 18, 20, 26, 27] (where most contentions happen
around the leaf level, and SMOs can be implemented as a few atomic
steps that may interleave with other operations) is no longer appli-
cable as their assumptions are completely the opposite. In addition,
as a practical matter, multi-version concurrency control (MVCC),
which is often used by modern DBMS to improve concurrency,
can negatively impact the random sampling efficiency of aggregate
B-trees under concurrent updates due to sample rejections induced
by the invisible versions.
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Figure 1: An example aggregate B-tree with height 3 and a fan-out of 3.
In this paper, we present AB-tree, a concurrent aggregate B-tree

based on the B-link tree [16]. It can support correct and highly
concurrent updates and sampling queries. Besides, it features a
latch-free multi-version weight store that stores a history of ver-
sioned weight updates to further improve the sampling efficiency
by avoiding some sample rejections. To the best of our knowledge,
this is the first work to design a highly concurrent aggregate B-tree.
Our major technical contributions lie in the following aspects:

• We identify the main design problems in building an ef-
ficient concurrent aggregate B-tree and discuss how they
deviate from those of the traditional concurrent B-tree de-
signs.

• We propose several general design principles for building
an efficient concurrent aggregate B-tree.

• Incorporating our general design principles, we design and
implement AB-tree, an efficient concurrent aggregate B-
tree based on the B-link tree to support highly concurrent
updates and random sampling.

• We conduct comprehensive evaluations to show the effi-
ciency of our method in a real-world DBMS (PostgreSQL).

• We discuss the possibility of generalizing our design to
support other index structures and sampling operations
(e.g., independent range sampling).

The rest of this paper is organized as follows. We introduce the
necessary background, the challenges and the requirements in de-
signing a concurrent B-tree in Section 2. We describe the general
design principles of AB-tree in Section 3 and the practical imple-
mentation details of it in PostgreSQL in Section 4. In particular, we
discuss how to reduce sample rejections under MVCC in Section 4.4.
We showcase AB-tree’s performance advantages to the best avail-
able baseline using a simple synthetic dataset and the more realistic
TPC-H dataset in Section 5. Finally, we review the related works
and discuss the possibility of generalizing our design in Section 6.
We conclude this paper in Section 7.

2 PRELIMINARIES
The goal of this paper is to design an aggregate B-tree that can
sustain a high rate of concurrent update (insert/delete) and random
sampling operations. Sampling operations draw weighted random
samples out of all leaf tuples in the B-tree, where the probability
of sampling a leaf tuple 𝑡 is proportional to some specified weight
𝑤𝑡 . As in any concurrent B-tree, the effects of updates should be
serializable. Sampling in an aggregate B-tree should only return
valid samples at certain point in the serialized update history. To
formalize that, our basic correctness requirement for a sampling op-
eration is that the weighted random samples withdrawn should
be respective to some non-empty set of leaf tuples resulted from a
prefix of the equivalent serial schedule. For instance, suppose the
equivalent serial schedule of 3 inserts is inserting tuples 1, 2, 3 with

equal weights. Then, a concurrent random sampling operation may
draw a random sample from one of these sets {1}, {1, 2}, {1, 2, 3}
uniformly, but not any other sets (e.g., {1, 3}) and/or with a dif-
ferent probability distribution. In a typical AQP usage, one may
perform many independent sampling operations on the same snap-
shot of the database as newer versions get inserted into the index
without removing the old versions that are still visible under the
snapshot. Suppose the set of visible tuples under the snapshot is
𝑆 . Then the basic correctness requirement would guarantee that
for each sample 𝑠 drawn from the index, ∀𝑠0 ∈ 𝑆, 𝑃𝑟 {𝑠 = 𝑠0} ∝ 𝑤𝑠0 ,
because 𝑆 can never change for the same snapshot in any allowable
serial schedule. Hence, one may use rejection sampling to draw as
many independent samples from the same distribution as it wants
even though the index may return samples not in 𝑆 . The approach
would not work for an index that does not satisfy the basic correct-
ness requirement. For instance in our previous example, suppose
a sampler runs on a snapshot where 𝑆 = {1, 2}, but the sampler
returns a uniform sample from the set {1, 3}. Then 𝑃𝑟 (𝑠 = 1) = 1
and 𝑃𝑟 (𝑠 = 2) = 0 in this case, which is no longer uniform as it is
supposed to be.

To the best of our knowledge, there is no existing design that can
satisfy our basic correctness requirement with high concurrency.
A simple and best-available baseline is to exclusively latch all the
pages along the search path of an update and only release the
latches when all the weights are updated. However, this effectively
blocks all other operations since the root is always in contention.

2.1 The Structure of Aggregate B-trees
An aggregate B-tree (see Figure 1 for an example) consists of a
number of leaf pages and a number of internal pages, organized in
ℎ levels (also denoted as the height of the tree). All tuples in a level
are sorted by the their indexed keys and, without loss of generality,
we assume all keys are unique. Level 0 is the leaf level and stores
all leaf tuples (marked black in Figure 1). A leaf tuple 𝑡 corresponds
to a unique heap tuple and contains a key 𝑘𝑡 and a pointer to that
heap tuple. The internal pages start from level 1 until level ℎ − 1.
An index tuple 𝑡 on level 𝑙 contains a page pointer 𝑐𝑡 to a page on
level 𝑙 − 1, which is the root of its corresponding subtree T𝑡 . It is
also associated with a key 𝑘𝑡 that is a strict lower bound of the keys
of all leaf tuples in T𝑡 . Note that there is no need to store 𝑘𝑡 for the
first tuple in an internal page as it is implicitly the same as the key
associated with the tuple that points to the page.

2.2 Random Sampling in Aggregate B-trees
To perform random sampling in an aggregate B-tree, we associate
each leaf tuple 𝑡 with a weight 𝑤𝑡 = 𝑓 (𝑡), where 𝑓 (𝑡) ∝ 𝑃𝑟 (𝑡)
in the desired distribution. For instance, 𝑓 (𝑡) = 1 if we want to
perform uniform sampling, or 𝑓 (𝑡) = 𝑡𝑀 for some measure column
𝑀 if we want to perform measure-biased sampling to optimize
sample variance [6]. The value of 𝑤𝑡 does not need to be stored



explicitly in the leaf tuple unless it is very expensive to evaluate or
involve a non-deterministic weight function 𝑓 . We also introduce
an aggregate weight𝑤𝑡 for each index tuple 𝑡 satisfying

𝑤𝑡 =
∑︂
𝑡 ′∈𝑐𝑡

𝑤𝑡 ′ =
∑︂

leaf tuple 𝑡 ′∈T𝑡
𝑤𝑡 ′ (1)

In other words,𝑤𝑡 is the summation of the weights of all the leaf
tuples in the subtree. In addition, if a tuple 𝑡 is on page 𝑝 , we denote
𝑠𝑡 =

∑︁
𝑡 ′∈𝑝∧𝑘𝑡′<𝑘𝑡 𝑤𝑡 ′ , i.e., 𝑠𝑡 is the summation of all the weights of

the tuples whose keys are smaller than 𝑡 ’s on page 𝑝 .
If an aggregate B-tree stores all the index tuple weights𝑤𝑡 ex-

actly, we can then draw random samples by traversing down the
tree from the root by making random choices of tuple 𝑡 on a page
𝑝 with 𝑃𝑟 (𝑡) = 𝑤𝑡/

∑︁
𝑡 ∈𝑃 𝑤𝑡 . It is easy to show that each leaf tuple

is sampled with the probability proportional to its weight.
However, it is not always practical to store the weights exactly.

For instance, when we are inserting some leaf tuple 𝑡0, we will need
to update the weights along the search path one by one, leaving
some of themwith a higher weight than it should be.Wewill have to
expose these inexact weights if we were to allow concurrent access
to the tree while the update is in progress. Suppose we denote the
actual weight stored in an index tuple 𝑡 as �̃�𝑡 (and conveniently
denote the weight of a leaf tuple 𝑡 as �̃�𝑡 as well). Correspondingly,
let 𝑠𝑡 =

∑︁
𝑡 ′∈𝑝∧𝑘𝑡′<𝑘𝑡 �̃�𝑡 ′ . It turns out that we can use Algorithm 1

to perform rejection sampling as long as it is consistent for sampling
purposes (as defined in Definition 1).

Definition 1. An aggregate B-tree 𝑇 is said to be consistent for
sampling purposes if and only if for any index tuple 𝑡 ∈ 𝑇 : �̃�𝑡 ≥∑︁
𝑡 ′∈𝑐𝑡 �̃�𝑡 ′ .

Algorithm 1: Sampling an aggregate B-tree
Input: An aggregate B-tree𝑇

1 𝑑 ← random() ; //a random number in (0, 1)

2 𝑝 ← the root page of𝑇 ;
3 𝑟 ← 𝑑 ∗∑︁𝑡∈𝑝 �̃�𝑡 ;
4 while 𝑝 is an internal page do
5 if 𝑟 ≥ ∑︁

𝑡∈𝑝 �̃�𝑡 then
6 goto line 1 ; //sample rejection and retry

7 𝑡 ← the index tuple 𝑡 such that 𝑠𝑡 ≤ 𝑟 < 𝑠𝑡 + �̃�𝑡 ;
8 𝑟 ← 𝑟 − 𝑠𝑡 ;
9 𝑝 ← 𝑐𝑡 ;

10 if 𝑟 ≥ ∑︁
𝑡∈𝑝 �̃�𝑡 then

11 goto line 1 ; //sample rejection and retry

12 𝑡 ← the leaf tuple 𝑡 such that 𝑠𝑡 ≤ 𝑟 < 𝑠𝑡 + �̃�𝑡 ;
13 return 𝑡 ;

In an aggregate B-tree, we must maintain consistent weights
for sampling purposes. To ensure that, any insertion that increases
the weights must apply the updates from root to leaf, while any
deletion which decreases the weights must do so in the reverse
order. This may leave some gap between the stored weight and the
actual weight while the update is still in progress.

On the other hand, we also want the gap to be as small as pos-
sible to ensure high efficiency. As an example, suppose we draw
samples from a table with 𝑁 tuples in order to compute SUM(M)
for some measure 𝑀 . Let the tree fan-out be 𝐵 and the rejection
rate (i.e., the probability that Algorithm 1 needs to retry) be 𝜌 .
The expected number of I/Os for fetching𝑚 independent samples

using an aggregate B-tree is𝑂 ( 𝑚
1−𝜌 𝑙𝑜𝑔𝐵𝑁 +𝑚). In contrast, a scan-

based sampling algorithm always need 𝑂 (𝑁 /𝐷) I/Os where 𝐷 is
the average number of tuples per heap page. Even if we ignore any
effect from buffering, prefetching and the performance difference
between random I/O and sequential I/O, we need to have a small
enough 𝜌 value to ensure aggregate B-tree based sampling has any
advantage compared to scan-based sampling. In practice, 𝑚

1−𝜌 /𝑁
usually needs to be less than 0.1%. Since the amount of samples𝑚
needed to achieve Y error is 𝑂 (1/Y2) [6] (a constant irrelevant to
𝑁 ), this is achievable only if 𝜌 is small enough.

3 DESIGN PRINCIPLES
In this section, we describe the main design principles of aggregate
B-trees that deviate from conventional concurrent B-tree designs.
The designs discussed in this section are generally applicable to
most latch-based concurrent B-trees which modify pages in place.
We will discuss practical implementation details in Section 4.

3.1 Atomic Updates to the Weights
The conventional method for updating some value on a B-tree page
requires exclusive access at the granularity of page. It works for
ordinary B-trees because most page updates are at or near leaf
levels, and thus rarely conflict with others.

In contrast, aggregate B-trees have significantly more conflicts
near the root page. Every insert or delete in the tree requires updat-
ing a weight value on each of the ℎ pages from root to leaf along
the search path. That means, every updating thread will conflict
with others at least on the root page. It is also easy to show by
birthday paradox that there is at least 50% chance of having an
additional conflict on the second level below root between two
threads at any time if there are at least𝑂 (

√
𝐵) concurrent updating

threads (𝐵 is the tree fan-out) – that is merely 17 threads if the tree
fan-out is 300 (roughly the average fan-out of an integer-keyed
B-tree in PostgreSQL with the default 8KB page size). Hence, the
conventional method will result in a massive amount of waits or
retries for ensuring exclusive access.

Our observation is these conflicts are actually due to the coarse
granularity and the mechanism used for exclusive access rather
than true conflicts. For instance, multiple threads may be updating
different weight values for the insertions or deletions under differ-
ent subtrees on the same root page, so they do not really conflict.
In addition, weight updates are commutative, so it does not matter
how they are ordered even if multiple threads are updating a single
weight simultaneously. Therefore, we can use atomic Fetch-And-
Add (FAA) for weight updates to ensure the correctness of weight
updates. It imposes the following two requirements on the B-tree,
both of which are achievable in most B-trees.

• It updates pages in place in an in-memory buffer. This is
true for most B-tree designs that use conventional buffer
pools to pin a page before access. After an update, we can
simply mark the page as dirty to persist the data. While it
marks ℎ pages as dirty in every update as opposed to 1 in an
ordinary B-tree, it usually does not impact the number of
I/O as long as the buffer pool is reasonably large to buffer all
the non-leaf pages. For instance, for a B-tree with 1 billion
integer keys in PostgreSQL, the tree height is 4 and we
only need a few megabytes of buffer space to buffer all the
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Figure 2: Updating the weights during the initial search for
insertion point when there are no concurrent SMO in the
inserting subtree

non-leaf pages. In the case where the internal pages do not
fit in main memory (e.g., large BigTable instances [1]), this
will likely to incur more I/Os per update for each read and
write at the lower levels of the tree. However, this will not
be a significant overhead during updates compared to non-
aggregate B-trees since they both have to perform random
reads on internal pages that don’t fit into memory during
search. Dirty pages flushing can be batched and performed
in background to fully utilize the I/O bandwidth. Thus, the
latency of writes can be hidden in many use cases as long
as there is a sufficiently large buffer pool to fit the working
set.

• The location of values must not change concurrently. To
ensure that, we can acquire a read latch before updating the
weight. Any thread performing SMO, which may move the
value to a different address, must take a write latch instead.
Since SMO is relatively infrequent, the wait resulting from
a write latch is not significant. Meanwhile, all threads not
performing SMO may benefit from the read latches where
they can interleave their weight accesses in any order with
no coordination.

3.2 Weight Updates under Concurrent Split
To consistently update the weights for an insertion, we need to
increment the weights of index tuples pointing to the inserting
subtrees in the root-to-leaf order. At a first glance, we can simply
do that during the initial search of the insertion point before we
perform the actual insertion. The updated weights along the search
path are temporarily𝑤𝑡 greater than it should be before the actual
insertion of 𝑡 happens. For example, if the key of 𝑡 is 12, and we have
only one updating thread that is inserting 𝑡 into the tree shown in
Figure 1. Then any other sampling thread may only find one of the
partially updated state of the tree as shown in Figure 2. All three
are consistent for sampling and the final state (c) does not cause
any rejection for sampling. This either requires the tree to admit
one updater at a time, or use latch coupling (i.e., holding a latch
on a parent page while pinning and latching its child page during
the initial search), but neither is very scalable for a large number
of concurrent updaters.
Inconsistent weights by unsafe concurrent splits.Many B-tree
concurrency control schemes admit concurrent SMOwith non-SMO
operations. Notably, the B-link tree [16] and its variants allow access
to a concurrently split page through horizontal links, when it has
not installed any vertical pointer from the parent page to the newly
created page. It is actually incorrect to use the aforementioned
strategy for weight updates in this case. Figure 3 shows a scenario
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1 3
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Figure 3: Updating weights during initial search for insertion
point may lead to undercount due to concurrent splits. 𝜙
denotes an uninitialized weight.

where two threads 𝑇1 and 𝑇2 concurrently insert two tuples 𝑡 and
𝑡 ′ with keys 4 and 5 respectively into the tree in Figure 1 and the
weights end up being inconsistent in the end. More specifically, 𝑇1
and 𝑇2 first concurrently increment the weight of the index tuple
pointing to the old 𝑝6 (denoted as �̃�6) by 1. 𝑇2 happens to obtain
the write latch on the old 𝑝6 before 𝑇1 does. It then splits the page
into two halves, 𝑝6 and 𝑝13, and inserts 𝑡 ′ into the new page 𝑝13.
It also computes the total weights of 𝑝6 and 𝑝13 based on their
current content, which are both 2. After 𝑇2 obtains a write latch on
𝑝2 again, it immediately drops the latches on 𝑝6 and 𝑝13, and then
installs the new links with new weight values 2 and 2. 𝑇1 is able
to reach the new page 𝑝13 through a horizontal link on 𝑝6 as soon
as 𝑇2 drops the latches on them. It then inserts 𝑡 on 𝑝13. At this
point, both inserts have been finished but the weight of the index
tuple pointing to 𝑝13 (denoted as �̃�13) permanently undercounts
by 1, making the weights no longer consistent for sampling. The
crux of this issue is that 𝑇2 is unable to determine whether there
are concurrent updates to the split child pages 𝑝6 or 𝑝13. Any such
concurrent updates invalidate the weight values 𝑇2 just computed
during the first half of the split, because the additional weight in
the concurrent update are not included in either of these computed
weights. It is incorrect regardless of where and when 𝑇1 performs
the final insertion. For example, imagine that𝑇1, instead of inserting
𝑘𝑡 = 4, inserts 𝑘𝑡 = 2 into 𝑝6 in step 5. Then it’s �̃�6 instead of �̃�13
that is undercounted by 1 as a result.
Safety conditions during concurrent splits.We adopt a different
strategy: use a second search for a newly inserted tuple to increment
the weights along the way. It assumes each key is unique, which
can be achieved by simply attaching the heap record ID to the key.
Figure 4 shows the update sequence when a thread𝑇1 inserts a tuple
𝑡 with 𝑘𝑡 = 12 into the tree shown in Figure 1 with no concurrent
SMO in the subtree. When 𝑡 is first inserted into the tree, it is
marked as invalid and treated as a zero-weight tuple. Thus, an
invalid tuple is invisible to any concurrent sampling threads, which
is fine as it is uncommitted and should be invisible to concurrent
threads anyway. For the ease of explanation, we say �̃�𝑡 = 0 when
it is invalid, and we mark it as valid by adding𝑤𝑡 to �̃�𝑡 .

However, a concurrent SMO may still reset some recently up-
dated weight if 𝑇1 does not hold a latch when following a vertical
or horizontal page pointer. For instance, a concurrent split by an-
other thread 𝑇2 on 𝑝8 between step 3 and 4 may incorrectly reset
�̃�8 as 2, which undoes the increment of 1 that 𝑇1 did in step 3. It
turns out that we can determine and correct the reset weights by
just detecting the resetting SMOs that happen before we obtain the
read latch on the page where we want to increment the weight,
and thus we do not have to coordinate with concurrent threads for
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Figure 4: Using a second search to performupdatewhen there
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incomplete SMOs. In more details, a key observation is that an SMO
only undoes the increment by 𝑇1 when it is a split that happens
on a page 𝑝 where 𝑇1 has not incremented the weight of any tuple
(e.g., 𝑝8 before step 4), and 𝑇1 has incremented the weight of some
tuple on the parent page of 𝑝 (e.g., 𝑝2 after step 3). Since we also
need to increment the weight in the root-to-leaf order, it means the
effect of a number of concurrent splits will always leave the tree in
a state where the weights of the relevant index tuples above some
level 𝐿 include𝑤𝑡 , and the weights of those below 𝐿 do not include
𝑤𝑡 . And we should always find a page at level 𝐿 to increment the
weight on. Formalizing that, we define the safety conditions for
updating the weight on a page 𝑝 as below in Definition 2.

Definition 2. A read latched page 𝑝 is said to be safe for weight
update for a newly inserted tuple 𝑡 , if it satisfies these conditions:
(1) The page 𝑝 has a tuple that is either 𝑡 itself or points to the

subtree containing 𝑡 .
(2) If 𝑝 is an internal page, we also hold a read latch on its child

page 𝑐𝑡 ′ , for the 𝑡 ′ that points to the subtree containing 𝑡 .
(3) The weight of any tuple pointing to some ancestor page of 𝑡

above the level of 𝑝 has been incremented by𝑤𝑡 .
(4) The weight of any tuple that points to some ancestor page of

the inserted tuple 𝑡 at or below the level of 𝑝 (including 𝑡 itself)
has either never been incremented by𝑤𝑡 or had a reset of the
value due to SMO which undoes the previous increment.
Note that at any moment, there may only be at most one safe

page for a given insertion thread 𝑇 . Algorithm 2 shows how to
correctly perform weight updates in the second search, if we can
provide a function EstablishSafePage(t, p) that allows us to find
a safe page given the inserted tuple 𝑡 and a currently read latched
page 𝑝 that 𝑇 has not updated yet. It is easy to show that when
the algorithm finishes, the last safe page must be the leaf page
that contains the newly inserted tuple 𝑡 . By the definition of safe
page, the weight of any tuple that points to some ancestor page
of 𝑡 above the leaf level has been incremented by 𝑤𝑡 as well. At
this point, 𝑡 itself is also marked as valid in the last loop when its
weight is incremented by 𝑤𝑡 , so we have completed the weight
update. The algorithm is generic to any B-tree structure, except for
the function for establishing a safe page, which depends on how the
B-tree design handles concurrency control during search. Usually
that will involve a search along the original search path to a point
where we can establish the safety conditions. We will show how
this may be implemented for B-link tree in Section 4.

3.3 Weight Updates with Concurrent Merge
Pages may be merged (or deleted) during deletion if its utilization
falls below a threshold (or it becomes empty) in order to balance the

Algorithm 2: Incrementing weights with safe page
Input: 𝑡 : a copy of the newly inserted tuple

1 𝑝 ← root of the the tree ;
2 Latch 𝑝 ;
3 while true do
4 𝑝 ← EstablishSafePage(t, p) ;
5 𝑡 ′ ← the ancestor tuple of 𝑡 on 𝑝 (maybe 𝑡 itself);
6 fetch-and-add(�̃�𝑡 ′,𝑤𝑡) ;
7 if 𝑝 is a leaf page then
8 Unlatch 𝑝 and break;
9 else
10 Unlatch the 𝑝 and set 𝑝 to 𝑐𝑡 ′ ;

B-tree. There are generally three strategies: 1) lazy reorganization
of the tree that is performed offline; 2) latch coupling from bottom
up during recursive page merges; or 3) using two atomic steps for
page merging (i.e., unlinking the page from parent and performing
the actual merging) [12, 21]. The first two do not admit concurrent
SMO because 1) the lazy reorganization can be done offline with
database locks, and 2) latch coupling prevents concurrent splits
from acquiring the latches needed. As a result, they are always
safe for weight updates. However, the third strategy may introduce
concurrent splits which are not safe. In more details, we first note
that we need to subtract the weight of the deleted tuple from the
index tuples from bottom up. Different from page splits, the weight
of a merged page can be computed in one atomic step on the parent
page only, which adds the weights of two merged page (stored in
two adjacent index tuples) and then subtracts the weight of the
deleted leaf tuple from the sum. As a result, it is impossible to
accidentally undo a decremented weight due to a concurrent merge.
However, it is still possible that we have a concurrent split after a
page merge but before we manage to decrement the weight on the
parent level, which may prematurely decrement the weight of an
index tuple before the deletion has a chance to do so, resulting in
an undercounted weight. Since it is the concurrent split that may
cause undercounting, we can use the same mechanism as in page
split to establish the safety conditions for weight update before
decrementing the weights (with a slightly different definition of
safety where any level below 𝑙 is updated while any level at or
above 𝑙 is not).

4 AB-TREE DESIGN
In this section, we describe the details of AB-tree, an implemen-
tation following the design principles in Section 3, based on the
B-link tree variant in PostgreSQL. In addition, we discuss how to
reduce sample rejections in order to improve sampling efficiency
under MVCC in general and in PostgreSQL at the end of this sec-
tion. AB-tree extends the data layout with additional fields to help
correctly maintain the weights and perform sampling. As in an
ordinary B-link tree, the pages in each level are linked as a linked
list (Figure 5). Each page 𝑝 , except the rightmost page on each level,
has a right sibling page 𝑝𝑟 . In addition, each page stores a high key
𝑘𝑝 (the additional key in the gray boxes), which is an upper bound
of the keys of all leaf tuples under 𝑝 and a strict lower bound of the
keys in its right sibling 𝑝𝑟 . The high key of the rightmost pages on
each level is always +∞.
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Figure 5: An aggregate B-link tree (AB-tree) with height 3 and a fan-out of 3. The dashed arrows represent the next page links
in per-level linked lists. High keys of the pages are shown in gray boxes.

Note that key search, insertion/deletion of a leaf tuple, SMO, as
well as how latches are used is the same as an ordinary B-link tree
– we only add an additional sampling routine and an additional
weight maintenance routine for updates. The following are a few
key facts of B-link tree that we heavily rely on in AB-tree imple-
mentation: 1) B-link tree always does latch coupling from bottom
up and from right to left (which makes SMO easy). That means, we
cannot hold any latch when moving from a parent page to a child
page, or from a page to its right sibling for deadlock avoidance; 2)
This variant of B-link tree allows page split but not merge. A page
is only deleted from the tree when it is completely empty. Hence,
we only need to consider page split for SMO; 3) The key range of a
tuple 𝑡 may only move to the right of its original position during a
page split. As a result, we can always find a search key 𝑘 in the key
range of some tuple 𝑡 on a page 𝑝 or to its right, if 𝑝 was supposed
to contain 𝑘 in its key range before we drop the latch on its parent.

In the remainder of this section, we describe the data layout in
AB-tree, as well as the implementation details for sampling and
update in AB-tree. While the implementation discussed in this
section is tailored towards B-link tree, it is also possible to adapt
them to apply to other B-trees not having all of these particulars.
In particular, one can usually replace the moving-right operation
in B-link tree with a new tree search from the root in other B-trees.
The Recompute ID and Structural Modification ID introduced later
can also be used for detecting concurrent splits and SMO in other
B-trees. If the B-tree allows merge, then one needs to establish the
safety conditions for weight updates using the Recompute ID and
Structural Modification ID in the deletion as well.

4.1 Data Layout
An index tuple 𝑡 is a quadruple 𝑡 = (𝑘𝑡 , 𝑐𝑡 , �̃�𝑡 , RID𝑡 ), where 𝑘𝑡 is its
key, 𝑐𝑡 is a pointer to its child page, and �̃�𝑡 is the stored weight. In
addition, we store a 16-bit counter RID𝑡 , or the Recompute ID, in 𝑡 ,
which is incremented whenever �̃�𝑡 is reset by some SMO on 𝑐𝑡 that
recomputes a new value based on 𝑐𝑡 . Note that we normally only
increment or decrement �̃�𝑡 for most operations and the recompute
only happens for a split. Therefore, changes in RID𝑡 may be used
for detecting a concurrent split on 𝑐𝑡 , which is the only operation
that may make the weight update incorrect.

A leaf tuple 𝑡 is also a quadruple 𝑡 = (𝑘𝑡 , 𝑝𝑡𝑟,𝑤𝑡 , xmin𝑡 ), where
𝑘𝑡 is its key and 𝑝𝑡𝑟 is a pointer to its heap tuple. We do not have
to store the weight 𝑤𝑡 = 𝑓 (𝑡) in 𝑡 unless the weight function 𝑓

is expensive to evaluate (e.g., access to the heap tuple). The leaf
tuple also stores a transaction ID, xmin𝑡 , which is set to the top
transaction ID that inserts this index tuple once insertion of 𝑡 is
completed. It serves two purposes: as the creation timestamp de-
scribed in Section 4.4 and as an indicator for whether the tuple is

valid. To mark 𝑡 as invalid, we store an invalid xmin, and then 𝑡 is
treated as a zero-weight leaf tuple regardless of what𝑤𝑡 is.

In the header of an index page 𝑝 , we store another 16-bit counter
SID𝑝 , or Structural modification ID, which is incremented every
time there is an insertion or deletion on 𝑝 . Note that a split on 𝑝

also increments SID𝑝 as there are deletions. It exists mainly for fast
path of common cases in weight updates rather than correctness: if
we find SID𝑝 does not change after we unlatch and latch 𝑝 again,
we know there is not any concurrent SMO of itself and/or any
of the immediate child pages. As we will show later, this can save
additional accesses to the parent/ancestor pages in most cases when
we try to establish safe pages for weight updates and can also save
a search on page looking for the correct index tuple to update.

Note that neither RID or SID needs to survive a crash because
they are used for detecting concurrent SMO among running trans-
actions. Hence, they are not write-ahead logged. We do mark the
buffer as dirty if we update them though, as they need to survive
through page swaps without system crash. They can wrap around
for being only 16-bit long, but there is unlikely any false negative
in the detected concurrent SMO during a short period of time.

4.2 Sampling in AB-tree
Sampling in AB-tree is similar to Algorithm 1 but requires some
slight modification to be correct. The search in B-link tree always
drops the latch on parent page before we latch its children. How-
ever, a concurrent split may happen on the child page before we
successfully latch it. As a result, we cannot immediately reject the
sample even if we find that the total weight of the child page is
smaller than the one stored in the index tuple as some of the tuples
with non-zero sampling probabilities that are supposed to be on
the child page may have been moved to the right. To deal with that,
we save the expected high key (which can be found as the next
index key or the high key on the parent page), before we move to
the child page. Then we need to move right until we find a page
with the matching high key. We only reject the sample if the total
weights of the pages we visited in the current level is smaller than
the weight stored in the index tuple in the previous level.

4.3 Updates in AB-tree
Deletion in AB-tree is actually easier than insertion, as we can use
latch coupling when we decrement the weights from leaf to root.
This prevents any concurrent SMO from undoing the decrements.
Note that deletion in PostgreSQL only happen in batches during
vacuum of dead versions. Thus, we can decrement the weights in
one pass from leaf to root for a batch of tuples deleted from the
same leaf page, making it more efficient.
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Figure 6: Possible state of 𝑝 and its child page 𝑐 when we latch
𝑐 and 𝑝 again after dropping the latch on 𝑝

For the remainder of this subsection, we only consider the harder
insertion case. As discussed in Section 3.2, we perform an insertion
in 2 phases: the first phase inserts the leaf tuple; the second phase
performs a search from the root to leaf for the newly inserted tuple
in order to update the weights along the path. The key is to design
the algorithm for establishing safe pages shown as Algorithm 3. In
addition to a copy of the inserted tuple 𝑡 , the next potential safe
page 𝑝 (which is either the root or the child page of the last safe page
whose key range contains 𝑘𝑡 ), it is also provided with a pointer to an
initially empty stack (reset with each invocation of Algorithm 2).
This stack is used to save information about the past safe pages
to help identify the next safe page. More specifically, we push the
page number 𝑝 , SID𝑝 and RID𝑡 ′ for the tuple 𝑡 ′ ∈ 𝑝 s.t. 𝑡 ∈ T𝑡 ′ onto
the stack whenever we return a safe page 𝑝 .
Different states after page split. The algorithm first locates a
tuple 𝑡 ′ whose key range matches the key of the inserted tuple 𝑡
(i.e., 𝑡 ∈ T𝑡 ′ ). Then it tries to move to its child page 𝑐 = 𝑐𝑡 . We must
drop the latch on 𝑝 before latching the child page 𝑐 (line 9) due to
the latch coupling order of B-link tree, so it is possible that there
are concurrent split(s) on 𝑝 , 𝑐 , and/or some other immediate child
page(s) of 𝑝 . Figure 6 shows all the 5 possible scenarios that could
result from the original state after line 10. Case 1 is the most com-
mon case where no split happens on 𝑝 or its child pages, and thus 𝑝
is safe for return. It is the only case where SID𝑝 does not change, so
we can quickly determine that without accessing additional pages
on the stack (line 11). In the remaining four cases, 𝑝 is not safe in
two of them: case 4 for the split of 𝑝 undoes the increment of𝑤𝑡 in
𝑝’s parent (or in the case of root split, the new root does not count
𝑤𝑡 either), violating the safety condition (3), and case 5 for the split
of 𝑐 moves the subtree containing 𝑡 to its unlatched right sibling,
violating safety condition (2). They may happen at the same time: a
split on 𝑐 that moves the subtree containing 𝑡 to the right may also
lead to a split on 𝑝 . If case 4 happens, the safe page must be above
𝑝 . Otherwise, the safe page could still be at the same level as 𝑝 if
we can latch the correct child page later. In the algorithm, we can
determine case 5 easily using the condition on line 13: either we
cannot find a 𝑡 ′ ∈ 𝑝 such that 𝑡 ∈ T , or 𝑡 ′ no longer points to 𝑐 (line
13). Then we need to determine whether case 4 happens in order
to decide how to reestablish the safety condition, which requires
checking the SID and RID of the parent of 𝑝 .
Identifying concurrent page split. The definitive way to deter-
mine whether 𝑝 is split is to find the index tuple 𝑡 ′ that points to 𝑝

Algorithm 3: Establish a safe page for weight update
Input: 𝑡 : a copy of the newly inserted tuple
𝑝 : the latched root or the latched child page of last safe page
stack: a stack of triplets (𝑝 ′, SID𝑝′, RID𝑡 ′ ) for previously
returned safe pages 𝑝 ′ and 𝑡 ′ ∈ 𝑝 ′ s.t. 𝑡 ∈ T ′𝑡

1 def PushStack(𝑡, 𝑝, stack)
2 find 𝑡 ′ ∈ 𝑝 s.t. 𝑡 ∈ T𝑡 ′ ;
3 push (𝑝, SID𝑝 , RID𝑡 ′) onto stack ;
4 def EstablishSafePage(𝑡, 𝑝, stack)
5 if 𝑝 is a leaf page then
6 return p
7 PushStack(𝑡, 𝑝, stack) ;
8 𝑐 ← 𝑐𝑡 ′ for the 𝑡 ′ ∈ 𝑝 s.t. 𝑡 ∈ T𝑡 ′ ;
9 Unlatch 𝑝;

10 Latch 𝑐; Latch 𝑝 again ;
11 if SID𝑝 = 𝑠𝑡𝑎𝑐𝑘.SID then
12 return 𝑝 ;
13 if ∄𝑡 ′ ∈ 𝑝 s.t. 𝑡 ∈ T𝑡 ′ ∨ 𝑐𝑡 ′ ≠ 𝑐 then
14 Unlatch 𝑐; 𝑐 ← 𝑛𝑢𝑙𝑙 ;
15 pop(stack) ;
16 while stack is non-empty do
17 𝑝 ′ ← 𝑠𝑡𝑎𝑐𝑘.𝑝 and latch 𝑝 ′ ;
18 if stack.SID = SID𝑝′ then
19 nosplit← 𝑡𝑟𝑢𝑒 ;
20 else
21 while ∄𝑡 ′ ∈ 𝑝 ′ s.t. 𝑐𝑡 ′ = 𝑝 do
22 𝑟 ← the right sibling of 𝑝 ′′ ;
23 Unlatch 𝑝 ′; latch 𝑟 ; 𝑝 ′ ← 𝑟 ;
24 find the 𝑡 ′ ∈ 𝑝 ′ s.t. 𝑐𝑡 ′ = 𝑝 ;
25 if stack.RID = RID𝑡 ′ then
26 stack.𝑝 ← 𝑝 ′; stack.𝑆𝐼𝐷 ← SID𝑝′ ;
27 nosplit← 𝑡𝑟𝑢𝑒 ;
28 else
29 nosplit← 𝑓 𝑎𝑙𝑠𝑒 ;
30 if nosplit then
31 Unlatch 𝑝 ′ ;
32 if 𝑐 ≠ 𝑛𝑢𝑙𝑙 then
33 PushStack(𝑡, 𝑝, stack);
34 return 𝑝 ;
35 else
36 return EstablishSafePage(𝑡, 𝑝, stack) ;
37 Unlatch 𝑐; 𝑐 ← 𝑝; 𝑝 ← 𝑝 ′; pop(stack) ;
38 if 𝑝 is still a root then
39 return 𝑝 ;
40 Unlatch 𝑝; Unlatch 𝑐 ;
41 𝑝 ← root of the tree and latch 𝑝;
42 return EstablishSafePage(𝑡, 𝑝, stack) ;

and check whether RID𝑡 ′ has changed since last time we established
safety on the page where 𝑡 ′ was. To do so, we pop 𝑝 from the stack
and latch the page 𝑝 ′ last returned as the safe page. Since 𝑝 ′ may
be concurrently split as well, 𝑝 ′ may not be the parent page of 𝑝
at this time and thus we may have to move to its right to find the
index tuple 𝑡 ′ that points to 𝑝 . To save the time for searching for 𝑡 ′,



we first check whether 𝑆𝐼𝐷𝑝′ has changed (line 18). If not, there is
no SMO at all on any immediate child page of 𝑝 ′, which includes
𝑝 , and we can avoid the searches for 𝑡 ′ and the checks on the RID.
Otherwise, we may move to the right of 𝑝 ′ until it finds 𝑡 ′ (line
21-23). After these checks, if we find that 𝑝 was not concurrently
split, we can establish that either 𝑝 is a safe page if it’s not case 5
(line 33-34), or we have the same precondition as the beginning of
EstablishSafePage() if it’s case 5 (line 36). On the other hand, if
we find that 𝑝 was concurrently split, the safe page must be above 𝑝 .
Luckily, we essentially have the same precondition as the beginning
as if we have excluded case 5. At that time, we have latched 𝑝’s
child page 𝑐 whose key range contains 𝑡 ; we know that 𝑡 ′ pointing
to 𝑐 does not have its weight incremented yet; and we only need to
check whether 𝑝 is split to decide whether it is safe or not. Replacing
𝑝 with 𝑝 ′ and 𝑐 with 𝑝 , the preconditions listed above are exactly
the same. Hence we can use the same checks above iteratively until
we find a safe page. A corner case (line 38-42) is that we have an
empty stack when we need to check whether 𝑝 is split or not. If 𝑝
is still a root, then it is not split since PostgreSQL never deletes a
root. Otherwise, there was a root split on 𝑝 which definitely did not
count the𝑤𝑡 in the new root and we need to restart from the root.

It is easy to show that successive calls to Algorithm 3 always
return the safe page for weight update, until it returns the leaf page
containing 𝑡 as the final one. It may have to go back to a page in a
higher level when some SMO undoes the weight update. It, however,
should be quite rare because SMOs are mostly in the lower levels
near leaf and thus rarely conflict with concurrent weight updates.

4.4 Reducing Sample Rejections due to MVCC
DBMS often uses Multi-Version Concurrency Control (MVCC) to
increase concurrency by allowing transactions to run on different
snapshots. This is especially true for read-only analytical queries
which tend to access a large amount of data as it can avoid unnec-
essary blocking or aborts due to read-write conflicts. Under MVCC,
insertion creates a new version of the tuple tagged with a creation
timestamp. Deletion only marks an old version with a timestamp
indicating when it is deleted. Garbage collection of an old version
happens after it is no longer visible to any concurrent transactions.
A B-tree index is usually agnostic to MVCC. In other words, every
new version gets inserted into the tree without removing the old
one. Any tuple returned by the tree requires a separate fetch from
the heap to check whether it is visible to the running transaction.
For sampling, an invisible tuple is the same as a sample rejected
during the sampling process, which will cause a retry to draw a new
sample from the root. It effectively decreases the sample acceptance
rate by an additional multiplicative factor 1 − 𝜏 , where 𝜏 is the
percentage of the weights of invisible tuples that may be sampled
by the tree. For the same reason mentioned in Section 2.2, a higher
𝜏 value will lower the break-even threshold for aggregate B-tree
based sampling to be faster than scan-based sampling. Therefore,
we want to reduce 𝜏 by avoiding returning invisible versions.

There are two sources of invisible versions: 1) dead versions that
are invisible to any live thread and 2) live versions that are newer
than the snapshot the sampling process is running on. Fortunately,
the dead versions may be frequently cleaned by the DBMS if its
quantity exceeds a certain threshold, so that won’t be a major
source of the increased rejection rate. The live versions, however,
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Figure 7: Multi-version weight store
may not be cleaned at all because they are newer versions that
replace those in the older snapshot the sampling is running on.
This cause a snowball effect on the rejection rate of a sampling
thread: the longer it runs, the more newer invisible live versions
there will be, the higher rejection rate becomes.

In order to avoid returning invisible live versions in a sampling
thread, we introduce a light-weight multi-version weight store
that allows computation of a tighter upper bound of the weight
under an older snapshot. Here we make two assumptions about the
MVCC model: (1) it is able to obtain the creation timestamp for an
insertion at any time with very low cost, even if the transaction
has not committed; (2) it is able to assert a versioned tuple being
invisible to a snapshot solely based on its creation timestamp (but
not necessarily able to assert visibility). These assumptions are
easy to satisfy. For instance, a very common MVCC model is that
a transaction may run at a start timestamp, but commit at a later
commit timestamp. All versions committed by the transaction are
treated as created at the commit timestamp. In this case, a versioned
tuple is invisible to any transactions started before its commit
timestamp, and the start timestamp can be used in place of the
commit timestamp as a lower bound for asserting invisibility. In
the more complicated MVCC model of PostgreSQL, a transaction
commits at a timestamp obtained upon its first write, which is
available at the time we insert the tuple into the tree, while a
snapshot (logically) becomes a list of timestamps of concurrent
transactions. Yet one can still assert a tuple is invisible to a snapshot
if its creation timestamp is in the list of concurrent transactions.

With these assumptions in mind, we now describe how the multi-
version weight store works (Figure 7). For each index tuple 𝑡 , we
maintain an in-memory linked list (called the version chain of 𝑡 ) of
delta weight and creation timestamp pairs in decreasing timestamp
order. These version chains are stored in a central in-memory hash
table. Both the hash table and the linked lists are implemented
using the lock-free linked list in [10] to avoid locking overhead
over these heavily contended data structures. We use the page
number of the child page 𝑐𝑡 as the key rather than the physical
record ID of 𝑡 because it should not change across SMO. When a
thread increments �̃�𝑡 for an insertion, it simply prepends a pair of
the creation timestamp and delta weight it added to �̃�𝑡 . In the case
of a page split on 𝑐𝑡 , the original version chain of 𝑡 is replaced by
a new version chain, which may be constructed from all version
chains of the index tuples on 𝑐𝑡 if 𝑐𝑡 is an index page, or from the
creation timestamp of all the leaf tuples on 𝑐𝑡 if it is a leaf page.

When a sampling thread reads �̃�𝑡 , it scans the version chain and
subtracts all the delta weights from �̃�𝑡 with creation timestamps
that are invisible to its snapshot. As a concrete example, suppose
we have a sampling thread running on a snapshot with a start
timestamp of 5 in the simpleMVCCmodel.When it reads theweight
of 𝑡 with 𝑐𝑡 = 𝑝7, it will subtract the 1 at the creation timestamp 8
from the current value �̃�7 stored on the page. Similarly, if it runs
on a snapshot with a start timestamp of 3, it will subtract both 1’s
at the creation timestamps 4 and 8. Actually, we do not need to scan



SELECT COUNT(*) FROM A TABLESAMPLE SWR(?);
SELECT COUNT(*) FROM A TABLESAMPLE BERNOULLI(?);
INSERT INTO A VALUES (?, ?);
DELETE FROM A WHERE Y = ?;

Figure 8: The prepared statements used in the experiments
the entire chain. Rather it may be able to stop at the start timestamp
(for simple MVCC model) or the smallest concurrent transaction
timestamp (for PostgreSQL MVCC model) in the snapshot, which
indicates we cannot assert invisibility over any timestamps in the
rest of the chain. We design the version chains in such a way that
achieves a good trade-off between update/storage cost and how
close the reconstructed weight is to the actual weight. We do not
maintain the exact commit timestamp and deletion timestamp in
the chain, which not only occupy more space, but are also very
expensive to compute as it requires a transaction to retroactively
update all the chain nodes upon commit and/or abort. On the other
hand, the gap between the reconstructed weight and the actual
weight is limited to a small fraction because these are induced by
either false negatives from concurrent transactions of the snapshot
(which are no more than a small constant), or dead versions from
deletion and aborts which are automatically cleaned by the system
when its quantity exceeds some threshold.

Another note is that the multi-version weight store never needs
to survive system crash since only concurrent sampling threads
need it. The version chains may also grow indefinitely if we do not
remove version with creation timestamps not concurrent to any live
and future snapshots. Therefore, we have a dedicated epoch-based
garbage collector that periodically computes a safe upper bound of
the creation timestamps that are no longer needed, and recycle all
the nodes with creation timestamps lower than the bound.

5 EXPERIMENTS
In this section, we provide an empirical study on the performance
of AB-tree against its baseline (the exclusively latched aggregate
B-tree described in Section 2) in terms of their concurrent sampling
and update performance.

5.1 Experimental Setup
We implement AB-tree based on the B-link tree implementation
in PostgreSQL 13.1 [8]. Each leaf tuple has a constant unit weight
of 1 so that sampling in the AB-tree returns independent uniform
samples. In addition, we implement a new TABLESAMPLE operator
swr(𝑚) returning𝑚 independent samples using the AB-tree with
replacement. For each sample, it generates an independent uniform
random number in (0, 1) and uses Algorithm 1 to draw a sample. If
that sample fails the visibility test, it automatically retries.
System Configuration. We build our customized PostgreSQL us-
ing GCC 9.3 with -O3 flag onUbuntu 20.04. The system is configured
with 2 Intel Xeon E5-2697 v4 CPU (each with 18 cores and hyper-
threading enabled) and 256 GB RAM in total. During tests, we pin
all the PostgreSQL processes and its shared memory to one of the
NUMA node to reduce the impact of NUMA. The PostgreSQL data
files are stored on a Samsung 970 EVO 1TB SSD and the Write-
Ahead Logs are separately stored on a SanDisk SDSSDH3 2TB SSD.
The buffer pool is set to 32GB unless otherwise specified. We set
the maximumWAL segment size to 48GB to prevent checkpointer’s
disruption. We also disable the full page write feature to avoid
the occasional forced full page image log entry which may add
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Figure 9: Sampling with varying number of threads

significant irrelevant I/O traffic. The multi-version weight store
is configured with 220 buckets and the GC thread runs every 10
seconds. The hash table entries and nodes in the chains of weight
update history are 24 bytes in size and are both allocated from a
fixed-size object pools backed by POSIX shared memory initialized
to 2 GB. It may map additional shared memory on demand in theory
but we never experienced so in the experiments. All the queries
are submitted through JDBC using prepared statements (shown in
Figure 8) to the PostgreSQL instance running at local host. The in-
serting client commits after every 10K insertions while the sampling
client automatically commits for every SELECT statement.
Dataset.Most of the experiments run on an AB-tree index on the 𝑦
column of a table𝐴(𝑥 : INT4, 𝑦 : INT4), with 64-bit integer weights.
We initially load the table 𝐴 with 1 billion random tuples unless
stated otherwise. All the experiments are run on a fresh copy of the
database. Note that we deliberately use a narrow synthetic table in
order to minimize the heap access overhead when measuring the
index performance. The heap file of𝐴 is about 33.8 GB, a loaded AB-
tree is 28.9GB. The original B-link tree and the baseline aggregate
B-tree (described in Section 2) built on the same table are about 20.4
GB. The space for storing weights in the index tuples is negligible
as the number of them is < 0.3% compared to the number of leaf
tuples. The increase in AB-tree’s space usage is due to the additional
4-byte xmin𝑡 stored in the leaf tuples, which has to be aligned to the
even larger 8-byte boundaries due to PostgreSQL restrictions. All
these indexes have a fan-out around 300 and 4 levels in height. In
addition, we run a more realistic mixed workload over the lineitem
table of TPC-H with scale factor 100 in order to demonstrate the
actual gain one may expect from AB-tree.

5.2 Sampling Performance
We first evaluate the sampling performance of AB-tree against the
baseline, and the SQL Bernoulli sampling. Here we do not flush the
OS I/O cache after copying the data. This mimics a typical scenario
where one loads the data and then immediately issues many queries.

We first compare the average query latency with different sample
sizes using a single thread. For AB-tree and baseline, we contin-
uously issue the same query for about 30 seconds and take the
average query latency. For the Bernoulli sampling, we only run
it for 10 times because of its significantly higher cost. As shown
in Figure 9(a), AB-tree has a query latency that ranges from 0.02
second (1000 samples per query) to 2.1 seconds (100,000 samples per
query) because it sustains a sampling throughput of 48K samples
per second. Note that the baseline does not have the overhead of
accessing the multi-version weight store. Hence, it has a slightly
higher throughput (about 60K samples/second) and a slightly lower
query latency from 0.016 second to 1.6 seconds. In contrast, the
SQL Bernoulli sampling has a running time of around 20 seconds
regardless of the sampling rate, which is 2 - 4 orders magnitude
slower than aggregate B-tree based sampling. Since AB-tree’s query
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Figure 10: Insertion throughput over time with 10 threads
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(c) 100%
Figure 11: Insertion throughput vs number of threads with small buffer
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(c) 100%
Figure 12: Insertion throughput vs number of threads with large buffer
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(c) 100%
Figure 13: Insertion throughput vs number of threads with all pages buffered in memory

latency increase linearly to the sample size, it can be predicted that
it has a shorter sampling query latency than the Bernoulli sam-
pling as long as the sample size is smaller than 106 (0.1% of the
table). Note that in a more realistic wide schema, the gap between
Bernoulli sampling and aggregate B-tree-based sampling will be
even bigger due to the larger heap files. Figure 9(b) measures how
the sampling throughput scales with more sampling threads. Here,
we run up to 36 concurrent threads for 30 seconds with AB-tree and
the baseline, and 10 times for Bernoulli sampling. In particular, we
measure the peak sampling rate by aggregating the number of sam-
ples produced by all threads and find the highest moving average
of the number of samples produced in a window size of 10 queries
asking for 10,000 samples (which is roughly 2 seconds for AB-tree,
1.75 seconds for the baseline and 198 seconds for the Bernoulli
sampling). We take the moving average since we record the run-
ning time for every 10,000 samples but report the total number
samples produced every 1/4 second. Without the moving average,
a query longer than 1/4 second would appear to finish within a
single 1/4 second window. Consistent with the previous experiment,
aggregate B-tree based sampling can achieve at least 2-3 orders
of magnitude higher throughput than Bernoulli sampling. Even
with a single thread, both AB-tree and the baseline can achieve a
sampling rate around 50K-60K, while the Bernoulli sampling can
only achieve 500 samples/second. Comparing AB-tree with the

baseline, accessing the multi-version weight store does poses about
30% overhead to the sampling throughput in AB-tree but, as we
will show later, this trade-off enables AB-tree to maintain a high
throughput for both sampling and update concurrently. Moreover,
we can always disable the multi-version weight store to eliminate
the overhead if there are few updates. Another note is that the
scalability of AB-tree and baselines gets throttled above 18 threads.
The reason for that is the CPU we used only has 18 physical cores
and hyperthreading cannot fully pipeline a memory-access-heavy
workload. As this is an intrinsic property of sampling and index
update workloads, all the scalability tests in this section inevitably
suffer from the same hyperthreading issue, which we believe is
a common issue to many concurrent index designs and deserves
further investigation, especially for many-core systems.

5.3 Concurrent Insertion Performance
Next, we compare concurrent insertion performance of AB-tree
and the baseline by inserting up to 500,000 random tuples per
thread into the database. We also include the original B-link tree
in PostgreSQL into the comparison, as its performance is a strict
upper bound of any aggregate B-tree. As insertion performance
is highly dependent on the a variety of factors, including the size of
buffer pool and system I/O cache, we test three common scenarios:
(1) (small buffer) loading a cold database that has a very small
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Figure 14: Mixed workload with 10 insertion threads and
varying number of sampling threads
buffer pool; (2) (large buffer) loading a cold system whose buffer
pool is not enough for caching all pages; (3) (in-memory) loading
a database fully buffered in the memory. In scenario 1, the system is
configured with a 128 MB buffer pool and we flush the system I/O
cache beforehand as well. In scenario 2, the system is configured
with a 32 GB buffer pool, which is enough to buffer all internal
pages over time but not all leaf pages and heap pages. Scenario 3 is
simulated by generating the same random tuples as scenario 2, and
insert them into a loaded scenario 2 database. Hence, the majority
of pages we access in scenario 3 are already in the buffer pool.

Figure 10 shows how the insertion throughput changes over the
entire course of execution with 10 threads. Because the running
time is different with various indexes, the x-axis is the percentage
of time elapsed and y-axis approximates its instant throughput by
averaging the preceding 2-second window. When the buffer pool is
small, there are frequent drops in throughput due to I/Os for swap-
ping out dirty pages. In all three scenarios, AB-tree outperforms
the baseline by 4-11x in insertion throughput and the gap becomes
larger as more pages are buffered. B-link tree’s performance is an
upper bound to achieve, and we can see that AB-tree’s overhead of
updating weights is only about 1

3 .
We also show scalability against the number of threads for AB-

tree, the baseline and theoretical upper bound provided by B-link
tree up to 36 threads. Since the insertion throughput increases
over time as more data pages are buffered (as shown in Figure 10),
we compare the peak throughput at different progress in time.
Figures 11, 12, 13 show the peak throughput at 20%, 60% and 100%
progress for the small buffer, larger buffer and in memory scenarios.
In all cases, AB-tree scales much better than the baseline in terms
of the insertion throughput. When data are not buffered in memory
and a lot of disk I/Os are involved, the exclusively latched path
significantly restricts concurrency for the baseline, which peaks
at around 13K insertions per second and does not scale beyond a
few threads. In contrast, AB-tree is able to scale similarly to B-link
tree, albeit with a 1/3 overhead. It can reach a throughput of about
163K insertions per second. When there are fewer I/Os in the large
buffer and in memory cases, the performance gap is a bit smaller.
Nevertheless, AB-tree consistently outperforms the baseline by
at least 3-7 times in all experiments with more than 10 threads,
regardless of the buffer pool size.

5.4 Read-Write Workload
Next, we study how AB-tree performs on mixed read-write work-
loads. The first case is a mixture of concurrent sampling queries and
insertions. This is a typical scenario where users try to do analysis
in real time while there are ongoing data ingestion. In this set of
experiments, we set the buffer pool size to 32GB and warm it up
by running 60 seconds of sampling queries beforehand. We run 10
concurrent insertion threads along with up to 10 sampling threads.
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Figure 15: Sampling throughput and acceptance rate trend
with deletion and vacuum
The sampling threads continuously issue queries asking for 10000
samples. Since we have found that the instant throughput of inser-
tion or sampling are pretty stable in a database with warmed buffer
pool, we measure the average insertion and sampling throughput
with different numbers of sampling threads.

As shown in Figures 14(a) and 14(b), insertion throughputs of
both AB-tree and baseline are quite stable as the number of query
threads grows. This is not surprising because the sampling process
only holds one latch at a time for a relatively short period of time.
The insertion throughput of AB-tree is roughly the same as that
of 10 threads with large buffer as we find in Figure 12(c), but the
baseline’s insertion throughput decreases by 40% compared to its
counterpart in Figure 12(c). In addition, it is unsurprising that the
sampling throughput is reduced for both due to exclusive latches
held during insertion. However, AB-tree’s sampling throughput
under active insertion only reduces to 1

5 ∼
1
6 , while that reduces to

1
30 ∼

1
40 for the baseline, clearly showing AB-tree’s advantage.

We also evaluate the impact of deletion and vacuum on concur-
rent sampling. It simulates the scenario when a background data
cleaning thread identifies and removes stale data from the database
while one concurrently analyzes the data with a number of sam-
pling queries. Since the effect of dead tuples on sampling efficiency
is not obvious if we only delete a relatively small number of tuples,
we loaded another database with 10 million random tuples instead
of 1 billion. We disable the autovacuum of PostgreSQL and run
10 concurrent sampling threads for 120 seconds. We measure the
sampling throughput as well as the overall sample acceptance rate.
At 60s, we launch a thread that deletes about 5% of all tuples. It
finishes at around 91s. Then at 96s, we launch another thread to run
vacuum against the database, which runs for 3 seconds. Figure 15
shows the results. When the deletion starts, the acceptance rate
gradually drops to about 95% as there are more dead tuples in the
table. The sampling throughput suffers an immediate drop because
the sampling threads have to switch to index scan instead of index-
only scan due to visibility checks. Then, its drop reaches the same
percentage when the delete finishes. Once the vacuum starts, the
acceptance rate rises until it reaches 100%. The sampling through-
put also recovers along with the acceptance rate and it is actually
slightly higher than it is before the vacuum. That is attributed to
the fact that there are fewer tuples remaining in the database.

5.5 Skewed Workload on TPC-H
Finally, we evaluate AB-tree in a more realistic setting using the
TPC-H dataset with scale factor 100. We load 3 databases with the
lineitem table, which has about 600 million tuples, and build the
AB-tree, the baseline aggregate B-tree, and the regular B-link tree
respectively over l_shipdate. We use the AB-tree and the baseline
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Figure 16: Mixed workload on TPC-H lineitem (SF = 100)
aggregate B-tree to draw random samples in the first two databases.
In the third, we use the SQL Bernoulli sampling with an appro-
priate sample rate to draw roughly the same amount of samples.
We simulate a more realistic scenario for real-time data analytics
with data and query range skews. More specifically, we set up 20
query threads representing the data analysts who are analyzing
the total revenue of sales for items shipped within a random 1-year
period using 10,000 random samples. We skew the query ranges by
randomly generating 90% of the ranges within the last 2 years in the
data, with the remaining 10% uniformly distributed in all possible
date ranges. In the meantime, 10 concurrent insertion threads insert
new tuples into lineitem. 99% of the new tuples have ship dates
within the last 183 days from the last day in the dataset, with the
remaining 1% uniformly distributed in the entire 7-year range.

Figure 16 shows average query latency before/during/after the
insertions, peak insertion throughput, and disk space usage. Note
that we include the cost of maintaining B-tree in the evaluation for
Bernoulli sampling even if the PostgreSQL does not choose index
scan for large ranges. The rationale is that one may still want to
keep the B-tree in case of the need to run zoom-in queries on smaller
ranges. We find that AB-tree achieves the best trade-offs with this
workload. The gap between AB-tree and the baseline in terms of
insertion throughput is much bigger compared to the previous
scalability tests, while its gap to the regular B-link tree is becoming
smaller. AB-tree is also able to consistently maintain a low query
latency with random sampling. Notably, its query latency is about
2 orders of magnitude lower than Bernoulli sampling and 4x lower
than the baseline during insertions. This experiment demonstrates
that AB-tree can achieve a very good end-to-end performance gain
and a moderate maintenance overhead in a realistic workload. The
space overhead of AB-tree relative to the heap file size, is quite
tolerable (about 7.6%), which is merely 3.1% more than the baseline
and B-tree relative to table size. We do not include a figure for how
the relative index sizes change with different heap file sizes, because
all three ratios will remain the same. Moreover, the wider the table
is (as most real datasets are), the space overhead is more negligible.

6 RELATEDWORKS AND EXTENSIONS
There are a plethora of related works on designing concurrent
B-trees in the literature. Lehman et al. first designed the B-link
tree [16] that supports high concurrency for updates and queries.

Many B-link variants tree are proposed to improve the concurrency
with different locking protocols, reduce the tree imbalance cause
by concurrent delete, recover from crashes [12, 15, 16, 20, 26, 27].

There have also been efforts in building latch-free B-trees to
support higher level of concurrency on modern storage devices. Ex-
amples include [18, 29] for Solid State Drive and [4] for Non-Volatile
Memory. These works utilize atomic operations like compare-and-
swap to implement SMOs. It is unclear whether we can build aggre-
gate B-trees on top of these latch-free B-trees as we need to fixate
the location of stored weights when incrementing or decrementing
the weights. It would be a possible direction to explore maintaining
the stored weights outside the tree nodes or pages. In principle, any
index structure can be augmented with aggregate weights to assist
sampling. There are also plenty of works discussing how to build
other concurrent index structures efficiently using hash tables, skip
lists, trie trees [7, 17, 22, 23]. It requires further investigation of how
to augment them with aggregate weights for sampling purposes.

Using aggregate tree for uniform sampling was previously dis-
cussed in [14, 24] and it was discussed in [30] how to perform
weighted sampling in an aggregate tree. In [19, 31], aggregate trees
are used for drawing random samples from join queries. Aggregate
trees may also be used for efficient range aggregation query [28].
None of these works consider concurrent updates and our work
can help support concurrency in them.

One-dimensional independent range sampling, i.e., sampling
from a key range instead of the entire table, in RAMmodel was stud-
ied in [11] and it supports drawing𝑚 samples in𝑂 (𝑙𝑜𝑔𝑁 +𝑚) time
and updates in𝑂 (𝑙𝑜𝑔𝑁 ) time. However, it is not easy to implement
in external memory and it is unclear how to support concurrent
operations. AB-tree can be extended to support 1-D independent
range sampling by only considering the index tuples that intersects
the key range in Algorithm 1. The sampling time is 𝑂 (𝑚𝑙𝑜𝑔𝑁 ).
which is higher than [11]. However, AB-tree’s advantage is its high
concurrency and support for external memory indexes.

7 CONCLUSION
In this work, we discuss the general design principles for concur-
rent aggregate B-tree and present AB-tree, an aggregate B-tree
based on B-link tree that supports highly concurrent updates and
random sampling operations. AB-tree can be a crucial component
for supporting approximate query processing for real-time data
analytics. Experiments show that our approach is more scalable
and can achieve significantly higher throughput compared to the
best-available baseline in a variety of workloads. That said, it is
worth further investigation to alleviate the impact of the inherent
contentions over the shared aggregates, especially there are many
more cores and hyperthreading enabled in newer CPUs. We also dis-
cuss possible extensions of the design to other index structures and
other sampling operations such as independent range sampling.
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