Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook

Dan Schultz

March 17, 2015
Introduction

On pages 51-53 of his lost notebook, Ramanujan recorded intriguing identities between η functions and incomplete elliptic integrals. These identities take the form

$$\int_0^1 \text{product of } \eta \text{ functions } dq = \int U(q) L(q) \sqrt{1-k^2 \sin^2 \theta} \, d\theta$$

where $k \in \mathbb{C}$ is fixed.

We will see how these identities arise from complex function theory, especially the genesis of the elliptic curve on the r.h.s.

The proofs given here will not be reminiscent of Ramanujan's work on theta functions and modular equations.

Dan Schultz

Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
Introduction

On pages 51-53 of his lost notebook, Ramanujan recorded intriguing identities between η functions and incomplete elliptic integrals.
On pages 51-53 of his lost notebook, Ramanujan recorded intriguing identities between η functions and incomplete elliptic integrals. These identities take the form

$$\int_0^q \text{product of } \eta \text{ functions } dq = \int_{U(q)}^{L(q)} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$$

where $k \in \mathbb{C}$ is fixed.
On pages 51-53 of his lost notebook, Ramanujan recorded intriguing identities between η functions and incomplete elliptic integrals.

These identities take the form

$$\int_0^q \text{product of } \eta \text{ functions } dq = \int_{L(q)}^{U(q)} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$$

where $k \in \mathbb{C}$ is fixed.

We will see how these identities arise from complex function theory.
On pages 51-53 of his lost notebook, Ramanujan recorded intriguing identities between η functions and incomplete elliptic integrals.

These identities take the form

$$\int_0^q \text{product of } \eta \text{ functions } dq = \int_{U(q)}^{L(q)} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}$$

where $k \in \mathbb{C}$ is fixed.

We will see how these identities arise from complex function theory, especially the genesis of the elliptic curve on the r.h.s.
On pages 51-53 of his lost notebook, Ramanujan recorded intriguing identities between \(\eta \) functions and incomplete elliptic integrals. These identities take the form

\[
\int_0^q \text{product of } \eta \text{ functions } dq = \int_{L(q)}^{U(q)} \frac{d\theta}{\sqrt{1 - k^2 \sin^2 \theta}}
\]

where \(k \in \mathbb{C} \) is fixed.

We will see how these identities arise from complex function theory, especially the genesis of the elliptic curve on the r.h.s.

The proofs given here will not be reminiscent of Ramanujan’s work on theta functions and modular equations.
Notation

\(q = e^{2\pi i \tau}(x; q) \infty = (1 - x)(1 - xq) \ldots \)

\(\eta_a := \eta_a(\tau) = q^{a/24}(q^a; q^a) \infty \eta_a \),

\(n := \eta_a(\tau) = q^{(n-2)a/2}n(q^a; q^n) \infty (q^n - a; q^n) \infty (q^n; q^n) \infty \)

\(\text{SL}_2(\mathbb{Z}) = \{ (a \ b \\ c \ d) | ad - bc = 1 \} \)

\(\Gamma_0(N) = \{ M \in \text{SL}_2(\mathbb{Z}) \mid M \equiv \left(\begin{array}{cc} * & * \\ 0 & * \end{array} \right) \mod N \} \)
Notation

\[q = e^{2\pi i \tau} \]

\[(x; q)_\infty = (1 - x)(1 - xq) \cdots \]
\[q = e^{2\pi i \tau} \]

\[(x; q)_\infty = (1 - x)(1 - xq) \cdots \]

\[\eta_a := \eta_a(\tau) = q^{a/24}(q^a; q^a)_\infty \]

\[\eta_{a,n} := \eta_{a,n}(\tau) = q^{(n-2a)^2/8n} (q^a; q^n)_\infty (q^{n-a}; q^n)_\infty (q^n; q^n)_\infty \]
\[q = e^{2\pi i \tau} \]
\[(x; q)_\infty = (1 - x)(1 - xq) \cdots \]

\[\eta_a := \eta_a(\tau) = q^{a/24}(q^a; q^a)_\infty \]
\[\eta_{a,n} := \eta_{a,n}(\tau) = q^{(n-2a)^2/8n} (q^a; q^n)_\infty (q^{n-a}; q^n)_\infty (q^n; q^n)_\infty \]

\[SL_2(\mathbb{Z}) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \bigg| ad - bc = 1 \right\} \]
\[\Gamma_0(N) = \left\{ M \in SL_2(\mathbb{Z}) \bigg| M \equiv \begin{pmatrix} * & * \\ 0 & * \end{pmatrix} \mod N \right\} \]
Examples

- level 15

\[\int_{\eta}^{\infty} \frac{1}{\tau} \, d\tau = \frac{1}{5} \int_{\frac{\pi}{2}}^{\infty} \frac{\tan^{-1} \left(\frac{\eta}{\sqrt{5}} \right)}{\sqrt{1 - \epsilon - \frac{5}{3} \sin^2 \theta}} \, d\theta \]

where

\[x = \eta_{3}^{2/15} \eta_{3}^{2/5}, \quad y = \eta_{5}^{1/5} \eta_{5}^{2/5}, \quad \epsilon = 1 + \sqrt{\frac{5}{2}} \]

Dan Schultz
Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
Examples

level 15

\[
\int_{i \infty}^{\tau} \eta_1 \eta_3 \eta_5 \eta_{15} 2\pi i d\tau = \frac{1}{5} \int \frac{2 \tan^{-1} \left(\frac{1}{\sqrt{5}} \right)}{2 \tan^{-1} \left(\frac{1}{\sqrt{5}} \sqrt{\frac{1-11x-x^2}{1+x-x^2}} \right)} \frac{d\theta}{\sqrt{1 - \frac{9}{25} \sin^2 \theta}}.
\]
Examples

- level 15

\[
\int_{i \infty}^{\tau} \eta_1 \eta_3 \eta_5 \eta_{15} 2\pi i d\tau = \frac{1}{5} \int 2 \tan^{-1} \left(\frac{1}{\sqrt{5}} \right) \frac{d\theta}{\sqrt{1 - \frac{9}{25} \sin^2 \theta}}.
\]

where

\[x = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3} \]

- level 10
Examples

▶ level 15

\[
\int_{i\infty}^{\tau} \eta_1 \eta_3 \eta_5 \eta_{15} 2\pi i d\tau = \frac{1}{5} \int 2 \tan^{-1} \left(\frac{1}{\sqrt{5}} \right) \frac{d\theta}{2 \tan^{-1} \left(\frac{1}{\sqrt{5}} \sqrt{1 - \frac{11x}{1 + x-x^2}} \right)} \sqrt{1 - \frac{9}{25} \sin^2 \theta}.
\]

where

\[x = \frac{\eta_1 \eta_{15}}{\eta_3 \eta_5} \]

▶ level 10

\[
5^{3/4} \int_{i\infty}^{\tau} \eta_1^2 \eta_5^2 2\pi i d\tau = 2 \int_{\cos^{-1} \left(\sqrt{5y} \right)}^{\frac{\pi}{2}} \frac{d\theta}{\sqrt{1 - \left(e^{-5} \right)^{3/2} \sin^2 \theta}}
\]

\[= \int_{0}^{\frac{\pi}{2}} 2 \tan^{-1} 5^{3/4} x \frac{d\theta}{\sqrt{1 - e^{-5} 5^{-3/2} \sin^2 \theta}} \]

Dan Schultz Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
Examples

- level 15

\[
\int_{i\infty}^{\tau} \eta_1 \eta_3 \eta_5 \eta_{15} 2\pi i d\tau = \frac{1}{5} \int_{2}^{2\tan^{-1} \left(\frac{1}{\sqrt{5}} \right)} \left(\frac{1}{\sqrt{5}} \sqrt{\frac{1-11x-x^2}{1+x-x^2}} \right) \frac{d\theta}{\sqrt{1 - \frac{9}{25} \sin^2 \theta}}.
\]

where

\[x = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3} \]

- level 10

\[
5^{3/4} \int_{i\infty}^{\tau} \eta_1^2 \eta_5^2 2\pi i d\tau = 2 \int_{\cos^{-1}}^{\pi/2} \sqrt{\epsilon^5 y} \frac{d\theta}{\sqrt{1 - \epsilon^{-5} 5^{-3/2} \sin^2 \theta}}
\]

where

\[x = \frac{\eta_5^3}{\eta_1^3}, \quad y = \frac{\eta_{1,5}^5}{\eta_{2,5}^5}, \quad \epsilon = \frac{1 + \sqrt{5}}{2} \]
Examples

- level 14

\[\int_{\tau}^{\infty} \eta_1 \eta_2 \eta_7 \eta_{14} \frac{\pi}{id \tau} = \int_{-\frac{7}{4}} \cos^{-1} c \cos^{-1} \left(1 + x \right) d\theta \sqrt{1 - \frac{7}{2} \cdot 2^{-11} / 2} \sin^2 \theta. \]

\[\int_{\tau}^{\infty} \eta_1 \eta_5 \eta_7 \eta_{35} \frac{\pi}{id \tau} = \int_{0}^{x} dx \sqrt{1 + x - x^2} \sqrt{1 - 5x - 9x^3 - 6x^5 - x^6}. \]

where \(x = \eta_1 \eta_35 \eta_5 \eta_7 \).
Examples

level 14

\[
\int_{i\infty}^{i\tau} \eta_1 \eta_2 \eta_7 \eta_{14} 2\pi i d\tau = 2^{-7/4} \int_{\cos^{-1} c}^{\cos^{-1} \frac{1+x}{1-x}} \frac{d\theta}{\sqrt{1 - 7 \cdot 2^{-11/2} c^{-2} \sin^2 \theta}}.
\]
Examples

- level 14

\[
\int_{i\infty}^{\tau} \eta_1 \eta_2 \eta_7 \eta_{14} 2\pi i d\tau = 2^{-7/4} \int_{\cos^{-1} c}^{\cos^{-1} c} \frac{d\theta}{\sqrt{1 - 7 \cdot 2^{-11/2} c^{-2}} \sin^2 \theta}.
\]

where

\[
x = \frac{\eta_1^4 \eta_{14}^4}{\eta_2^4 \eta_7^4}, \quad c = \frac{\sqrt{13 + 16\sqrt{2}}}{7}
\]

- level 35

...
Examples

- level 14

\[\int_{i\infty}^{T} \eta_1 \eta_2 \eta_7 \eta_{14} 2\pi i d\tau = 2^{-7/4} \int_{\cos^{-1} c}^{\cos^{-1} c} \frac{d\theta}{\sqrt{1 - 7 \cdot 2^{-11/2} c^{-2} \sin^2 \theta}}. \]

where

\[x = \frac{\eta_4^4 \eta_{14}^4}{\eta_2^4 \eta_7^4}, \quad c = \frac{\sqrt{13 + 16\sqrt{2}}}{7}. \]

- level 35

\[\int_{i\infty}^{T} \eta_1 \eta_5 \eta_7 \eta_{35} 2\pi i d\tau = \int_{0}^{x} \frac{x \, dx}{\sqrt{1 + x - x^2} \sqrt{1 - 5x - 9x^3 - 6x^5 - x^6}}. \]
Examples

level 14

\[\int_{\infty}^{\tau} \eta_1 \eta_2 \eta_7 \eta_{14} 2\pi i d\tau = 2^{-7/4} \int_{\cos^{-1} c}^{\cos^{-1} c \frac{1+x}{1-x}} \frac{d\theta}{\sqrt{1 - 7 \cdot 2^{-11/2} c^{-2} \sin^2 \theta}}. \]

where

\[x = \frac{\eta_1^4 \eta_{14}^4}{\eta_2 \eta_7^4}, \quad c = \frac{\sqrt{13 + 16\sqrt{2}}}{7}. \]

level 35

\[\int_{\infty}^{\tau} \eta_1 \eta_5 \eta_7 \eta_{35} 2\pi i d\tau = \int_{0}^{x} \frac{x \, dx}{\sqrt{1 + x - x^2} \sqrt{1 - 5x - 9x^3 - 6x^5 - x^6}} \]

where

\[x = \frac{\eta_1 \eta_{35}}{\eta_5 \eta_7}. \]
Examples’

These identities are established first by obtaining a differential equation, and then integrating both sides.
Examples’

These identities are established first by obtaining a differential equation, and then integrating both sides.

▶ level 15
Examples’

These identities are established first by obtaining a differential equation, and then integrating both sides.

level 15

$$\eta_1 \eta_3 \eta_5 \eta_{15} 2\pi i d\tau = \frac{dx}{\sqrt{(x^2 - x - 1)(x^2 + 11x - 1)}}$$
These identities are established first by obtaining a differential equation, and then integrating both sides.

level 15

\[\eta_1 \eta_3 \eta_5 \eta_{15} 2\pi i d\tau = \frac{dx}{\sqrt{(x^2 - x - 1)(x^2 + 11x - 1)}} \]

where

\[x = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3} \]

level 10
Examples’

These identities are established first by obtaining a differential equation, and then integrating both sides.

- **level 15**

 \[\eta_1 \eta_3 \eta_5 \eta_{15} 2\pi i d\tau = \frac{dx}{\sqrt{(x^2 - x - 1)(x^2 + 11x - 1)}} \]

 where

 \[x = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3} \]

- **level 10**

 \[\eta_1^2 \eta_5^2 2\pi i d\tau = \frac{dy}{\sqrt{y(1 - 11y + y^2)}} \]

 \[= \frac{2dx}{\sqrt{1 + 22x^2 + 125x^4}} \]
Examples’

These identities are established first by obtaining a differential equation, and then integrating both sides.

▶ level 15

$$\eta_1 \eta_3 \eta_5 \eta_{15} 2\pi i d\tau = \frac{dx}{\sqrt{(x^2 - x - 1)(x^2 + 11x - 1)}}$$

where

$$x = \frac{\eta_1^3 \eta_5^3}{\eta_3^3 \eta_5^3}$$

▶ level 10

$$\eta_1^2 \eta_5^2 2\pi i d\tau = \frac{dy}{\sqrt{y(1 - 11y + y^2)}}$$

$$= \frac{2dx}{\sqrt{1 + 22x^2 + 125x^4}}$$

where

$$x = \frac{\eta_5^3}{\eta_1^3}, \quad y = \frac{\eta_{1,5}^5}{\eta_{2,5}^5}$$
Examples’

- level 14

\[
\eta_1 \eta_2 \eta_7 \eta_{14} \pi \text{id} \tau = dx \sqrt{1 - \frac{1}{2} x + \frac{1}{4} x^2 - \frac{1}{4} x^3 + x^4}
\]

where

\[
x = \eta_4 \eta_{14} \eta_2 \eta_7
\]

\[
\eta_1 \eta_5 \eta_7 \eta_{35} \pi \text{id} \tau = x \ dx \sqrt{1 + x - \frac{1}{2} x^2} \sqrt{1 - \frac{5}{2} x - \frac{9}{4} x^3 - \frac{6}{4} x^5 - x^6}
\]

where

\[
x = \eta_1 \eta_{35} \eta_5 \eta_7
\]
Examples’

- level 14

\[\eta_1 \eta_2 \eta_7 \eta_{14} 2\pi i d\tau = \frac{dx}{\sqrt{1 - 14x + 19x^2 - 14x^3 + x^4}} \]
Examples’

- level 14

\[
\eta_1 \eta_2 \eta_7 \eta_{14} 2\pi i d\tau = \frac{dx}{\sqrt{1 - 14x + 19x^2 - 14x^3 + x^4}}
\]

where

\[
x = \frac{\eta_1^4 \eta_{14}^4}{\eta_2^4 \eta_7^4}
\]

- level 35
Examples'

.level 14

\[\eta_1 \eta_2 \eta_7 \eta_{14} 2 \pi i d\tau = \frac{dx}{\sqrt{1 - 14x + 19x^2 - 14x^3 + x^4}} \]

where

\[x = \frac{\eta_1^4 \eta_{14}^4}{\eta_2^4 \eta_7^4} \]

level 35

\[\eta_1 \eta_5 \eta_7 \eta_{35} 2 \pi i d\tau = \frac{x \ dx}{\sqrt{1 + x - x^2} \sqrt{1 - 5x - 9x^3 - 6x^5 - x^6}} \]
Examples’

- level 14

\[\eta_1 \eta_2 \eta_7 \eta_{14} 2\pi i d\tau = \frac{dx}{\sqrt{1 - 14x + 19x^2 - 14x^3 + x^4}} \]

where

\[x = \frac{\eta_1^4 \eta_{14}^4}{\eta_2^4 \eta_7^4} \]

- level 35

\[\eta_1 \eta_5 \eta_7 \eta_{35} 2\pi i d\tau = \frac{x \, dx}{\sqrt{1 + x - x^2} \sqrt{1 - 5x - 9x^3 - 6x^5 - x^6}} \]

where

\[x = \frac{\eta_1 \eta_{35}}{\eta_5 \eta_7} \]
Converting Back to Legendre’s Normal Form

Elliptic integrals with a quartic polynomial under the square root can be converted to Legendre form via the equation

\[\int_0^X \sqrt{(x-r_1)(x-r_2)(x-r_3)(x-r_4)} \, dx = 2\sqrt{(r_3-r_1)(r_2-r_4)} \int \frac{1}{\sqrt{(r_2-r_4)(X-r_1)(r_3-r_1)(r_2-r_4)}} \, d\theta \sqrt{1-(r_3-r_4)(r_2-r_1)(r_3-r_1)(r_2-r_4) \sin^2 \theta}, \]

Elliptic integrals with a cubic polynomial under the square root can be converted via

\[\int_0^X \sqrt{(x-r_1)(x-r_2)(x-r_3)} \, dx = 2\sqrt{r_3-r_1} \int \frac{1}{\sqrt{(X-r_1)(r_2-r_1)}} \, d\theta \sqrt{1-(r_2-r_1)(X-r_1)(r_3-r_1) \sin^2 \theta}. \]
Converting Back to Legendre’s Normal Form

Elliptic integrals with a quartic polynomial under the square root can be converted to Legendre form via the equation

\[
\int_0^X \frac{dx}{\sqrt{(x-r_1)(x-r_2)(x-r_3)(x-r_4)}}
\]

\[
= \frac{2}{\sqrt{(r_3-r_1)(r_2-r_4)}} \int_0^{\sin^{-1}\sqrt{\frac{(r_2-r_4)(X-r_1)}{(r_2-r_1)(X-r_4)}}} d\theta \sqrt{1 - \frac{(r_3-r_4)(r_2-r_1)}{(r_3-r_1)(r_2-r_4)} \sin^2 \theta},
\]

Elliptic integrals with a cubic polynomial under the square root can be converted via

\[
\int_0^X \frac{dx}{\sqrt{(x-r_1)(x-r_2)(x-r_3)}}
\]

\[
= 2 \int_0^{\sin^{-1}\sqrt{\frac{(r_2-r_3)(X-r_1)}{(r_2-r_1)(X-r_3)}}} d\theta \sqrt{1 - \frac{(r_3-r_1)(r_2-r_3)}{(r_3-r_1)(r_2-r_3)} \sin^2 \theta}.
\]
Elliptic integrals with a quartic polynomial under the square root can be converted to Legendre form via the equation

\[\int_0^X \frac{dx}{\sqrt{(x - r_1)(x - r_2)(x - r_3)(x - r_4)}} = \frac{2}{\sqrt{(r_3 - r_1)(r_2 - r_4)}} \int_0^{\sin^{-1} \sqrt{(r_2 - r_4)(x - r_1)/(r_2 - r_1)(x - r_4)}} d\theta \sqrt{1 - \left(\frac{r_3 - r_4}{r_3 - r_1}\right)\left(\frac{r_2 - r_1}{r_2 - r_4}\right)\sin^2 \theta}, \]

Elliptic integrals with a cubic polynomial under the square root can be converted via

\[\int_0^X \frac{dx}{\sqrt{(x - r_1)(x - r_2)(x - r_3)}} = \frac{2}{\sqrt{r_3 - r_1}} \int_0^{\sin^{-1} \sqrt{\frac{x - r_1}{r_2 - r_1}}} d\theta \sqrt{1 - \left(\frac{r_2 - r_1}{r_3 - r_1}\right)\sin^2 \theta}. \]
Transformations of Legendre’s Normal Form

degree two Landen transformation

\[2 + \int_0^\Theta d\theta \sqrt{1 - 4t(1 + t)^2}\sin^2 \theta = \int \tan^{-1}\left(\sin 2\Theta \cos 2\Theta + t\right) d\theta \sqrt{1 - t^2}\sin^2 \theta, \]

degree three transformation

\[3 + 2t \int_0^\Theta d\theta \sqrt{1 - t\left(2 + t(1 + 2t)^3\right)}\sin^2 \theta = \int 2 \tan^{-1}\left(tan \frac{\Theta}{2}\right)(t + 2) \cos \Theta - t + 1(t + 2) \cos \Theta + t - 1) d\theta \sqrt{1 - t^3(2 + t)^3}\sin^2 \theta, \]

and the double angle formula

\[2 \int_0^\Theta d\theta \sqrt{1 - t \sin^2 \theta} = \int 2 \tan^{-1}\left(tan \Theta \sqrt{1 - t \sin^2 \Theta}\right) d\theta \sqrt{1 - t \sin^2 \theta}. \]
Transformations of Legendre’s Normal Form

degree two Landen transformation

\[
\frac{2}{1 + t} \int_{0}^{\Theta} \frac{d\theta}{\sqrt{1 - \frac{4t}{(1+t)^2} \sin^2 \theta}} = \int_{0}^{\tan^{-1} \left(\frac{\sin 2\Theta}{\cos 2\Theta + t} \right)} \frac{d\theta}{\sqrt{1 - t^2 \sin^2 \theta}},
\]
Transformations of Legendre’s Normal Form

degree two Landen transformation

\[
\frac{2}{1 + t} \int_{0}^{\Theta} \frac{d\theta}{\sqrt{1 - \frac{4t}{(1+t)^2} \sin^2 \theta}} = \int_{0}^{\tan^{-1}\left(\frac{\sin 2\Theta}{\cos 2\Theta + t}\right)} \frac{d\theta}{\sqrt{1 - t^2 \sin^2 \theta}},
\]

the degree three transformation

\[
\frac{3}{1 + 2t} \int_{0}^{\Theta} \frac{d\theta}{\sqrt{1 - t \left(\frac{2+t}{1+2t}\right)^3 \sin^2 \theta}} = \int_{0}^{2 \tan^{-1}\left(\tan\left(\frac{\Theta}{2}\right) \frac{(t+2) \cos \Theta - t+1}{(t+2) \cos \Theta + t-1}\right)} \frac{d\theta}{\sqrt{1 - t^3 \left(\frac{2+t}{1+2t}\right) \sin^2 \theta}},
\]
Transformations of Legendre’s Normal Form

degree two Landen transformation

\[
\frac{2}{1 + t} \int_{0}^{\Theta} \frac{d\theta}{\sqrt{1 - \frac{4t}{(1+t)^2} \sin^2 \theta}} = \int_{0}^{\tan^{-1}\left(\frac{\sin 2\Theta}{\cos 2\Theta + t}\right)} \frac{d\theta}{\sqrt{1 - t^2 \sin^2 \theta}},
\]

the degree three transformation

\[
\frac{3}{1 + 2t} \int_{0}^{\Theta} \frac{d\theta}{\sqrt{1 - t \left(\frac{2+t}{1+2t}\right)^3 \sin^2 \theta}} = \int_{0}^{2 \tan^{-1}\left(\frac{\Theta}{2} \frac{(t+2) \cos \Theta - t + 1}{(t+2) \cos \Theta + t - 1}\right)} \frac{d\theta}{\sqrt{1 - t^3 \left(\frac{2+t}{1+2t}\right) \sin^2 \Theta}},
\]

and the double angle formula

\[
2 \int_{0}^{\Theta} \frac{d\theta}{\sqrt{1 - t \sin^2 \theta}} = \int_{0}^{2 \tan^{-1}\left(\tan \Theta \sqrt{1 - t \sin^2 \Theta}\right)} \frac{d\theta}{\sqrt{1 - t \sin^2 \Theta}}.
\]

Dan Schultz
Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
B. C. Berndt, H. H. Chan, and S.-S. Huang
Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
B. C. Berndt, H. H. Chan, and S.-S. Huang

On Ramanujan’s Elliptic Integrals and Modular Identities
S. Raghavan, and S. S. Rangachari
Proof Example
\[\frac{1}{2\pi i} \frac{dx}{d\tau} = \eta_1 \eta_3 \eta_5 \eta_{15} \sqrt{(x^2 - x - 1)(x^2 + 11x - 1)} \]
Proof Example

\[\frac{1}{2\pi i} \frac{dx}{d\tau} = \eta_1 \eta_3 \eta_5 \eta_{15} \sqrt{(x^2 - x - 1)(x^2 + 11x - 1)} \]

\[x = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3} \]
Proof Example

\[
\frac{1}{2\pi i} \frac{dx}{d\tau} = \eta_1 \eta_3 \eta_5 \eta_{15} \sqrt{(x^2 - x - 1)(x^2 + 11x - 1)}
\]

\[
x = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3}
\]

\[
R = \frac{\eta_1^2 \eta_5^2}{\eta_3^2 \eta_{15}^2}, \quad P = \frac{\eta_1^6}{\eta_5^6}, \quad Q = \frac{\eta_3^6}{\eta_{15}^6}
\]
Proof Example

\[
\frac{1}{2\pi i} \frac{dx}{d\tau} = \eta_1 \eta_3 \eta_5 \eta_{15} \sqrt{(x^2 - x - 1)(x^2 + 11x - 1)}
\]

\[
x = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3}
\]

\[
R = \frac{\eta_1^2 \eta_5^2}{\eta_3^2 \eta_{15}^2}, \quad P = \frac{\eta_1^6}{\eta_5^6}, \quad Q = \frac{\eta_3^6}{\eta_{15}^6}
\]

\[
R + 5 + \frac{9}{R} = \frac{1}{x} - x
\]
Proof Example

\[
\frac{1}{2\pi i} \frac{dx}{d\tau} = \eta_1 \eta_3 \eta_5 \eta_{15} \sqrt{(x^2 - x - 1)(x^2 + 11x - 1)}
\]

\[
x = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3}
\]

\[
R = \frac{\eta_1^2 \eta_5^2}{\eta_3^2 \eta_{15}^2}, \quad P = \frac{\eta_1^6}{\eta_5^6}, \quad Q = \frac{\eta_3^6}{\eta_{15}^6}
\]

\[
R + 5 + \frac{9}{R} = \frac{1}{x} - x
\]

\[
P + \frac{125}{P} = R - 4 + \frac{135}{R} + \frac{486}{R^2} + \frac{729}{R^3}
\]
Proof Example

\[\frac{1}{2\pi i} \frac{dx}{d\tau} = \eta_1 \eta_3 \eta_5 \eta_{15} \sqrt{(x^2 - x - 1)(x^2 + 11x - 1)} \]

\[\chi = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3} \]

\[R = \frac{\eta_1^2 \eta_5^2}{\eta_3^2 \eta_{15}^2}, \quad P = \frac{\eta_1^6}{\eta_5^6}, \quad Q = \frac{\eta_3^6}{\eta_{15}^6} \]

\[R + 5 + \frac{9}{R} = \frac{1}{\chi} - \chi \]

\[P + \frac{125}{P} = R - 4 + \frac{135}{R} + \frac{486}{R^2} + \frac{729}{R^3} \]

\[Q + \frac{125}{Q} = R^3 + 6R^2 + 15R - 4 + \frac{9}{R} \]
Proof Example

\[
\frac{1}{2\pi i} \frac{dx}{d\tau} = \eta_1 \eta_3 \eta_5 \eta_{15} \sqrt{(x^2 - x - 1)(x^2 + 11x - 1)}
\]

\[
x = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3}
\]

\[
R = \frac{\eta_1^2 \eta_5^2}{\eta_3^2 \eta_{15}^2}, \quad P = \frac{\eta_1^6}{\eta_5^6}, \quad Q = \frac{\eta_3^6}{\eta_{15}^6}
\]

\[
R + 5 + \frac{9}{R} = \frac{1}{x} - x
\]

\[
P + \frac{125}{P} = R - 4 + \frac{135}{R} + \frac{486}{R^2} + \frac{729}{R^3}
\]

\[
Q + \frac{125}{Q} = R^3 + 6R^2 + 15R - 4 + \frac{9}{R}
\]

\[
1 + 6 \sum_k \sigma_1(k) q^k - 30 \sum_k \sigma_1(k) q^{5k} = \sqrt{\frac{\eta_1^{12} + 22\eta_1^6 \eta_5^6 + 125\eta_5^{12}}{\eta_1^2 \eta_5^2}}
\]
We will obtain these formulas by

1. Finding N such that the modular curve of level N is an elliptic curve E/C

2. Constructing the invariant differential for E/C as cusp form $\times 2\pi id\tau$

3. Constructing the invariant differential for E/C from a function x of order 2 on E/C

4. Equating these two representation of the invariant differential gives the main differential equation

Ramanujan has correctly identified the cusp form and correctly identified the function x of order 2.
We will obtain these formulas by

- Finding N such that the modular curve of level N is an elliptic curve E/C
- Constructing the invariant differential for E/C as cuspform $\times \pi_{id}\tau$
- Constructing the invariant differential for E/C from a function x of order 2 on E/C
- Equating these two representations of the invariant differential gives the main differential equation

Ramanujan has correctly identified the cusp form and the function x of order 2.
We will obtain these formulas by

- Finding N such that the modular curve of level N is an elliptic curve E/\mathbb{C}
We will obtain these formulas by

- Finding N such that the modular curve of level N is an elliptic curve E/\mathbb{C}
- Constructing the invariant differential for E/\mathbb{C} as cuspform $\times 2\pi i d\tau$

Ramanujan has correctly identified the cusp form x of order 2.
We will obtain these formulas by:

- Finding \(N \) such that the modular curve of level \(N \) is an elliptic curve \(E/\mathbb{C} \)
- Constructing the invariant differential for \(E/\mathbb{C} \) as \(\text{cuspform} \times 2\pi \text{id}_\tau \)
- Constructing the invariant differential for \(E/\mathbb{C} \) from a function \(x \) of order 2 on \(E/\mathbb{C} \)

Ramanujan has correctly identified the cusp form and the function \(x \) of order 2.
We will obtain these formulas by

- Finding \(N \) such that the modular curve of level \(N \) is an elliptic curve \(E/\mathbb{C} \)
- Constructing the invariant differential for \(E/\mathbb{C} \) as \(\text{cuspform} \times 2\pi id\tau \)
- Constructing the invariant differential for \(E/\mathbb{C} \) from a function \(x \) of order 2 on \(E/\mathbb{C} \)
- Equating these two representation of the invariant differential gives the main differential equation
We will obtain these formulas by

- Finding N such that the modular curve of level N is an elliptic curve E/\mathbb{C}
- Constructing the invariant differential for E/\mathbb{C} as $cuspform \times 2\pi id\tau$
- Constructing the invariant differential for E/\mathbb{C} from a function x of order 2 on E/\mathbb{C}
- Equating these two representation of the invariant differential gives the main differential equation

Ramanujan has
We will obtain these formulas by

- Finding N such that the modular curve of level N is an elliptic curve E/\mathbb{C}
- Constructing the invariant differential for E/\mathbb{C} as \(\text{cuspform} \times 2\pi i \text{id}_\tau \)
- Constructing the invariant differential for E/\mathbb{C} from a function \times of order 2 on E/\mathbb{C}
- Equating these two representation of the invariant differential gives the main differential equation

Ramanujan has

- correctly identified the cusp form
We will obtain these formulas by

- Finding \(N \) such that the modular curve of level \(N \) is an elliptic curve \(E/\mathbb{C} \)
- Constructing the invariant differential for \(E/\mathbb{C} \) as \(\text{cuspform} \times 2\pi id\tau \)
- Constructing the invariant differential for \(E/\mathbb{C} \) from a function \(x \) of order 2 on \(E/\mathbb{C} \)
- Equating these two representation of the invariant differential gives the main differential equation

Ramanujan has

- correctly identified the cusp form
- correctly identified the function \(x \) of order 2.
The modular curve $\mathbb{H}/\Gamma_0(N)$

Theorem

For any $N \in \mathbb{N}$, $\mathbb{H}/\Gamma_0(N)$ can be made into a compact Riemann surface by the addition of certain cusps in $\mathbb{Q} \cup \{i\infty\}$.

The fundamental domain of $\mathbb{H}/\Gamma_0(N)$ consist of $[\Gamma_0(1) : \Gamma_0(N)]$ translates of the fundamental domain of $\mathbb{H}/\Gamma_0(1)$.

$q = e^{2\pi i \tau}$ may be used as a local variable at the cusp $i\infty$ of $\mathbb{H}/\Gamma_0(N)$.

Dan Schultz

Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
The modular curve $\mathbb{H}/\Gamma_0(N)$

a given

\[
\begin{pmatrix}
 a & b \\
 c & d \\
\end{pmatrix} \in \Gamma_0(N)
\]

acts on $\tau \in \mathbb{H}$ by

\[
\tau \rightarrow \frac{a\tau + b}{c\tau + d}
\]
The modular curve $\mathbb{H}/\Gamma_0(N)$

A given

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$

acts on $\tau \in \mathbb{H}$ by

$$\tau \rightarrow \frac{a\tau + b}{c\tau + d}$$

Theorem

*For any $N \in \mathbb{N}$, $\mathbb{H}/\Gamma_0(N)$ can be made into a compact Riemann surface by the addition of certain cusps in $\mathbb{Q} \cup \{i\infty\}$.***
The modular curve \(\mathbb{H}/\Gamma_0(N) \)

A given

\[
\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)
\]

acts on \(\tau \in \mathbb{H} \) by

\[
\tau \rightarrow \frac{a\tau + b}{c\tau + d}
\]

Theorem

For any \(N \in \mathbb{N} \), \(\mathbb{H}/\Gamma_0(N) \) can be made into a compact Riemann surface by the addition of certain cusps in \(\mathbb{Q} \cup \{i\infty\} \).

The fundamental domain of \(\mathbb{H}/\Gamma_0(N) \) consist of \([\Gamma_0(1) : \Gamma_0(N)]\) translates of the fundamental domain of \(\mathbb{H}/\Gamma_0(1) \).
The modular curve $\mathbb{H}/\Gamma_0(N)$

a given

$$\begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \Gamma_0(N)$$

acts on $\tau \in \mathbb{H}$ by

$$\tau \rightarrow \frac{a\tau + b}{c\tau + d}$$

Theorem

For any $N \in \mathbb{N}$, $\mathbb{H}/\Gamma_0(N)$ can be made into a compact Riemann surface by the addition of certain cusps in $\mathbb{Q} \cup \{i\infty\}$.

The fundamental domain of $\mathbb{H}/\Gamma_0(N)$ consist of $[\Gamma_0(1) : \Gamma_0(N)]$ translates of the fundamental domain of $\mathbb{H}/\Gamma_0(1)$

$$q = e^{2\pi i \tau}$$

may be used as a local variable at the cusp $i\infty$ of $\mathbb{H}/\Gamma_0(N)$.
The genus of \(\mathbb{H}/\Gamma_0(N) \)
The genus of $\mathbb{H}/\Gamma_0(N)$

$$2g - 2 = \frac{1}{6} N \prod_{p | N, p \text{ prime}} (1 + p^{-1})$$
The genus of $\mathbb{H}/\Gamma_0(N)$

\[2g - 2 = \frac{1}{6} N \prod_{p|N, p \text{ prime}} (1 + p^{-1}) \]

\[- \sum_{c|N} \phi(\gcd(c, N/c)) \]
The genus of $\mathbb{H}/\Gamma_0(N)$

$$2g - 2 = \frac{1}{6}N \prod_{p|N, p \text{ prime}} (1 + p^{-1})$$

$$- \sum_{c|N} \phi(\text{gcd}(c, N/c))$$

$$- \frac{1}{2} \begin{cases}
\prod_{q|N, q \text{ prime}} \left(1 + \left(\frac{-1}{q}\right)\right), & 4 \nmid N \\
0, & 4|N
\end{cases}$$
The genus of $\mathbb{H}/\Gamma_0(N)$

$$2g - 2 = \frac{1}{6}N \prod_{p|N, p \text{ prime}} (1 + p^{-1})$$

$$- \sum_{c|N} \phi(\gcd(c, N/c))$$

$$- \frac{1}{2} \begin{cases} 0, & 4 \nmid N \\ \prod_{q|N, q \text{ prime}} \left(1 + \left(\frac{-1}{q}\right)\right), & 4 \mid N \end{cases}$$

$$- \frac{2}{3} \begin{cases} 0, & 9 \nmid N \\ \prod_{q|N, q \text{ prime}} \left(1 + \left(\frac{-3}{q}\right)\right), & 9 \mid N \end{cases}$$
The genus of $\mathbb{H}/\Gamma_0(N)$

$$2g - 2 = \frac{1}{6}N \prod_{p | N, p \text{ prime}} (1 + p^{-1})$$

$$- \sum_{c | N} \phi(\gcd(c, N/c))$$

$$- \frac{1}{2} \begin{cases} \prod_{q | N, q \text{ prime}} \left(1 + \left(\frac{-1}{q}\right)\right), & 4 \nmid N \\ 0, & 4 | N \end{cases}$$

$$- \frac{2}{3} \begin{cases} \prod_{q | N, q \text{ prime}} \left(1 + \left(\frac{-3}{q}\right)\right), & 9 \nmid N \\ 0, & 9 | N \end{cases}$$

Key Fact: when $g = 1$, $\mathbb{H}/\Gamma_0(N)$ is isomorphic to some elliptic curve over \mathbb{C}.
An elliptic curve over \mathbb{C} is either of

- $\mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})$ with $\text{im}(\omega_2/\omega_1) > 0$
- $y^2 = 4x^3 - g_2x - g_3$
An elliptic curve over \mathbb{C} is either of

- $\mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})$ with $\text{im}(\omega_2/\omega_1) > 0$
- $y^2 = 4x^3 - g_2x - g_3$

The \wp function provides the conversion between the two

\[
x = \wp(z) \\
y = \wp'(z)
\]
An elliptic curve over \mathbb{C} is either of

- $\mathbb{C}/(\omega_1\mathbb{Z} + \omega_2\mathbb{Z})$ with $\text{im}(\omega_2/\omega_1) > 0$
- $y^2 = 4x^3 - g_2x - g_3$

The \wp function provides the conversion between the two

\[
x = \wp(z) \\
y = \wp'(z)
\]

The integral on either side of Ramanujan’s identities provides the explicit isomorphism between $\mathbb{H}/\Gamma_0(N)$ and $\mathbb{C}/(\omega_1\mathbb{Z} + \omega_2\mathbb{Z})$ for some ω_1 and ω_2.

\[
z = \int_{i\infty}^{\tau} f(\tau)2\pi id\tau
\]

where $f(\tau)$ is a cusp form.
Elliptic curve (cont)

Theorem

On an elliptic curve E/\mathbb{C}, the space of holomorphic differentials is one-dimensional ($= \mathbb{C} \Omega$).

Examples:

▶ $\mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z}) \Omega = dz$

▶ $y^2 = 4x^3 - g_2x - g_3 \Omega = dx y = dx \sqrt{4x^3 - g_2x - g_3}$

▶ $H/\Gamma_0(\mathbb{N})$ with $g = 1 \Omega = \text{cuspform}$

$\times 2\pi i \delta \tau = \text{cuspform} \times dq q$

Dan Schultz

Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
Theorem

On an elliptic curve E/\mathbb{C}, the space of holomorphic differentials is one dimensional ($= \mathbb{C}\Omega$).
Theorem

On an elliptic curve E/\mathbb{C}, the space of holomorphic differentials is one dimensional (=$\mathbb{C}\Omega$).

Examples:
Theorem

On an elliptic curve E/\mathbb{C}, the space of holomorphic differentials is one dimensional ($= \mathbb{C}\Omega$).

Examples:

- $\mathbb{C}/(\omega_1\mathbb{Z} + \omega_2\mathbb{Z})$

 $\Omega = dz$
Theorem

On an elliptic curve E/\mathbb{C}, the space of holomorphic differentials is one dimensional ($= \mathbb{C}\Omega$).

Examples:

- $\mathbb{C}/(\omega_1 \mathbb{Z} + \omega_2 \mathbb{Z})$
 $$\Omega = dz$$

- $y^2 = 4x^3 - g_2x - g_3$
 $$\Omega = \frac{dx}{y} = \frac{dx}{\sqrt{4x^3 - g_2x - g_3}}$$
Theorem
On an elliptic curve E/\mathbb{C}, the space of holomorphic differentials is one dimensional ($= \mathbb{C}\Omega$).

Examples:

- $\mathbb{C}/(\omega_1\mathbb{Z} + \omega_2\mathbb{Z})$
 $\Omega = dz$

- $y^2 = 4x^3 - g_2x - g_3$
 $\Omega = \frac{dx}{y} = \frac{dx}{\sqrt[3]{4x^3 - g_2x - g_3}}$

- $\mathbb{H}/\Gamma_0(N)$ with $g = 1$
 $\Omega = \text{cuspform} \times 2\pi i d\tau = \text{cuspform} \times \frac{dq}{q}$
It is also possible to construct Ω from an arbitrary function x of order 2 on the elliptic curve. Theorem

If x is a function of order 2 on an elliptic curve with poles p_1 and p_2, then

$$\Omega = \frac{dx}{\sqrt{(x - x(r_1))(x - x(r_2))(x - x(r_3))(x - x(r_4))}}$$

is holomorphic. Here, the r_i are the four solutions to $r_i \oplus r_i = p_1 \oplus p_2$ on the elliptic curve with a group law \oplus. If $x(r_i) = \infty$, the corresponding factor is omitted.
It is also possible to construct Ω from an arbitrary function x of order 2 on the elliptic curve.

Theorem

If x is a function of order 2 on an elliptic curve with poles p_1 and p_2, then

$$
\Omega = \frac{dx}{\sqrt{(x - x(r_1))(x - x(r_2))(x - x(r_3))(x - x(r_4))}}
$$

is holomorphic. Here, the r_i are the four solutions to

$$
r_i \oplus r_i = p_1 \oplus p_2
$$

on the elliptic curve with a group law \oplus. If $x(r_i) = \infty$, the corresponding factor is omitted.
We seek to construct a function of order 2 on $\mathbb{H}/\Gamma_0(N)$.

Definition

A function f on $\mathbb{H}/\Gamma_0(N)$ is called an η quotient if $\text{ord}_\tau = \tau_0(f) = 0$ for $\tau_0 \in \mathbb{H}$.

Dan Schultz

Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
We seek to construct a function of order 2 on $\mathbb{H}/\Gamma_0(N)$.
We seek to construct a function of order 2 on $\mathbb{H}/\Gamma_0(N)$.

Definition

A function f on $\mathbb{H}/\Gamma_0(N)$ is called an η quotient if

\[
\text{ord}_{\tau = \tau_0}(f) = 0 \quad \text{for} \quad \tau_0 \in \mathbb{H}
\]

\[
\text{ord}_{\tau = \frac{1}{c}}(f) \quad \text{depends only on the denominator} \quad c
\]
η Quotients on $\mathbb{H}/\Gamma_0(N)$

Theorem

All η quotients on $\mathbb{H}/\Gamma_0(N)$ are of the form

$$
\prod_{l|N} \eta(l\tau)^{r_l}, \quad r_l \in \mathbb{Z}
$$

where

$$
\sum_{l|N} r_l = 0
$$

$$
\sum_{l|N} lr_l \in 24\mathbb{Z}
$$

$$
\sum_{l|N} \frac{N}{l} r_l \in 24\mathbb{Z}
$$

$$
\prod_{l|N} l^{r_l} \in \mathbb{Z}^2
$$
Orders of η Quotients on $\mathbb{H}/\Gamma_0(N)$

Using the transformation law of the η function

$$
\eta\left(\frac{a\tau + b}{c\tau + d}\right) = \epsilon_{abcd} \sqrt{c\tau + d} \eta(\tau), \quad \epsilon_{abcd}^{24} = 1
$$

one can show that

$$
\text{ord}_{\tau = \frac{l}{c}}(\eta(l\tau)) = \begin{cases}
gcd(l,c)^2 \cdot \frac{N/c}{24l} & \text{if } c \neq 0, \\
\frac{l}{24} & \text{if } c = 0.
\end{cases}
$$

Thus, using a list of inequivalent cusps of $\mathbb{H}/\Gamma_0(N)$ we can write down η quotients and verify that they have order 2.
Using the transformation law of the η function

$$\eta \left(\frac{a\tau + b}{c\tau + d} \right) = \epsilon_{abcd} \sqrt{c\tau + d} \eta(\tau), \quad \epsilon_{abcd}^{24} = 1$$

one can show that

$$\text{ord}_{\tau = \frac{c}{c}}(\eta(l\tau)) = \begin{cases} \frac{\gcd(l,c)^2 N/c}{24l} \frac{N/c}{\gcd(c, N/c)}, & c \neq 0 \\ \frac{l}{24}, & c = 0 \end{cases}.$$

$$\text{ord}_{\tau = \frac{c}{c}} \prod_{l \mid N} \eta(l\tau)^{r_l} = \sum_{l \mid N} r_l \text{ord}_{\tau = \frac{c}{c}} \eta(l\tau)$$
Orders of η Quotients on $\mathbb{H}/\Gamma_0(N)$

Using the transformation law of the η function

$$\eta\left(\frac{a\tau + b}{c\tau + d}\right) = \epsilon_{abcd} \sqrt{c\tau + d} \eta(\tau), \quad \epsilon_{abcd}^{24} = 1$$

one can show that

$$\text{ord}_\tau (\eta(l\tau)) = \begin{cases}
\frac{\gcd(l,c)^2}{24 l} \frac{N/c}{\gcd(c,N/c)}, & c \neq 0 \\
\frac{l}{24}, & c = 0.
\end{cases}$$

Thus, using a list of inequivalent cusps of $\mathbb{H}/\Gamma_0(N)$ we can write down η quotients and verify that they have order 2.
Cusp forms on $\mathbb{H}/\Gamma_0(N)$

We can also write

$$\Omega = f(\tau)^2 \pi i d\tau$$

where, under $\Gamma_0(N)$,

$$f(a\tau + b\tau + c\tau + d) = (c\tau + d)^2 f(\tau) = dq q$$

has simple poles at all of the cusps.

We need $\text{ord}_\tau = \cdot c(f(\tau)) > 0$.

Such an f can usually be constructed as an η quotient

$$f(\tau) = \prod l | N \eta(l\tau)^{r_l}, \quad r_l \in \mathbb{Z}$$

where $\sum l | N r_l = 4$.
We can also write

\[\Omega = f(\tau)2\pi i d\tau \]
We can also write

\[\Omega = f(\tau)2\pi i d\tau \]

where, under \(\Gamma_0(N) \),

\[
\begin{align*}
 f \left(\frac{a\tau + b}{c\tau + d} \right) &= (c\tau + d)^2 f(\tau) \\
 d \left(\frac{a\tau + b}{c\tau + d} \right) &= (c\tau + d)^{-2} d\tau
\end{align*}
\]
We can also write
\[\Omega = f(\tau)2\pi id\tau \]
where, under \(\Gamma_0(N) \),
\[
\begin{align*}
 f \left(\frac{a\tau + b}{c\tau + d} \right) &= (c\tau + d)^2 f(\tau) \\
 d \left(\frac{a\tau + b}{c\tau + d} \right) &= (c\tau + d)^{-2} d\tau
\end{align*}
\]

\[2\pi id\tau = \frac{dq}{q} \] has simple poles at all of the cusps.
Cusp forms on $\mathbb{H}/\Gamma_0(N)$

We can also write

$$\Omega = f(\tau)2\pi id\tau$$

where, under $\Gamma_0(N),

$$f \left(\frac{a\tau + b}{c\tau + d} \right) = (c\tau + d)^2 f(\tau)$$

$$d \left(\frac{a\tau + b}{c\tau + d} \right) = (c\tau + d)^{-2} d\tau$$

$2\pi id\tau = \frac{dq}{q}$ has simple poles at all of the cusps.

We need $\text{ord}_{\tau = \frac{d}{c}}(f(\tau)) > 0$.
Cusp forms on $\mathbb{H}/\Gamma_0(N)$

We can also write

$$
\Omega = f(\tau)2\pi i d\tau
$$

where, under $\Gamma_0(N)$,

$$
f\left(\frac{a\tau + b}{c\tau + d}\right) = (c\tau + d)^2 f(\tau)
$$

$$
d\left(\frac{a\tau + b}{c\tau + d}\right) = (c\tau + d)^{-2} d\tau
$$

$2\pi i d\tau = \frac{dq}{q}$ has simple poles at all of the cusps. We need $\text{ord}_{\tau = \frac{a}{c}} (f(\tau)) > 0$. Such an f can usually be constructed as an η quotient

$$
f(\tau) = \prod_{l \mid N} \eta(l\tau)^{r_l}, \quad r_l \in \mathbb{Z}
$$

where

$$
\sum_{l \mid N} r_l = 4
$$
When $\Gamma_0(N)$ has $g = 1$:

- There is a function $x(\tau)$ of order 2, which can usually be constructed as an η quotient.

- There is a cusp form $f(\tau)$ of weight 2, which can usually be constructed as an η quotient.

- There is then necessarily an identity of the form

$$f(\tau)^2 \pi \text{id}_\tau = \frac{1}{\sqrt{a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4}}$$

for constants a_i.

Dan Schultz
Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
When $\mathbb{H}/\Gamma_0(N)$ has $g = 1$:

There is a function $x(\tau)$ of order 2, which can usually be constructed as an η quotient.

There is a cusp form $f(\tau)$ of weight 2, which can usually be constructed as an η quotient.

There is then necessarily an identity of the form

$$f(\tau)^2 \pi \text{id}_\tau = dx \sqrt{a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4}$$

for constants a_i.

Dan Schultz Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
When $\mathbb{H}/\Gamma_0(N)$ has $g = 1$:

- There a function $x(\tau)$ of order 2, which can usually be constructed as an η quotient
When \(\mathbb{H}/\Gamma_0(N) \) has \(g = 1 \):

- There is a function \(x(\tau) \) of order 2, which can usually be constructed as an \(\eta \) quotient.
- There is a cusp form \(f(\tau) \) of weight 2, which can usually be constructed as an \(\eta \) quotient.
When $\mathbb{H}/\Gamma_0(N)$ has $g = 1$:

- There a function $x(\tau)$ of order 2, which can usually be constructed as an η quotient
- There is a cusp form $f(\tau)$ of weight 2, which can usually be constructed as an η quotient
- There is then necessarily an identity of the form

$$f(\tau)2\pi i d\tau = \frac{dx}{\sqrt{a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4}}$$

for constants a_i.

Dan Schultz
Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
Example: $\Gamma_0(15)$
Example: $\Gamma_0(15)$

First,

$$x(\tau) = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3} = q - 3q^2 + 8q^4 - 9q^5 + \cdots$$

has simple poles at $\tau = 1/3$ and $\tau = 1/5$ and simple zeros at $\tau = 1/1$ and $\tau = 1/15$.
Example: $\Gamma_0(15)$

First,

$$x(\tau) = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3} = q - 3q^2 + 8q^4 - 9q^5 + \cdots$$

has simple poles at $\tau = 1/3$ and $\tau = 1/5$ and simple zeros at $\tau = 1/1$ and $\tau = 1/15$.

Next,

$$\eta_1 \eta_3 \eta_5 \eta_{15} = q - q^2 - q^3 - q^4 + q^5 + \cdots$$

is a cusp form.
Example: $\Gamma_0(15)$

First,

$$x(\tau) = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3} = q - 3q^2 + 8q^4 - 9q^5 + \cdots$$

has simple poles at $\tau = 1/3$ and $\tau = 1/5$ and simple zeros at $\tau = 1/1$ and $\tau = 1/15$.

Next,

$$\eta_1 \eta_3 \eta_5 \eta_{15} = q - q^2 - q^3 - q^4 + q^5 + \cdots$$

is a cusp form.

Therefore,

$$\eta_1 \eta_3 \eta_5 \eta_{15} 2\pi i d\tau = \frac{dx}{\sqrt{a_4x^4 + a_3x^3 + a_2x^2 + a_1x + a_0}}$$
Example: \(\Gamma_0(15) \)

First,

\[
x(\tau) = \frac{\eta_1^3 \eta_{15}^3}{\eta_3^3 \eta_5^3} = q - 3q^2 + 8q^4 - 9q^5 + \cdots
\]

has simple poles at \(\tau = 1/3 \) and \(\tau = 1/5 \) and simple zeros at \(\tau = 1/1 \) and \(\tau = 1/15 \).

Next,

\[
\eta_1 \eta_3 \eta_5 \eta_{15} = q - q^2 - q^3 - q^4 + q^5 + \cdots
\]

is a cusp form.

Therefore,

\[
\eta_1 \eta_3 \eta_5 \eta_{15} 2\pi i \, d\tau = \frac{dx}{\sqrt{a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0}}
\]

\[
q = x + 3x^2 + 18x^3 + 127x^4 + O(x^5)
\]

\[
\left(\frac{1}{\eta_1 \eta_3 \eta_5 \eta_{15}} \frac{1}{2\pi i} \frac{dx}{d\tau} \right)^2 = 1 - 10x - 13x^2 + 10x^3 + x^4 + O(x^5)
\]

\[
= (x^2 - x - 1)(x^2 + 11x - 1)
\]
First, \(x(\tau) = \eta_4 \eta_6 \eta_2 \eta_1 \eta_2 \eta_2 = q - 2q^2 + 2q^4 + \cdots \) has simple poles at \(\tau = 1/3 \) and \(\tau = 1/8 \) and simple zeros at \(\tau = 1/1 \) and \(\tau = 1/24 \).

Next, \(\eta_2 \eta_4 \eta_6 \eta_12 \) is a cusp form.

Therefore, \(\eta_2 \eta_4 \eta_6 \eta_12 = dx \sqrt{x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0} = dx \sqrt{x^4 + 8x^3 + 2x^2 - 8x + 1} \)

\[
\int \tau \sqrt{3 \sqrt{2} - 1 \sqrt{2} + (\sqrt{2} - 1) \sqrt{3}} d\theta \sqrt{1 + 3 \sin^2 \theta},
\]
Example: $\Gamma_0(24)$

First,

$$x(\tau) = \frac{\eta_4 \eta_6 \eta_1^2 \eta_{24}^2}{\eta_2 \eta_{12} \eta_3^2 \eta_8^2} = q - 2q^2 + 2q^4 + \cdots$$

has simple poles at $\tau = 1/3$ and $\tau = 1/8$ and simple zeros at $\tau = 1/1$ and $\tau = 1/24$.
Example: $\Gamma_0(24)$

First,

$$x(\tau) = \frac{\eta_4 \eta_6 \eta_1^2 \eta_{24}^2}{\eta_2 \eta_{12} \eta_3^2 \eta_8} = q - 2q^2 + 2q^4 + \cdots$$

has simple poles at $\tau = 1/3$ and $\tau = 1/8$ and simple zeros at $\tau = 1/1$ and $\tau = 1/24$.

Next,

$$\eta_2 \eta_4 \eta_6 \eta_{12} = q - q^3 - 2q^5 + \cdots$$

is a cusp form.
Example: $\Gamma_0(24)$

First,

$$x(\tau) = \frac{\eta_4 \eta_6 \eta_1^2 \eta_{24}^2}{\eta_2 \eta_{12} \eta_3^2 \eta_8^2} = q - 2q^2 + 2q^4 + \cdots$$

has simple poles at $\tau = 1/3$ and $\tau = 1/8$ and simple zeros at $\tau = 1/1$ and $\tau = 1/24$.

Next,

$$\eta_2 \eta_4 \eta_6 \eta_{12} = q - q^3 - 2q^5 + \cdots$$

is a cusp form.

Therefore,

$$\eta_2 \eta_4 \eta_6 \eta_{12} 2\pi i d\tau = \frac{dx}{\sqrt{a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0}}$$

$$= \frac{dx}{\sqrt{x^4 + 8x^3 + 2x^2 - 8x + 1}}$$
Example: $\Gamma_0(24)$

First,

$$x(\tau) = \frac{\eta_4 \eta_6 \eta_1^2 \eta_{24}^2}{\eta_2 \eta_{12} \eta_3^2 \eta_8} = q - 2q^2 + 2q^4 + \cdots$$

has simple poles at $\tau = 1/3$ and $\tau = 1/8$ and simple zeros at $\tau = 1/1$ and $\tau = 1/24$.

Next,

$$\eta_2 \eta_4 \eta_6 \eta_{12} = q - q^3 - 2q^5 + \cdots$$

is a cusp form.

Therefore,

$$\eta_2 \eta_4 \eta_6 \eta_{12} 2\pi i d\tau = \frac{dx}{\sqrt{a_4 x^4 + a_3 x^3 + a_2 x^2 + a_1 x + a_0}}$$

$$= \frac{dx}{\sqrt{x^4 + 8x^3 + 2x^2 - 8x + 1}}$$

$$\int_{i\infty}^{\tau} \eta_2 \eta_4 \eta_6 \eta_{12} 2\pi i d\tau = \int_{\sin^{-1}\left(\frac{1}{\sqrt{3}} \sqrt{\frac{\sqrt{2} - 1}{\sqrt{2} + \sqrt{3}}}\right)}^{\sin^{-1}\left(\frac{1}{\sqrt{3}} \sqrt{\frac{\sqrt{2} - 1 - (\sqrt{2} + \sqrt{3})x}{\sqrt{2} + \sqrt{3} + (\sqrt{2} - 1)x}\right)} \frac{d\theta}{\sqrt{1 + 3 \sin^2 \theta}},$$
Ramanujan has also given the example

\[\int_{i \eta}^{\infty} \eta_{1} \eta_{35} \eta_{5} \eta_{7} 2 \pi i d \tau = \int_{0}^{x} x dx \sqrt{1 + x - x^2} \sqrt{1 - 5x - 9x^3 - 6x^5 - x^6} \]

where \(x = \eta_{1} \eta_{35} \eta_{5} \eta_{7} \)

which belong to \(\Gamma_{0}(35) \).

Such identities arise when \(g > 1 \) but \(H/\Gamma_{0}(N) \) still has a function of order 2.
Beyond Genus 1

Ramanujan has also given the example

\[
\int_{i\infty}^{\tau} \eta_1 \eta_5 \eta_7 \eta_35 2\pi i d\tau = \int_{0}^{x} \frac{x \, dx}{\sqrt{1 + x - x^2} \sqrt{1 - 5x - 9x^3 - 6x^5 - x^6}}
\]

where

\[
x = \eta_1 \eta_35 \eta_5 \eta_7 \eta_{35}
\]

which belong to \(\Gamma_0(35) \).

Such identities arise when \(g > 1 \) but \(H/\Gamma_0(N) \) still has a function of order 2.
Ramanujan has also given the example

\[\int_{i\infty}^{\tau} \eta_1 \eta_5 \eta_7 \eta_{35} 2\pi i d\tau = \int_{0}^{x} \frac{x \, dx}{\sqrt{1 + x - x^2} \sqrt{1 - 5x - 9x^3 - 6x^5 - x^6}} \]

where

\[x = \frac{\eta_1 \eta_{35}}{\eta_5 \eta_7} \]
Ramanujan has also given the example

\[\int_{i\infty}^{i\tau} \eta_1 \eta_5 \eta_7 \eta_{35} 2\pi i d\tau = \int_0^x \frac{x \, dx}{\sqrt{1 + x - x^2} \sqrt{1 - 5x - 9x^3 - 6x^5 - x^6}} \]

where

\[x = \frac{\eta_1 \eta_{35}}{\eta_5 \eta_7} \]

which belong to \(\Gamma_0(35) \).
Ramanujan has also given the example

\[\int_{i\infty}^{\tau} \eta_1 \eta_5 \eta_7 \eta_{35} 2\pi i d\tau = \int_{0}^{x} \frac{x \, dx}{\sqrt{1 + x - x^2} \sqrt{1 - 5x - 9x^3 - 6x^5 - x^6}} \]

where

\[x = \frac{\eta_1 \eta_{35}}{\eta_5 \eta_7} \]

which belong to \(\Gamma_0(35) \).

Such identities arise when \(g > 1 \) but \(\mathbb{H}/\Gamma_0(N) \) still has a function of order 2.
Beyond Genus 1

Theorem

Whenever there is a function $x(\tau)$ of order two on $\mathbb{H}/\Gamma_0(N)$, a basis of the space of holomorphic differentials for $\mathbb{H}/\Gamma_0(N)$ can be given as

$$\left\{ \frac{x^k dx}{\sqrt{\prod_{i=1}^{2g+1 \text{ or } 2g+2}(x - r_i)}} \right\}_{k=0}^{g-1}.$$

where g is the genus of $\mathbb{H}/\Gamma_0(N)$.

Dan Schultz
Incomplete Elliptic Integrals in Ramanujan’s Lost Notebook
Beyond Genus 1

Theorem

Whenever there is a function \(x(\tau) \) of order two on \(\mathbb{H}/\Gamma_0(N) \), a basis of the space of holomorphic differentials for \(\mathbb{H}/\Gamma_0(N) \) can be given as

\[
\left\{ \frac{x^k \, dx}{\sqrt{\prod_{i=1}^{2g+1 \text{ or } 2g+2} (x - r_i)}} \right\}_{k=0}^{g-1}.
\]

where \(g \) is the genus of \(\mathbb{H}/\Gamma_0(N) \).

The key to Ramanujan’s identities is:
We can still write down holomorphic differentials using cusp forms.
Beyond Genus 1: $\Gamma_0(30)$

There is a function of order 2 on $\mathbb{H}/\Gamma_0(30)$ given by

$$\eta_1 \eta_2 \eta_{15} \eta_{30} = 2 \pi i \text{id}_\tau = \frac{1}{2} \left(x - 1 \right) \frac{dx}{\sqrt{(x^2 - x - 1)(x^2 + 2x - 4)(x^4 - 3x^3 + 5x^2 - 6x + 4)}}.$$
\mathbb{H}/\Gamma_0(30) \text{ has genus 3.}
\(\mathbb{H}/\Gamma_0(30) \) has genus 3.

There is a function of order 2 on \(\mathbb{H}/\Gamma_0(30) \) given by

\[
x = 2 \frac{\eta_6 \eta_{10}}{\eta_1 \eta_{15}} = 2 + 2q + 4q^2 + 6q^3 + \cdots
\]
Beyond Genus 1: $\Gamma_0(30)$

$\mathbb{H}/\Gamma_0(30)$ has genus 3.

There is a function of order 2 on $\mathbb{H}/\Gamma_0(30)$ given by

$$x = 2 \frac{\eta_6 \eta_{10}}{\eta_1 \eta_{15}} = 2 + 2q + 4q^2 + 6q^3 + \cdots$$

$$\eta_1 \eta_3 \eta_5 \eta_{15} 2\pi i d\tau = \frac{2(x - 1)dx}{\sqrt{(x^2 - x - 1)(x^2 + 2x - 4)(x^4 - 3x^3 + 5x^2 - 6x + 4)}},$$

$$\eta_3 \eta_5 \eta_6 \eta_{10} 2\pi i d\tau = \frac{x(x - 1)dx}{\sqrt{(x^2 - x - 1)(x^2 + 2x - 4)(x^4 - 3x^3 + 5x^2 - 6x + 4)}},$$

$$\eta_1 \eta_2 \eta_{15} \eta_{30} 2\pi i d\tau = \frac{(x - 2)dx}{\sqrt{(x^2 - x - 1)(x^2 + 2x - 4)(x^4 - 3x^3 + 5x^2 - 6x + 4)}}.$$
Conclusion

We have interpreted Ramanujan's formulas in the light of complex function theory.

Ramanujan's methods would not have used these methods to prove his identities.

It is remarkable that he still discovered what one would call the isomorphism between the space of cusps forms of weight two and the space of holomorphic differentials.

If Ramanujan had worked a bit more, could he have discovered the previous three identities of level 30?
We have interpreted Ramanujan’s formulas in the light of complex function theory.
Conclusion

- We have interpreted Ramanujan’s formulas in the light of complex function theory.
- Ramanujan’s would not have used these methods to prove his identities.
Conclusion

- We have interpreted Ramanujan’s formulas in the light of complex function theory.
- Ramanujan’s would not have used these methods to prove his identities.
- It is remarkable that he still discovered what one would call the isomorphism between the space of cusps forms of weight two and the space of holomorphic differentials.
We have interpreted Ramanujan’s formulas in the light of complex function theory.

Ramanujan’s would not have used these methods to prove his identities.

It is remarkable that he still discovered what one would call the isomorphism between the space of cusps forms of weight two and the space of holomorphic differentials.

If Ramanujan had worked a bit more, could he have discovered the previous three identities of level 30?
Thank you!