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ABSTRACT

Macroscopic tensorial physical properties which are different in two domains of a ferroic crystal
provide a tensor distinction of the two domains. This tensor distinction is determined from a symmetry
relationship, called a twin /aw, between the bulk structures, the domain states, of the two domains. The
simplest type of twin law is the so called completely transposable twin law. We extend here the concept
of completely transposable twin laws from non-magnetic to magnetic completely transposable twin
laws. We establish the structure of and tabulate the 380 classes of magnetic completely transposable
twin laws. The relationship between magnetic completely transposable twin laws and double
antisymmetry groups is then given. Examples of the application of magnetic completely transposable

twin laws are given in the tensor distinction of non-ferroelastic magnetoelectric domain pairs.



1. INTRODUCTION

We consider crystalline domains which arise in a phase transition from a high symmetry phase
of symmetry G to a low symmetry phase of symmetry F. We shall refer to the bulk structures of these
domains in polydomain samples as domain states. Several disconnected domains of possibly different
shape can have the same domain state. Consequently, domain states of a polydomain sample represent
structures that appear in the sample, irrespective of in which domain and irrespective of the domain's
shape. We shall be interested in the tensor distinction of domains, distinguishing the domains by the
values of components of macroscopic tensorial physical properties. This tensor distinction of domains
is identical with the tensor distinction of the domains' corresponding domain states. Because the
domains, due to their shape, are not necessarily symmetry related, while their corresponding domain
state are, we consider, in what follows, the tensor distinction of domain states. As we shall consider
macroscopic tensorial physical properties, we shall use the continuum description of the domain states
and our symmetry analysis will be based on point group considerations only.

Two domain state S; and S; form a domain pair {S, S} (Janovec, 1972). We shall call the twin
law of the domain pair {S,S;} that symmetry information which specifies the point groups of the two
domain states S; and S; and their relationship. This symmetry information is provided for by the point
group F, the point group of the domain state S;, and the element g;, called the twinning operation,
which transforms the domain state S; into the domain state S, i.e. g;5,=S;. The point group of the
domain state S;is given by F, = gijFigij'1, and the relationship between the domain states is given by the
twinning operation g;.

The twin law of a domain pair can alternatively be given by a group J = <F,g;>, the group
generated by the group F, and the twinning operation g;. In its simplest form the twin law is of the form

J=<F,g;>=F+gF (1)
where J consists of only two cosets of the point group F.. In this case the twin law is refered to as a
completely transposable twin law (Janovec, Litvin, and Richterova, 1994). This is refered to as a
transposable twin law (This was previously refered to as an ambivalent twin law (Janovec, 1981)) as the

twinning operation g; not only transforms the domain state S, into S, but in addition transforms the



domain state S, into S,, i.e.

S;=g;S and S, = g;S;.
This is refered to as a completely transposable twin law because in addition to being transposable, the
point groups of the two domain states S; and S; are identical, that is:

F=gFg"' =F

A ferroic phase is non-ferroelastic if all the domains have the same (zero) spontaneous
deformation (Aizu,1973). In a non-ferroelastic phase there are n = |G|/|F| domain states where |G| and
|F|denote the order of the groups G and F, respectfully, which are all related by the coset
representatives of the coset decomposition of G with respect to F. The twin laws of non-ferroelastic
domain pairs are of the form of Equation (1), i.e. are completely transposable twin laws (Janovec,
Richterova, and Litvin, 1993).

In a ferroelastic phase, the orientations of the domain states are controlled by disorientations,
i.e. rotations of single domain states (domain states invariant under F or any conjugate subgroup of F
in G) needed to achieve a coherent interface of two ferroelastic domain states along a planar wall.
Consequently, the number of domain states in a ferroelastic phase is, in general, greater than n =
|G|/|F| and the twin law of a ferroelastic domain pair is, in general, not a completely transposable twin
law (Janovec, Litvin, and Richterova, 1994).

The tensor distinction of two domain states of a domain pair can be determined from the
domain pair's twin law. The form T, of atensor T in the domain state S, is determined by the point group
F, and the form T, of the tensor T in the domain state S; can be determined by transforming T, by g;:

T, = giT; (2)
By comparing the forms T, and T; related by Equation (2), one determines the components of the tensor
T which are distinct in the two domain states, i.e. one determines the tensor distinction of the domain
pair {S,S;}.
Non-magnetic completely transposable twin laws, Equation (1), can be written as
J=F+dF

where J is a non-magnetic point group (i.e. a point group belonging to one of the thirty-two classes of



crystallographic point groups), and the element "g" has been stared to denote and emphasize that this
is an element of J which transposes the two domain states. The non-magnetic completely transposable
twin law is uniquely characterized by the point group J and a subgroup F of index two of J.
Consequently, the mathematical structure of non-magnetic completely transposable twin laws is the
same as that of dichromatic (black and white, antisymmetry) point groups (Heesch, 1930; Shubnikov,
1951). Completely transposable non-magnetic twin laws have been used in determining the
macroscopic tensorial physical properties which distinguish domains of a domain pair in the cases of
non-ferroelastic and ferroelectric non-ferroelastic domains (Janovec, Richterova, and Litvin, 1992,1993).

In Section 2 we extend the concept of completely transposable twin laws from that of non-
magnetic completely transposable twin laws to magnetic completely transposable twin laws, i.e. to the
case where in Equation (1) J is a magnetic point group. The structure of magnetic completely
transposable twin laws is then considered, two types of notation are introduced and all classes of
magnetic completley transposable twin laws are then derived. In Section 3 we discuss the application
of magnetic completely transposable twin laws in determining the tensor distinction of non-ferroelastic
magnetoelectric domain pairs. It is shown in Appendix 1 that the mathematical structure of magnetic
completely transposable twin laws is the same as that of the so called double antisymmetry groups
introduced by Zamorzaev and Sokolov (1957), see also Zamorzaev (1976) and Zamorzaev and Palistrant
(1980). A third type of notation is introduced there for magnetic transposable twin laws based on the
notation used for double antisymmetry groups.

In the remainder of this paper, for typographical and linguistic simplicity, we shall refer to

"completely transposable twin laws" simply as "twin laws."

2. MAGNETIC TWIN LAWS

Let J denote a magnetic point group, i.e. a point group belonging to one of the 122 classes of
crystallographic magnetic point groups (Opechowski, 1986). Let F denote a subgroup of index two of
J. A magnetic twin law, J = F + g*F, with a magnetic point group J, is uniquely characterized and can

be denoted, in a double group notation, by J[F]. A second single group notation for a magnetic twin law



can be had by using the Hermann-Mauguin (International) notation for the magnetic group J. Individual
symbols in the group symbol of J representing elements of J not contained in F are starred. For
example, the magnetic twin laws 2,/m, = 2, + m,/* 2, and 4/m,/m,, = m,)/m2, + 4,* m,'m '2, are
denoted in the double group notation J[F] respectively as 2,/m,[2,] and 4,/m,'m, [m,'m /2] and in the
single group notation, respectfully as 2,/m,* and 4,*m,'m, *.

The equivalence of two magnetic twin laws is defined as follows: Two magnetic twin laws J,[F,]
and J,[F,] are said to be equivalent and belong to the same class of magnetic twin laws if there exists
a Euclidian transformation that simultaneously transforms J, into J, and F, into F,.

To derive the number of classes of magnetic twin laws J[F] we first introduce a notation for non-
magnetic point groups and the more detailed notation for the magnetic point groups: We denote a non-

magnetic point group by Q. There are three types of magnetic point groups:

1)J = Q. There are 32 such classes. These are the 32 classes of crystallographic non-

magnetic point groups.

2)J = Q1. There are 32 such classes. These are direct products of a non-magnetic point

group Q and the group 1' consisting of the identity 1 and time inversion 1'.

3)J = H + aH . There are 58 such classes. Magnetic groups of this type are also

denoted by Q(H) where

Q=H+aH.

All magnetic groups J = Q, J = Q1', and J = Q(H) are said to belong to the same family of the class of
the non-magnetic point group Q. Consequently, all 122 classes of magnetic point groups can be
categorized according to their family into 32 families.

In deriving the magnetic twin laws J[F] it is advantageous to subdivide the derivation according



to the type of magnetic point group J:

1)J = Q. F must then be a subgroup H of index 2 of the non-magnetic point group Q. The twin
law is then of the type J[F] = Q[H], i.e. a non-magnetic twin law which in the format of Equation (1) is
written as Q = H + a*H. The number of classes of magnetic twin law Q[H] is the same as the number
of classes of magnetic point groups Q(H), that is, 68. For example, for Q@ = 2,2 2 and H = 2, we have

the twin law 2,22, = 2, + 2,*2, which is denoted by 2,22, [2)] or 2,%2 *2,.

2)J = Q1T . There are three possibilities for F:

i) If F = Qthen the twin law is J[F] = Q1'[Q] and
J=Q + 1"*Q = Q1'* . The number of classes of magnetic twin law Q1[Q] is the same as the number
of classes of magnetic point groups Q1 that is, 32. For example, for Q@ = 2,2 2, we have the twin law

2221 = 222, + 1% 2.2 2 which is denoted by 2,2,2,112,2,2,] or 2,2,2,1*.

ii) If F = HT', where H is a subgroup of index 2 of Q, then the twin law is J[F] = Q1'[H1'.
Since
J = H1' +a*H1' = (H + a*H)?1'
and H + a*H is a non-magnetic twin law Q[H], the above type of magnetic twin law can be denoted by
Q[H]1". The number of classes of such magnetic twin laws is the same as the number of classes of twin
laws Q[H], that is, 58. For example, for Q = 2,22 and H = 2, we have the twin law 2,221 = 21" +

2,*2,1" which is denoted by 2,2 212,11 or 2,*2 *21'.

iii) f F = Q(H) then the magnetic twin law is J[F] = Q1[Q(H)] and :

J = Q(H) + 1"*Q(H) = Q(H)1'*



The number of classes of such magnetic twin laws is the same as the number of classes of magnetic
point groups Q(H), that is, 58. For example, for Q = 2,2 2, and H = 2, we have the twin law 2,2 21" =

2,22, + 1% 2,22, which is denoted by 2,2,2,112,2,'2,] or 2,2,'2,1"%.

3)J = Q(H) . There are two possibilities for F:

i) F = H. The magnetic twin law is Q(H)[H] and:

J=H+a*H

The number of classes of such magnetic twin laws is the same as the number of classes of magnetic
point groups Q(H), that is, 58. For example, for @ = 2,2 2, and H = 2, we have the twin law 2,22, =

2, + 2,2, which is denoted by 2,'2,'2,[2] or 2,*2 %2,.

ii) F # H. The magnetic twin law is Q(H)[K(R)] where K(R) is a magnetic subgroup of

index 2 of Q(H) and:

J=R+a'R+ a,*R + a;*R

K=R + aRand H= R + a,R are subgroups of index 2 of Q. R is a subgroup of index 2 of both H and
K and a subgroup of index 4 of Q. There are 116 classes of magnetic twin laws Q(H)[K(R)]. For example,
forQ=222 H=2, K=2,and Q=1, wehavethetwinlaw 2/'2'2, =2'+2*2'(=1+2"1
+ 2,1 + 2,*1) which is denoted by 2,'2,2,(2,'] or 2,'2,*2 *.

There are then six types of magnetic twin laws J[F]

1) Q[H] 2) Q1'[Q] = Q1*
3) Q1'[H1] = Q[H]1' 4) Q1'[Q(H)] = Q(H)1'* (4)

5) Q(H)[H] 6) Q(H)[K(R)]



and a total of 380 classes of magnetic twin laws". The magnetic twin laws can be classified into 32
families according to the family of the magnetic group J. A representative magnetic twin law of each
class of magnetic twin laws belonging to the family of Q = 222 is given in Table 1. The numbers
assigned to each magnetic twin law consists first of the serial number given to the magnetic twin law's
family followed by a decimal point and the serial number of the class of the magnetic twin laws in that
family. This is followed, in parentheses, by a number denoting the type of the magnetic twin law, see
Equation (4). In the first column is the symbol for the magnetic twin law in double group notation
followed in the second column with the corresponding single group notation. In the third column is a
third notation based on the notation for the six types of twin laws given in Equation (4) and the symbols
which denote double antisymmetry groups. This third notation and the relationship between the
magnetic twin laws derived in this section and the double antisymmetry groups is given in Appendix

3. TENSOR DISTINCTION

We consider the tensor distinction of non-ferroelastic magnetoelectric domain pair (Litvin,
Janovec, & Litvin, 1994). In such domain pairs, the domains states S, and Sj have the same (zero)
spontaneous deformation and their magnetic twin laws J = F + g*F are completely transposable. We
denote a physical property tensor by 7, and the form of this tensor in the two domain states S; and S,,
respectively, by T, and T. The components of the tensor T, will be denoted by TP,

The types of physical property tensors considered are denoted by symbols for their
transformational properties. Each symbol consists of the symbol V", which denotes the n-th product
of a polar vector tensor, possibly preceded by "a" and/or "e" , symbols which denote rank zero tensors
that change sign, respectively, under time inversion 1' and spatial inversion ? The physical meaning
of many types of these tensors are given by Sirotin and Shaskolskaya (1975). We list eight tensor types
in the first column of Table 2.

We consider a domain pair related by the magnetic twin law J[F] = 4,2,'2, '[4,], i.e. by the twin

law 4,2,'2, ' = 4, + 2,'*4, . In this case the point group of the domain S, is F = 4, and the domain S; is



related to the domain S, by the element 2,, i.e. S; = 2,'S, . Consequently, the form of the tensor T, is
invariant under the point group 4, and the form of the tensor T, is related to the form of the tensor T; by
the element 2., i.e. T, = 2T, . The form of non-magnetic physical property tensors invariant under non-
magnetic point groups, for a wide variety of tensor types can be found in Sirotin and Shaskolskaya
(1975). These same tables can be also be used to determine the form of magnetic physical property
tensor invariant under magnetic point groups (Litvin, 1994). For the magnetoelectric effect tensor, a

tensor of the type aeV?, the form of the tensor T, invariant under 4, is:

A C 0
T®= Cc A 0
0O 0 B

The form of the tensor T, = 2,'T; is calculated via the standard transformation of a second rank tensor
TP = - D"(2)ueD (2,05 T

where the additional minus sign is present since the tensor type is aeV?, which changes sign under time
inversion, and g* = 2,'is a primed element. The form of the tensor T, is then:

A C 0
T®= -C A0
0 0 -B

The two domains can be distinguished by the T, TYY, and T* components of the magnetoelectric effect
tensor.

In the second and third column of Table 2, we give the component forms of the tensors T, and
T, for the tensor types listed in the first column. By comparing the forms of the tensors in the two
domains of the domain pair related by this magnetic twin law we have that five tensor types distinguish
between the two domains and three do not.

This domain pair is magnetoelectric as the form of the magnetoelectric effect tensor (a tensor
of type aeV?) is different in the two domains, and non-ferroelastic as the ferroelasticity effect tensor (
of the type [V?] ) is identical in the two domains. From Table 2 we have that the domains of this domain
pair can also be distinguished by spontaneous polarization ( V ), piezoelectric and second non-linear
magnetoelectric tensors ( V[V?] ), piezomagnetic and first non-linear magnetoelectric tensors
(@eV[V?] ), and non linear electric tensors ( [V?] ) (See Schmid (1975) for a complete discussion of these

magnetoelectric phenomena). The domains can not be distinguished by spontaneous magnetization



(aeV), their electric and magnetic susceptibility ( [V?] ), nor by their non-linear magnetic susceptibility

(ae[V°]).
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APPENDIX 1. DOUBLE ANTISYMMETRY GROUPS

The magnetic twin laws, derived in Section 2, have the same mathematical structure as the
double antisymmetry point groups introduced by Zamorzaev and Sokolov (1957). Double antisymmetry
point groups can be defined as follows: All points of a finite object are assigned two signs, each of
which can be a positive or negative sign. In addition to the point group transformations of the unsigned
object, one defines transformations of the signs, a transformation 1' which reverses the value of the first
sign, and 1* which reserves the value of the second sign. (In Zamorzaev and Sokolov (1957), the star
is placed to the left of the symbol, i.e. ¥1.) A double antisymmetry group is an invariance group of such
a signed finite object, the group of those point group transformations and point group transformations
coupled with 1', 1%, or 1'* which leave the signed finite object invariant. Of the twelve types of double
antisymmetry point groups, six correspond to the six types of magnetic twin laws. Listed in an order

corresponding to the types of magnetic twin laws listed in Equation (4), these are:



1) Q{H} 2) Q1*
3) Q{H}1' 4) Q(H)1'* (A-1)
5) Q(H){H} 6) Q(H){K} = Q(H}{K(R)}
Q denotes a point group and H and K subgroups of index 2 of Q. R is a subgroup of index 2 of both H
and K and a subgroup of index 4 of Q.

Q{H} denotes a group where the elements of Q not contained in the subgroup H are coupled
with 1*. Q(H) denotes a group where the elements of Q not contained in the subgroup H are coupled
with 1. Q(H){K} denotes a group where the elements of Q not contained in H are coupled with 1' and
the elements of Q not contained in K are coupled with 1*. In groups Q(H){H}, the elements of Q not
contained in H are coupled with 1. In groups Q(H){K}, with H # K, there are elements of Q coupled
with 1', coupled with 1%, and coupled with 1'*. Those elements of Q not coupled with any of these
constitute a subgroup R which is a subgroup of index 2 of both H and K, and a subgroup of index 4 of
Q. Elements of K which are not in R are coupled with 1' and consequently double antisymmetry point
groups of this type can be denoted by Q(H){K(R)}. The mathematical equivalence of the magnetic twin
laws given in Equation (4) with the double antisymmetry groups listed in Equation (A-1) can now be
easily seen: One can interexchange the corresponding types of magnetic twin laws and double
antisymmetry groups by interexchanging the square brackets [] with the curly brackets {}. In the third
column of symbols in Table 1 we give the double antisymmetry group symbol, Equation (A-1), of each

of the listed magnetic twin laws.
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TABLE CAPTIONS

Table 1: Representative magnetic twin laws of classes belonging to the family of Q = 222. The type of
the magnetic twin law is given, in parentheses, following the magnetic twin law's serial number. Three
symbols are given, the double group symbol J[F], the single group symbol, and the corresponding

double antisymmetry group symbol.

Table 2: For the magnetic twin law J[F] = 4,2,'2, '[4,] and the eight types of tensors listed in the first
column, the forms of the tensors T, and T, = 2,'T; are given in the second and third column,

respectively. The tensor notation used is that of Sirotin and Shaskolskaya (1975).
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