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Synopsis

Suggestions of Naish, Kitz, and Brinkman and Elliott to introduce groups that are more
general than magnetic space groups for describing spin arrangements in magnetic crystals have
not been carried out by these authors in a general and mathematically rigorous way. These defi-
ciencies are removed in this paper by defining such more general groups, which we call spin
groups (and of which magnetic groups are a special case), starting out from first principles and
deducing some fundamental properties of these groups: in particular, the structure of the most
general symmetry spin group of a spin arrangement is derived. The principles of constructing
all spin groups and using spin groups to classify all spin arrangements are described. Also the
effect of such spin-group symmetries on elastic magnetic neutron diffraction is briefly discussed.

1. Introduction. The term “spin” in the title and the text of this paper stands
for the long descriptive phrase “magnetic moment of an atom in a magnetically
ordered crystal”. As is well known, spins in such a crystal are distributed and
oriented according to a pattern which often shows a high degree of symmetry.
To a good approximation a pattern. of this kind can be described by a function
S(r), defined on the set of sites r which constitute the crystal and whose values
are spins S. Such a function S(r) is often called a “spin arrangement”; a more
precise definition S(r) is given in section 2. An often used classification of all
possible spin arrangements consists in assigning to each spin arrangement a
“classification label” defined in terms of “magnetic groups™, and in particular
“magnetic space groups”’ (the latter are also called “Shubnikov groups”), in ref. 1.
Definitions and description of magnetic groups and a method of constructing
them, the way these groups are used to classify spin arrangements, and some
historical remarks on the subject can be found in a review paper by Opechowski
and Guccione?). This classification problem has further been discussed by

Opechowski and Dreyfus'), who have also established the equivalence of the

classification of spin arrangements based on the use of magnetic groups and another
classification based on the use of representations of space groups?).

It should be emphasized that magnetic groups are groups of space—time trans-
formations. On the other hand, spins, that is, the values of a function S(r), are
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vectors of a carrier space (the ‘““‘spin space’’) of a specific representation of the sub-
group of all space-time transformations, called later in this paper the “Newton
group”. It follows that each element of a magnetic group induces (via the homo-
morphism which that representation constitutes) a uniquely defined transformation
of the spin space onto itself. Each element of a magnetic group thus consists of
two coupled transformations (one of space-time, the other of spin space). Such.
a pair may leave a spin arrangement invariant, or, in other words, be a “magnetic
symmetry element” of the latter. All such symmetry elements of a spin arrangement
constitute its ‘“magnetic symmetry group”. However for a given spin arrangement
there may exist transformations of spin space alone which leave it invariant.
A pair consisting of a transformation of space-time and a transformation of spin
space, and which is not an element of any magnetic group, may also happen to
leave that spin arrangement invariant. The purpose of this paper is to define and
discuss groups which contain such “non-magnetic symmetry elements’ in addition
to magnetic symmetry elements. We shall call such groups “spin groups” because
among them there are groups of spin-space transformations only, while no
magnetic group has this property. Magnetic groups form a subclass of the class
of all spin groups.

Suggestions to. generalize magnetic groups in this sense, and tentative descrip-
tions of some of the groups that we call spin groups, can be found in papers by
Naish* %) published in 1962 and 1963, Kitz®) in 1965, and by Brinkmann and
Elliott”-®) in 1966. It is remarkable that Kitz makes no reference to Naish, and
Brinkmann and Elliott make in turn no reference to either Naish or Kitz. This
is however of little consequence because in none of these papers a sufficiently
general, rigorous definition of spin groups is formulated which in special cases
would reduce to the definition of magnetic groups. Furthermore some of the
statements in Kitz’s, and in Brinkmann and Elliott’s papers are rather misleading.
Also these authors do not make clear what spin groups are, independently of the
examples used by them to illustrate their possible importance. That is why we
believe that a systematic discussion of these new groups is desirable, and the
purpose of this paper is to do just that. The definition of spin groups in section 2
is preceded by an explicit statement of some well-known preliminary definitions,
and somewhat meticulous description of the notation used in this paper. In
section 3, we discuss the structure of spin groups; in particular we define “spin-
only groups” and “nontrivial spin groups”, and we also discuss the relation
between magnetic groups and spin groups. A gross classification of spin groups
is outlined in section 4. In section 5 we give some examples of spin groups, and
of the use of spin groups for defining classification labels of spin arrangements.
*Spin translation groups”, defined in section 4, as a subclass of the class of all
spin groups, have already been applied by Litvin®) to the problem of interpretation
of diffraction patterns resulting from magnetic scattering of neutrons by spin
arrangements. “‘Spin-space groups”, which constitute another class of spin groups



540 D.B.LITVIN AND W. OPECHOWSKI

(see section 4), could be used for the same purpose in a similar way; this would
however require an enormous amount of preliminary work, as one can judge from
the case of spin translation groups (see section 6). [A word of warning: the term
“spin group” has been used by Brinkmann and Elliott (see ref. 8, page 343), in a
sense which is not the same as that used in the present paper™.]

2. Spin arrangements and spin symmetry groups. First of all we introduce the
following notation and terminology: E,(3) x E,(1) is “space-time’, that is, the
product space of a three-dimensiohal euclidean point space called the “‘physical
space” (or simply “space”) and ajone-dimensional euclidean point space called
“time”; (r, ) is a point of space-time in some coordinate system.

E,(3) x E(1) is the direct product of the euclidean group consisting of all proper
and improper rotations, and all translations of E(3), and the euclidean group
consisting of time inversion and all time translations of E,(1). This direct product
group will be called, as has been proposed recently'®), the “Newton group”.
(The Newton group is a subgroup of the Poincaré group, consisting of all those
elements of the latter for which the velocity parameter is zero.)

((R| v), (4 | ) is an element of the Newton group; here R is any 3 x 3 (proper
or improper) rotation matrix, v is any 3 x 1 (column) translation matrix, 4 is an
element of the *““time-inversion group” A consisting of the unit element £ = | and
time inversion E' = —1, and 7 is any real number (that specifies a time trans-
lation). An element of the Newton group maps a point (r, £) to the point (R | v) r,
(Alv)t), where (R|{v)r = Rr + v,(A| 1) = At + 7.

Vit is a three-dimensional carrier space of the irreducible matrix representation
(R} v),(4]|7)) > Di (R|v)x I'" (4] 7) of the Newton group, where D} (R | v)
= 0gR,0g =detRand I'] (4|7) =0,,0,=1ifA=FE;6,=—1if A = E".
Therefore, to an element ((R|v), (4 | 7)) of the Newton group corresponds a
transformation of the vector space V' onto itself. Under such a transformation
a vector S of V" is mapped to a vector denoted by [(R | v), (4 | 7)] S. Choosing
a basis in ¥, we shall write

3 3
[(R]v),(4]7)] S =j§[,1[1)1+ (R|v) x I'T (4|7);; 87 =4 6RJ_ZIRUSJ9 1)
wherei =1, 2, 3.

* -After this work was completed we have received from Mr. T. Dreyfus, Université de Ge-
néve, preprints of two Communications of the Joint Institute for Nuclear Research, Dubna 1973,
USSR (P4-7513 and P4-7514) by V.A. Koptsik, J.N. Kotzev and Ah.-N.M. Kuzhukeev, in
which, in connection with the problem of symmetry and classification of spin arrangements, the
authors describe groups which are generalizations of magnetic space groups and which (with an
appropriate interpretation of their terminology) seem to be identical with spm groups. However,
their treatment of the problem is essentially different from ours.
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We consider a subset Cy(3) x E,(1) of space-time where Cy(3) consists of those
points r in E(3) at which the atoms in a crystal are located. A ““spin arrangement”
is defined as a function S (r, £) which maps points (r, £) of Cy(3) x E(1) to vectors
S of the vector space ¥ . The vector space ¥, will be called the *“spin space” and
the vectors § are called “spins™. Because the spin space is the carrier space of a
representation of the Newton group, each transformation ((R|®), (4 |7)) of
space-time implies the transformation given by eq. (1) of the spin space. Con-
sequently, a spin arrangement S (r,f) is transformed by an element of the
Newton group into the spin arrangement denoted by [(R|v), (4 | 7)] S (r,?) where

[(RIv), (4[]8 (r, 1)

3
=;;1 [Df (R|0) x I'T (4| D]y 8 (R]v)~tr, (4] D)1 0)

=04 6kiRiij Rl i=12,3. @
Jj=1

We will interpret the symbol [(R | v), (4 | 7)] as an operator on the space of all
spin arrangements on a given crystal.

Since we are interested in spin arrangements defined on a specified crystal C.(3),
we consider only the subgroup of the Newton group which transforms that
crystal Cy(3) onto itself. In other words, we consider the subgroup F x E(1) of ,
the Newton group, where F consists of all elements F ='(R | v) of the space group
of the crystal C(3). We restrict ourselves to the case of static spin arrangements,
that is to spin arrangements invariant under time translations S (r, t +1)=38(,1)
and therefore replace (4 | 7)~* ¢ by ¢ on the right-hand side of eq. (2). We also
restrict our discussion to the subgroup G = F x A of F x E,(1), the invariance of
spin arrangements under time translations always being understood without being
stated explicitly. Eq. (2) becomes for elements (F, A) of G:

[F, A1 S'(r, 0) = 6A6R§:R”SJ(F'11', 1). 3)
Ji=1

We will introduce a new notation [6,0zR || (R | v), 4] for the operator [F, A]
in €q. (3), where to the right of the double vertical bar is the element (F, A) of
the group G, a transformation of space-time, and to the left is the matrix which
describes the corresponding transformation of spin space. In this notation eq. (3)
becomes -

3 .
[6A6RR " F, A] Si (r, t) = 6.4 6RJZIRUSJ (F—lr, t), (4)

where F = (R | v).
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Because of the assumed invariance of spin arrangements under time trans-
lations, S (r, f) = S (r, t') for any ¢ and ¢, and in particular for #' = —¢. There-
fore the same value of ¢ appears on both sides of egs. (3) and (4). For this reason
we shall write from now on S(r) instead of S (r, 1), as is customary. Eq. (3) becomes

3 . : )
[F, A1 S(r) = 64 6r ). RS (F~1r) &)
J=1
and eq. (4) becomes
3
[040zR || F1S%r) = 64 61:12_‘,1&:;3’ (F~'r), 6

where the symbol 4 appearing to the right of the double bar in eq. (4) has been
omitted, corresponding to our having dropped ¢ in S (r, 7). Eq. (5) is the definition
of the spin arrangement into which S(r) is transformed by an element of G in the
notation of Opechowski and Dreyfusl) and eq. (6) is the same definition in the
new notation.

The operators [0, 0zR || R | v] are operators on the space of all spin arrange-

ments on a given crystal and consist of pairs of transformations, a transformation
of space-time and a transformation of spin space. A characteristic of the operators
[6,0zR | R|v] which correspond to elements of G is that the same proper or
improper rotation matrix R appears both to the right and to the left of the double
bar. We now introduce additional operators on the space of all spin arrangements
on a given crystal which are transformations of spin space only, and are identity
transformations of space-time. These operators will be denoted by [B | E| 0]
where B is a 3 x 3 matrix describing any proper or improper rotation of the spin
space. Consequently a spin arrangement S(r) is transformed by an operator
[B || E| 0] into the spin arrangement ‘

[BI E|0]1S®(r) = iBuS‘” (r). . D
i=1

Since both the operators [B| E|0] and the operators [0,0zR || R|v] are
defined on the same space (the space of all spin arrangements on a given crystal),
we can define their products [B| E|0] [6,0xR || R|v] = [6,0rBR | R|v]. All
such products will generate a group which is the direct product £p x £ of the
group Q5 consisting of all operators of the form [B || £| 0], and the group
consisting of all operators of the form [E || R | v], where (R | v) is an element of
the space group F of the crystal. (While B is thus an arbitrary proper or improper
rotation of the spin space, R is subject to the usual crystallographic restrictions.)

From egs. (4) and (7) we conclude that an element of 5 x r acts on a spin

- arrangement as follows:
/\(8)

[BII R|v]SP(r) = Z B ;SP[(R]v)~r]
J=1
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A spin arrangement is said to be ““invariant” under [B|| R | v]if [B|| R|v] S(r) = S(r).
We shall also say in such a case that [B| R|v]is a “‘symmetry element” of S(r).
The set of all symmetry elements of S(r) is called the ‘“‘symmetry group” of S(r).
We now define a spin group: a subgroup of Q5 x Q will be called a ““spin group”
if it is the symmetry group of some spin arrangement.

It should be pointed out that the definitions (4), (6), (7) and (8) of operators
are somewhat different from those introduced in ref. 9 on spin translation groups.
This modification of definitions does not require any changes in tables 1 and 2 of
ref. 9, except replacing primes by horizontal bars (which corresponds to replacing
E’ by E, as defined here in section 3).

3. Structure of spin groups. In this section we first consider the structure and
a method of deriving subgroups of the direct product of two arbitrary groups.
We then determine the structure of spin groups.

Let # and & be two arbitrary groups. # x & is the direct product of the
groups # and & whose elements are denoted by (B || F). The identity, product,
and inverse of elements of # x & are respectively, (E || E), (B, | Fy) (B, || F»)
= (BB, || F,F,) and (B | F)~! = (B~! | F~!). Although we shall be interested
only in the cases where & is the euclidean group of the “physical space” and &
is the group of the 3 x 3 matrices which represent all proper and improper rotations
of the ““spin space”, the following argument is quite general.

Let X denote an arbitrary subgroup of Z x &#. Then the left-hand side members
of the elements (B || F) of X form a subgroup B of %, the right-hand side elements
form a subgroup F of #. We will say that X belongs to the ‘‘family of B and F”
if the left-hand side and right-hand side members constitute, respectively, the
groups B and F.

A method of deriving all subgroups X of # x # belonging to the family of B
and F is based on an “isomorphism theorem” which Zamorzaev'!) used recently in
connection with a study of groups which are related to spin symmetry groups
(a proof of this theorem is given in the appendix): let X be a group belonging to
the family of B and F, and let b = B~ X and f = X n F; then the quotient
groups B/b and F/f are isomorphic.

Using this isomorphism theorem one constructs all groups belonging to the
family of B and F as follows. First one finds all normal subgroups f of F and b
of B such that F/f is isomorphic to B/b. For each pair of subgroups f and b and
each isomorphism between F/f and B/b, both F and B are written as coset de-
compositions

F=1f+Ff + - + Ff,

B=b+ B,b+ -+ Bb,
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where Fif and B;b, for every i, are cosets which are mapped on each other by the
isomorphism of F/f and B/b. Next one pairs every element of the ith coset of B
with every element of the ith coset of F; the symbol (B;b || F,f) will denote this
set of pairs. The set consisting of the elements of all the sets (B,b || Fif),i=1,2,...,n,
will then constitute a group X belonging to the family of B and F. We shall write:

=({ )+ (B | F)(b 'II B+ -+ (B F)(b|f). ©)

As an example of constructing such groups, we consider a group belonging to
the family of B and F where, using the “international notation”, B = mm2 and
F = 4/m. We construct a group by takmg b = 2 and f = 4. The coset decom-
positions are:

mm2 = 2 + m,2,

im=4+14.

The pairing of elements of cor;esponding cosets means that each of the four
elements of 4 (the first coset of 4/m) are paired with each of the two elements of 2
(the first coset of mm2). This gives the eight elements:

A 1D, 14,0 12), 014,
Q0,2 14, 2. 112, 2. 1 47Y),

which are denoted by (2 || 4) in the notation (b || f) used in eq. (9). The pairing
of elements of the coset of 4 with those of the coset of 2 gives the eight elements:

(m || 1), (m, || 4,), (m | my), (my || 4; M,
(m, | 1), (m, || 4, (m, || m.), (m, 11 477),

which are the eight elements given above multiplied by (m, || 1). These are denoted
by (m, | 1) (2 || 4) in the notation (B, | F,) (b || f) used in eq. (9). The group
obtained in this way is then:

=@IH+mNDEID.

We now consider the case where £ is the group of 3 x 3 orthogonal matrices
in the spin space, and # is the euclidean group in the physical space. Elements
(B || F) of the direct product # x & are now identified with operators [B || F],
see eq. (8), on the set of all spin arrangements defined on a given crystal.

We now derive conditions which a subgroup of # x & must satisfy if it is to
be a spin group as defined in section 2. Since spin arrangements are defined on
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crystals, every spin group belongs to a family of B and F, where F is a crystallo-
graphic group. Spin arrangements may be classified into three kinds, linear
arrangements, where all spins are collinear, planar arrangements, where all spins
are coplanar, -and spatial arrangements which include all remaining possibilities.
Every spin group contains as a subgroup a group [b || £], denoted for simplicity
by b, which consists of those elements [B | £] which are transformations of the
spin space only, and leave a spin arrangement invariant. The group b depends
only on the kind of spin arrangement, and will be called a “spin-only group”.
The spin-only groups for the three kinds of spin arrangements are (see Kitz®)):

by=Cu+CiCu, b,={EC}, b,=E. (10)

Here the indices 1, p, s denote linear, planar and spatial spin arrangements re-
spectively; C,, is the group of matrices representing all proper rotations of the
spin space about the common direction of spins; C, is the matrix representing a
rotation through angle =, which is about an axis perpendicular to that direction
in the case of b, and to the plane of spins in the case of b,. Matrix C, multiplied
by —1 is denoted by C,. | .

In the coset decomposition of B into cosets of a spin-only group b the coszt
representatives can always be chosen such that they constitute a group B*, and
such that B = b x B*. The group B* is not uniquely determined by the groups B
and b, except in the case of spatial spin arrangement, where b is the identity
group E and therefore B* = B. However, for linear spin arrangements the grou»
B* can (and always will) be taken to be the identity group E or the group {E, £} ;
and for planar spin arrangements the group B* can (and always will) be taken to
be a rotation group of a two-dimensional subspace of the spin space.

Spin groups are then subgroups of # x # belonging to a family of b x B*
and F, where b is a spin-only group as defined by eq. (10), B* is a subgroup of %,
and F is a crystallographic group. Let us denote by E, B}, B%, ..., BY, the elements
of B*. In view of eq. (9), these properties of -spin groups imply that each spin
group Z,, is the direct product of a spin-only group b and another group which
we call a “nontrivial spin group” Z,

Z,=hbx2Z, A (11a)
where
=[E|fl + [BI | F][E 1] + - + [BX | F,] [E | f]. (11b)

A nontrivial spin group Z thus belongs to the family of B* and F, and contains
a subgroup f such that F/f is isomorphic to B*. From the isomorphism theorem
formulated earlier in this section, it follows then that Z is isomorphic to F. In
other words Z is an extension of f by B*. Therefore an element of a nontrivial

B o
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spin group Z is always of the form [B(F)* | F], that is, each element of F is
paired in Z with one and only one element of B*. Since the spin-only groups are
known [see eq. (10)], to derive all spin groups one needs only to derive all non-
trivial spin groups.

We have thus shown that each spin group Z, has a structure described by
egs. (11a) and (11b). We will now show that, conversely, each group X, whose
structure is described by these equations is the symmetry group of a spin arrange-
ment, and therefore is a spin group.

A crystalinvariant under a space group F can be partitioned into ““simple crystals”
each of which consists of atoms whose positions can be obtained by applying all
clements of the space group F to any atom position r, and is said to be generated
by F from r. If an atom position r in a simple crystal is such that the equation
F,r = F,r implies F;, = F, then the position is called a “general position”; other-
wise one speaks of a “special position”. A crystal consisting of » simple crystals
generated by F from positions ry, 1, ..., r, Will be denoted by [F; r., 12, .:., rol

Consider a crystal [F; r(, r,, ..., 1], that is, an atom arrangement for which F
is its space group. Suppose that r,,r,, ..., r, are general positions with n = 3,
and F is the symmetry group of the crystal. On this crystal we will now construct
a spin arrangement whose symmetry group is a given group X, = b x X, where X
is defined by the right-hand side of eq. (11b) in which F has been replaced by some
proper or improper subgroup L of F. It is well known':?) that the coset decom-
position of F is :

then a simple crystal Fr, can be regarded as composed of a certain number of
interlocking simple atom arrangements generated by L from the atoms located
at r;, Fyr;, Fsry, ... Therefore we can replace the symbol [F;r,,rs;..., 1] by
the symbol [L; #y, ¥;, #3,...].

To each atom position r; appearing in [L; r,, ¥,, #3,...] We assign a spin o;
such that: 1) each o; is invariant under the spin-only group b, but are not ail
collinear in the case of b = b,, not all coplanar in the case of b = b,; 2) no
two spins 6, and 6, j # k, have the same magnitude. A spin arrangement on
[L; ry, P2, 3, ...] is now constructed by assigning to the atom located at Lr, the
spin B*(L) 6;:

S(Lr)) = B*(L)a,.

It is not difficult to verify that the symmetry group of the spin arrangement
obtained in this way is in fact the group X,,. We shall say that this spin arrangement
is “generated” by X from the spins a4, 65, 63, ...

We would like to mention that even if the spins of a spin arrangement all have
the same magnitude, it may not be possible to generate it by a spin group from
a single spin [see example 2, case (b), and example 3, in section 5 below].
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In the case of a spin arrangement generated by a group defined by eq. (11)
from a single spin @, the number of distinct spin orientations in such a spin
arrangement does not exceed the order m of the group B*. For example, in the
case of a ferromagnetic spin arrangement (that is, one spin orientation) B* is the
identity group; and in the case of a linear antiferromagnetic spin arrangement
(that is, two distinct spin orientations) B* is the group of order 2 consisting of
Eand E. _

We are now in a position to describe the relations between magnetic groups
(as defined in ref. 2), spin groups, and nontrivial spin groups. First of all we
observe that, since b, = E, a spin group of a spatial spin arrangement is always
a nontrivial spin group. Next we show that it is possible to make correspond to
each magnetic group m a group [m] of operators [B*(F) | F] such that m and
[m] are isomorphic. To see that, it is sufficient to recall that an element of m has
the form (F, A(F)), where A(F) is an element of time-inversion group. Therefore
acting with (F, A(F)) on a spin arrangement S(r) gives rise to another spin arrange-
ment, which in the notation of eq. (5) is denoted by [F, A(F)] S(r), and in the
operator notation of eq.(6) becomes [6,\0rR || F]1S(r), where F = (R|v).
Hence to each element (F, A(F)) of m we can make correspond the operator
[040xR || F], and the group m is isomorphic to the spin group [m] constituted
by these operators. This means that the group [m] is a spin group because using
[m] one can generate a spatial spin arrangement whose symmetry group is {m]
itself.

4. Principles of the derivation and classification of nontrivial spin groups. We
have already indicated in section 3 the general principle of a derivation of spin
groups based on the isomorphism theorem. We will now apply that general
principle to specific classes of nontrivial spin groups.

Since only nontrivial spin groups will be considered in this section we will drop
the adjective “nontrivial”, thus in this section “spin group” will mean “nontrivial
spin group”. Correspondingly we will write B for the group previously denoted
by B*. A spin group belonging to a family of B and F will be called a spin space
group, a spin translation group, or a spin point group, according as F is, respec-
tively, a space group, translation group, or point group. We will divide these
three kinds of spin groups into classes in a way analogous to the well-known
classification of space groups, translation groups, and point groups into, respec-
tively, 230, 14 and 32 classes.

4.1. Spin point groups. Spin point groups, denoted by R,, belong to a family
of B and R, where B is a subgroup of # and R is a point group belonging to one
of the 32 classes of point groups. To derive all spin point groups one proceeds as
follows. For a specific group R one first finds all normal subgroups r of R and
then those groups B which are isomorphic to R/r. Each pair of groups B and r,
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and each isomorphism between B and R/r determines, because of the isomorphism
theorem of section 3 in the case where b = E, one spin point group belonging to
the family of B and R. By taking each group R in turn, one finds in this way all
spin point groups.

For the purpose of classifying spin point groups we denote by ¢ the linear
group GL (3) in spin space, and by & the affine group GIL (3) in physical space.
Spin groups, which are subgroups of # x &, are also subgroups of X x <.
Spin point groups are classified into classes of conjugate subgroups of %" x <,
that is two spin point groups.are said to belong to the same “class of spin point
“groups” if they are conjugate subgroups of %" x &/. (This is analogous to the
classification of point groups R into 32 classes of conjugate subgroups of &.)
One finds that there are 655 classes of spin point groups'?).

For example, taking a specific point group R belonging to the class mm2 one
finds in this way 28 spin point groups. However, the number of classes of spin
point groups turns out to be in this case only 13.

4.2. Spin translation groups. Spin translation groups, denoted by T,
belong to a family of B and T, where B is a subgroup of %, and T is a translation
group belonging to one of the 14 Bravais classes of translation groups. A method
of deriving all spin translation groups is described in detail in ref. 9.

Classifying the translation groups T into classes of conjugate subgroups of &/
results, as is well known, in no classification at all, all groups T belonging to the
same unique class. It follows that if we were to classify the spin translation groups
into classes of conjugate subgroups of X" x & we would find a classification
independent of T; in fact, we would find a classification of the subgroups of the
orthogonal group in physical space which as a classification of spin translation
groups is too “coarse” for our purposes. To obtain a more satisfactory classifi-
cation we therefore define, again in analogy with what one does to classify the
translation groups, the “holohedry” H, of a spin translation group T,. The holo-
hedry H, of T is the group of all elements [B || R | 0] of # x # such that

[B~* | R-*| 0] T,[B| R|0] =

Let us consider now the subgroup of # x & generated by T, and the holohedry
H, of T,. One can show that the subgroup so defined is the semidirect product
H, A T, of its subgroups H, and T,. Two spin translation groups will be said to
belong to the same “Bravais class of spin translation groups” if the semidirect
products H, A T, for the two spin translation groups are conjugate subgroups
of & x o. A list of all Bravais classes of three-dlmenswnal spin translation
groups has been given by Litvin®).

4.3. Spin space groups. A spin space group denoted by F, belongs to a
family of B and F, where B is a subgroup of # and F is a space group. A spin

@
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space group F, will be called “symmorphic™ or “nonsymmorphic” according as
F is a symmorphic or a nonsymmorphic space group.

We have seen in section 3 that every element of a spin group, hence in particular
of a spin space group, F;, is of the form [B(F) || F] where B(F) denotes that
element of B which is associated with the element F of F. The elements of the
form [B(¢) | E| t] constitute a normal subgroup T, of F,, the spin translation
subgroup T, belonging to the family of B(T) and T. We shall denote the coset
representatives of T, in F, by [B(R) | R | ©(R)].

From the definition of the holohedry H, of a spin translation group Ts, and
the fact that T, is a normal subgroup of F;, it follows that the elements [B(R) || R|0]
{for nonsymmorphic spin space groups, these are [B(R) | R | z(R)] on setting
7(R) = 0}, are contained in the holohedry H, of T,. In symmorphic spin space
groups, the set of elements {[B(R) || R| 0]} constitute a group, a spin point
group R, contained in the holohedry H, of T. In nonsymmorphic spin space groups
the set of elements {[B(R) | R | =(R)]} do not in general constitute a group, but
the B(R), for all R, satisfy the relations

B(R) B(R,) = B(t,;) B(R.R)), | (12)

where ¢;; = ©(R;) + Rz (R;) — T (R,R;) belongs to T.

Consequently, a method of deriving all spin space groups is as follows. We first
consider the case of symmorphic spin space groups. Let F be a symmorphic space
group, the semidirect product of its translation group T and its point group R,
and let T, be a spin translation group belonging to a family of B(T) and T, and
R, a spin point group belonging to a family of B(R) and R, and contained in the
holohedry H; of T;. One constructs all symmorphic spin space groups F, belonging
to a family of B and F by taking the semidirect product of each spin translation
group T, with each of the spin point groups R, contained in the holohedry H,
of T,. By taking, in turn, all symmorphic space groups F one obtains all symmorphic
spin space groups.

Let F be a nonsymmorphic space group containing the translation group T
and the rotations of the point group R, and let T, be a spin translation group
belonging to a family of B(T) and T. One constructs all nonsymmorphic spin
space groups F, belonging to a family of B and F by taking the semidirect product
of each proper spin translation group T, with each set of elements {[B(R) || R| ®(R)]}
where {[B(R) || R | 0]}, the corresponding set where 7(R) = 0, is a set of elements
contained in the holohedry H; of T, and such that the B(R), for all R of R, satisfy
relations (12). By taking in turn all nonsymmorphic space groups F one obtains
all nonsymmorphic spin space groups.

We classify spin space groups as follows. Two spin space groups are said to
belong to the same “class of spin space groups” if they are conjugate subgroups of
A x of and if the element [K || L | v] of o x o, which transforms one subgroup
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into the other is such that det X > 0 and det L > 0. The latter condition is
imposed to obtain a classification analogous to the usual classification of crystallo-
graphic space groups, where two space groups are defined to belong to the same
class of space groups if they are conjugate subgroups of & and if the element
(L | v) of of which transforms one subgroup into the other is such that det L > O.

5. Classification labels of spin' arrangements by means of spin groups. In this
section we discuss three examples of assigning a spin group to a given spin
arrangement. -

5.1. Example 1. This is the case of a simple spiral spin arrangement con-
sidered in ref. 2, p. 160. The simple crystal on which this spin arrangement is
defined is generated by the group P422 from a point r, = (3, 2, 0) using the edge
lengths of a tetragonal unit cell as units. In terms of magnetic groups this spin
arrangement is uniquely specified by a “Cl’ label” in the sense of Opechowski
and Dreyfus?) as follows: '

[P4z2x2xy;p4z; S("o) = (Sx, Sy’ 0)’ S((l | 00”) rO) = ;’S (rO)]-

This label indicates that the spin arrangement is specified by two groups: the trivial
two-dimensional magnetic space group p4, and an infinite rotation group {R,>
generated by a rotation R,, through angle v about the z axis. Using spin groups
these two groups can be replaced for the purpose of specifying the spin arrangement
by a single spin group. The corresponding label is as follows:

[P4z2x2xy; bp, X Pl 1Ry (4z “ 4:) (ia " 2x) (iab " 2xy); S(’O) = Sa]'

Here b,_is the spin-only group of any planar spin arrangement in the xy plane.
The nontrivial group is given in a modified international notation consisting of
symbols which denote the generators of the group; P;,z, is the nontrivial spin
translation group generated by (1 || 1]100), (1 || 1]010), (R, || 1]001), and is a
subgroup ‘of a nontrivial spin group generated by these translations and the
elements (4, || 4,), (24 || 2x), 2as | 2x5); b is a unit vector perpendicular to @ in the
xy plane. This nontrivial spin group is then used to generate the spin arrangement
from S 4, %, 0) . which will then clearly be identical with the spin arrangement
generated from the same spin by the two groups appearing in the Cl’ label.

~ 5.2. Example 2. This is the case of the spin arrangement defined on a crystal
generated by the space group Pbnm from an atom located at r. = (x, y, 1); the
spin arrangement is specified by the following Cl’ label:

(a-) [anm; P2a21/m,; S(rl) = (Sxa Sys 0)3 S('S) = (‘S}" _Sx’ 0)]
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here rs = (3 + x, 4 — », §). For details, see ref. 1, p. 482, where this spin ar-
rangement was (incorrectly) assumed to be that of the Dy spins in DyCrO;. The
actual spin arrangement (see Van Laar!3)) in this case is -

(b) [anm: P2a21/m’; S(rl) = (Sxa Sw 0): S(r3) = (S:u _Sy’ 0)]'

The difference between the spin arrangements (a) and (b) is that in case (a)
S(ry) - S(r;) = 0 while this is not so in case (b).
Using spin groups the corresponding labels are:

@ [Pbrm; b, x Py, (4, 1 5) (471 || m) (1| m); S(ry) = (S., S,, 0)],
(b) [Pbrm; b, x P, 5.1 (2, | 20/(1 || m);
() = (Ss, Sy, 0), S(rs) = (S, —S,, 0)].

We see that in case (a) using a spin group makes it possible to generate the spin
arrangement from a single spin while this was not possible using the Cl label.
However it is in general not true that replacing the Cl’ classification (based on
magnetic groups) by the classification based on spin groups will lead to a reduc-
tion in the minimum number of spins from which a spin arrangement can be
generated; this is clearly illustrated with case (b).

5.3. Example 3. This is the case of the spin arrangement of the Tb spins in
TbCrO; whose CI’ label is (see ref. 1, p. 481):

[Pbnm; Py2imm’; S(r;) = S(r2) = (S,, S,, 0)],

where r; = (x,y,P and r, = (1 — x, 1 — 7, 3). The corresponding label based
on the use of spin groups is:

[Pbnm; by, X P12 (2, 1| 2:) 2, | m) (1 || m), S(ry) = S(r) = (Sy, Sy, 0)]. -

Just as in case (b) in example 2, it is not possible to generate this spin arrangement
from a single spin.

6. Spin groups and magnetic scattering of neutrons. In this section we briefly
indicate how the symmetry spin groups of a spin arrangement S(r) manifests
itself in elastic magnetic scattering of unpolarized neutrons by a single magnetic
crystal represented in our theory by S(r). For simplicity we consider the case of a
spin arrangement in which all spins have the same magnitude and the same magnetic
structure factor /. The generalization to the case of an arbitrary spin arrangement
is straightforward. As is well known the cross section for such a scattering process
is usually taken to be

a(k) = |P(K)|* — |k - P(k)[k|?, 13)
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where k is the scattering vector, k is its magnitude, and P(k) is the scattering
amplitude. To indicate that the latter is a functional of S(r) we introduce for a
moment a more explicit notation, P (k; S(r)), and denote by r(,r;, ..., 7, ...,
the atom sites constituting the crystal on which S(r) is defined. Then

Pk;S@) =f 2 e* " S(r,). (14)

If the spin arrangement S(r) is. replaced by the spin arrangement [Bl| R|v] S(r)
then the scattering amplitude becomes

P(k;[B[ R| 0] S(r) = ok ** BP (Rk, S(r)), (15)

where RT is the transpose of R. Therefore the invariance of S(r) under [B || R | v]
implies:

P (k; S(r)) = &*° BP (R"k, S(r)). ' 16)

In particular if S(r) is generated by a nontrivial spin translation group T, from
a spin S(r,), and therefore is invariant under T,, then, denoting the elements of T,
by [B(?) | E | t], we may rewrite egs. (14) and (16) as follows [we now omit S(r)
in the argument of P]:

P(k) = "1} &“* B(1) S(ry), an

P(k) = ¢*** B(¢) P(k). (18)

To avoid infinities when summing over ¢ we introduce the usual cyclic boundary
conditions. The group T, becomes then a finite group of order N. If we further-
more write

Clk) = Y €** B(r), (19)

eq. (17) can be rewritten as

P(k) = &' C(k) S(r,) (20)
and eq. (18), summed over ¢, becomes

[C(k) — NE] P(k) = 0, 1)
where E is a unit 3 x 3 mat;ix as before. From eq. (21) it follows that either

PK) =0, , (22)
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or
det [C(k) — NE] = 0. 23)

The fact that the homomorphism ¢ — e*** B(¢) is a representation I'(k) of T,
implies that the matrix C(k), being the sum of all matrices belonging to I'(k),
satisfies the following relations:

Ck) #0 if I'(k) contains the identity representation of T,;
C(k) =0  otherwise; ‘ (24)
C(k)* = C(k).
Egs. (20), (21) and (24) imply:
P(k) = (1/N) €*'" C(k) S(ry). 25

The vectors C(k) S(r,) have been tabulated by Litvin®) for all nontrivial spin
translation groups and all vectors k for which C(k) # 0%.

In the case of an arbitrary spin group one can use eq. (16) in a way similar to
that described in the above example, although the computations would in general
be much more complicated.
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APPENDIX

We prove here the isomorphism theorem of section 3, according to which if X
is a subgroup of # x # belonging to a family of B and F then B/b is isomorphic
to F/f where b = B n X and f = X n F. We will use the symbol ~ for the ex-
pression “is isomorphic to”, and the notation H < G to indicate that H is a
normal subgroup of G. ‘

Since X is a subgroup of Bx F and F < B x F it follows from the second
isomorphism theorem (we here use Rotman’s terminology ; see ref. 14), that f < X

* Corrections to the caption of fig. 2 of Litvin®) are noted here: F and G, which represent
possible values of C(k) S, should read

[5S-S5 L[S tiSs
F=7 iS; + 85 | G=E‘ —iS; + S;
0o - 0

and all indices x, y and z should be replaced by %, 7 and Z.
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and X/f ~ XF/F, where XF denotes the set of products XF. Since X belongs to
a family of B and F this latter result becomes X/f ~ B. In a similar manner one
can show that b < X and X/b ~ F., Because b < X and f < X, and b and f have
only the identity element in common, we have b xf < X. Fromf < b xf < X
andb < b x f < X, using the third isomorphism theorem!#4) and the isomorphisms
X/f ~ B and X/b ~ F derived above, we find

X/(b x f) = X/bj(b x f)/b ~ F/f
and
X/(b x f) ~ X/f/(b x f)/f ~ B/b.

Hence B/b is isomorphic to F/b.
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