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Synopsis

The Luttinger-Tisza method and generalizations of this method for determining the minimum
energy spin arrangement in a crystal subject to certain strong conditions are reviewed. It is
shown that one can always replace the strong conditions by a set of additional conditions which
in the simplest cases is identical with the single weak condition introduced in the Luttinger-Tisza
method. A general method of calculating the minimum energy spin arrangement, based on the
space group symmetry of the magnetic atom arrangements, is given, and the method of
Niemeyer, based on permutation groups, is shown to be equivalent to this method. Tt is also shown
that the Luttinger-Tisza conjecture concerning the periodicity of the minimum energy spin ar-
rangement is equivalent to a sufficient, but not necessary, condition for a minimum of the energy.

1. Introduction. In this paper we discuss the Luttinger-Tisza method') and
generalizations of this method? ~*) for determining the minimum energy arrange-
ment of classical spins defined on a given atom arrangement and interacting via a
given interaction. We consider the most general case of a spin arrangement de-
fined on an arbitrary atom arrangement and an arbitrary interaction.

The energy to be minimized is given as a quadratic function of the spins and
additional so-called strong conditions are imposed which determine the magni-
tude of each spin. These strong conditions are replaced by a single so-called weak
condition in the Luttinger-Tisza method, and in generalizations of this method
by a single weak condition and a set of additional parameters?) or by a set of
weak conditions?). In section 2, after a formal presentation of the problem, we
derive a set of additional conditions which can always be used in place of the
strong conditions. In the case of one or two equivalent atoms per primitive unit
cell of the atorh arrangement, we derive a single additional condition which is
identical to the Luttinger and Tisza weak condition.

Using these additional conditions, in section 3 we outline a method of sim-
plifying the calculation of the minimum energy spin arrangement. The method
outlined is a well-known group-theoretical method®) based on the space group
symmetry of the atom arrangement on which the spin arrangement is defined.
The method of Niemeyer®7-%) to simplify this calculation, based on permutation

205



206 D.B. LITVIN

groups. Is reviewed and it is shown that this latter method is equivalent to that
based on the space group symmetry of the atom arrangement.

In the Luttinger-Tisza method. an assumption is made, the so-called Luttinger-
Tisza conjecture, concerning the periodicity of the lowest energy spin arrange-
ment. In section 4 it is shown that this conjecture is equivalent to a sufficient, but
not necessary, condition for the energy to be minimum.

2. The Luttinger-Tisza method. The elements of a space group F are denoted
by F = (R{v(R) + t), where R is a rotation matrix and v(R) and ¢ are column
matrices representing, respectively, the non-primitive translation associated with
R and a primitive translation. The set of all translations (£'| r) of a space group F
constitute a subgroup T of F, and assuming the usual cyclic boundary conditions,
T is a subgroup of F of order N. The atoms of the atom arrangement of a crystal
whose space group symmetry is F can be partitioned into simple crystals consisting
of those atoms whose positions can be obtained by applying all elements of the
space group F to any one atom position r'®). A simple crystal is said to be gen-
erated by F from r. No two simple crystals have atoms in common, and the ele-
ments of F permute the atoms of each simple crystal among themselves. An atom
arrangement consisting of M simple crystals generated by F from positions
P, ¥, ..., Py will be denoted by {Fir . rs, o ry].

The position of an arbitrary atom in an atom arrangement [F:r . #s. ..., Fy]
will be denoted by r;,, = r;, + t,. t, is a translation of T, and r;, denotes the
position of the pth atom of the ith simple crystal in the primitive unit cell defined
by T. The indices take the valuesn = 1,2, ..., N.i = 1,2, ... M,and p=1,2....,
P(i), where P(i) denotes the number of atoms in the primitive unit cell belonging
to the ith simple crystal. The total number of atoms in the atom arrangement is
then N'Y, P(i).

Let S(r) denote a spin arrangement defined on the atom arrangement
[Fir,.rs, ....1ry]. To every atom of the atom arrangement, at positions ry,,.
we associate a spin vector S(r;,,,) which for simplicity we denote as S,,. The set of
all spins which constitutes the spin arrangement S(r) will be denoted by {S;,,}.

The atom arrangement defined by [F;r . v, .... Fy] is the atom arrangement
of the magnetic atoms in the magnetic phase of the crystal. This is distinguished
from the atom arrangement of the magnetic atoms in the non-magnetic phase of
the crystal, which is not necessarily invariant under the space group F. The space
group F has been referred to as the “non-magnetic space group of the magnetic
crystal”, the space group of the magnetic atoms determined by X ray when the
crystal is in the magnetic phase!').

The problem which we are concerned with is the determination of the spin
arrangement {S;,,} which minimizes the energy

E = Z J?[{;H._,’VIINS;HHSJ[}Q"’ (1)

x ipn
B jam
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under the N ) ; P(i) so-called strong conditions

Sipn* Sipn — S{ =0 (2)
for all values of i, p, and n. Sj,, is the ~th component of the spin S,,,, and the
coefficients J% .. are the interaction parameters. In eq. (2) the magnitude of
the spins are dependent only on the index /, i.e. on the simple crystal to which
the atom at position r;,, belongs.

To find the spin arrangement which minimizes the energy, eq. (1), and satisfies
the strong conditions, eq. (2), one can attempt to use the Lagrange multiplier
method. One introduces a set of N ) ; P(i) Lagrange multipliers {Z;,,} and defines
the function G':

G = Z len JamSwnSﬁlm Z ;”m [Z Sl}an:‘pn B ] (3)
x I[)Vl ll'“
B jam

This function is a function of both the components of the spins and the Lagrange
multipliers. The minimum of the function G with respect to the set of variables
{8 pnhipn) 18 the minimum of the energy E, eq. (1), with respect to the variables
{S:,.} which satisfy the strong conditions.

To find the solution {S;,,4;,,} which minimizes G, we diflerentiate eq. (3) with
respect to these variables and set the derivates equal to zero:

1 G a
N T~ Z ‘Ilpn Jam qu ;mnSz[m = 0 (4)
2 ¢S, Bam

{) - Z Slnns;\pn _ Si = 0' (5)

ipn

Equation (4), for all , 7, p and », can be written in the following concise matrix
notation

J—1)S=0, (6)
where
I ipn)(fjgmy = J:pﬁn jams
}“( xipn) (§ jqm) = /‘mné«lirsuépq(snm ° (7)
S(;ipn) = S?pn-

The Lagrange multipliers {2;,,} are in theory calculated from the condition
that a solution {S;,,} exists to eq. (6), that is:

det (J — 4) = 0. (8)
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However, since there are N Z,- P(i) unknown Lagrange multipliers, one cannot in
practice calculate them from eq. (8).

The method of Luttinger and Tisza') to solve this problem is to replace the
N Y, P(i) strong conditions, €q. (3), by the single so-called weak condition

Z [Sipn * Sipn - Siz] = 0 (9)
ipn
and to assume that the spin arrangement S(r) corresponding to the lowest energy
of eq. (1) is such that

S(r+2t) = Sr) (10)

for every translation ¢ of the subgroup T of F. The subgroup of T consisting of
all translations of the form (| 2¢) will be denoted by T2. Equation (10), known
as the Luttinger-Tisza conjecture, will be discussed in detail in section 4.

The weak condition, eq.(9), is a necessary but not sufficient condition that the
spin arrangement satisfies the strong conditions. Luttinger and Tisza use the
Lagrange multiplier method with the single weak condition, define the function G

= af I . , 2

G = Z Ji’;m,qusixan,qu — A Z [Sixan?pn_ Si ] (l l)
x ipn « ipn
B Jjam

and minimize G with respect to the set of variables {8ipn. 2}. Comparing eqs. (3)
and (I1) one sees that replacing the strong conditions by a single weak condition
is equivalent to assuming that the solution {Sipn> 2ipn} Of €gs. (4) and (5) is such
that the Lagrange multipliers 4,,, are independent of the indices i, pand n, i.e.
Fipn = A

If the solution {S,,,, 2} which minimizes G is such that the spin arrangement
{Si,} also satisfies the strong conditions, then one has found the solution to the
original problem, i.e. the spin arrangement which minimizes the energy £ and
satisfles the strong conditions. If not, then no progress has been made in solving
the original problem.

Freiser®) has introduced instead of a single weak condition the set of > P(i)
weak conditions

2 [Sin Sipe = 8’1 =0 (12)

n

for all values of the indices i and p. These are necessary but not sufficient con-
ditions that the spin arrangement satisfies the strong conditions and is equivalent
to assuming that the solution {S;,,, 4;,,} which minimizes the function G given
by eq. (3) is such that the lagrange multipliers Jipn are independent of the index n,
i€ dipn = Aip.
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Lyons and Kaplan®) instead of using the single weak condition of Luttinger

and Tisza, eq. (9), introduce the single generalized weak condition

S Abpn [Sipn+ Sipw — 871 =0, (13)
ipn
where the {4,,,} are a set of real, non-zero parameters. This generalized weak
condition is, again, a necessary but not sufficient condition that the spin arrange-
ment satisfies the strong conditions. The Lagrange multiplier method is used with
a single multiplier, and a solution is found which is a function of the set of para-
meters {A,,,}. The parameters are then varied to find the set of parameters such
that the solution satisfies the strong conditions.

The use of the single generalized weak condition is equivalent to replacing the
Lagrange multipliers Z,,, in eq. (3) by 24;,,. where / is the Lagrange multiplier
introduced with the single generalized weak condition and the {A4;,.} is a set of
parameters. The strength of this method is the possibility that in varying the set
of parameters one “might be lucky and have to consider only one set'?)”. If one
was to consider all possible sets of values of the parameters, then in fact one is
attempting to solve the original problem with the strong conditions. In practice
one considers only a subclass of ali possible values of the parameters {4,,,!. taking
the parameters as independent of the index n?).

Lastly. Bertaut*) has used the method of Luttinger and Tisza with the assump-
tion that the solution {S,,,, .}, which minimizes the function G given in eq. (3),
is such that the Lagrange multipliers 2,,, are independent of the indices p and n.
In other words, considering the set of Lagrange multipliers as a scalar arrange-
ment defined on the atom arrangement [F; r,. r,. .... ry], the scalar arrangement
is assumed to be invariant under the space group F. We will show below that
Bertaut’s assumption is correct.

In what follows we will not restrict ourselves to the problem where the energy £,
eq. (1), is due to Heisenberg exchange and dipole—dipole interactions, but con-
sider the case of a general interaction between the spins. The interaction para-

meters Ji’!f},,‘jq,,l are not arbitrary but must satisfy the following relations

B 7o
Jipn. jam == Z R;va&[}JF(i)F(p)F(n), F(jYF(q) F(n) (14)
70

for every rotation matrix R of an element F = (R | o(R) + 1) of the space group
F ol the atom arrangement on which the spin arrangement is defined: and where
the indices F(7), F(p) and F(n) are defined by:

Feinramrm = (R 2(R) + 1) ryp.

The restrictions on the interaction parameters follow from the space group sym-
metry of the atom arrangement [F;r,,r,, ..., ry] and are identical with the
restrictions on the atomic force constants found in the theory of lattice dynamics®).
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We will now prove the following theorem: The solution {S;,,, 4;,.} of eqgs. (4)
and (5) which minimizes the function G defined in eq. (3). where the interaction
parameters satisfy relations (14), is such that the Lagrange multipliers {4,,,} are
dependent only on the index /, i.e. 2;,, = 2;. The number of distinct Lagrange
multipliers in the solution of eqgs. (4) and (5) is then at most equal to M. the num-
ber of simple crystal which constitute the atom arrangement on which the spin
arrangement is defined.

Proof: Relations (14) can be rewritten in matrix form as
J=D(F)y"'JD(F), (15)
where J is defined in eq. (7), and
D(F), ipn) (B jgm) = ‘”TRR‘XIK(Si.F(.i)(Sp.F(q)én.I-'(m)’ (16)

where e = det R. The matrices D(F) represent the transformational properties
of the components of S, see eq. (6), under elements F = (R | v(R) + t) of the
space group F, that is:

(R{v(R) + 1) S = D(F) S. (17)

Using eq. (15), we rewrite eq. (6) in the form

(J—AF)YDF)y 'S =0, (18)
where
MF) = D(F)~' AD (F) (19)

is a diagonal matrix, whose diagonal entries are a permutation of the Lagrange
multipliers {4,,,} appearing in the diagonal matrix 2 defined in eq. (7):

}'(F)(kipn)(ﬂqu) = Arep F(p)F(n)'5«/r‘3i_f'>pq‘)nm-

The Lagrange multipliers can be calculated from the condition that a solution
exists to eq. (I18):

det (J — AF)) = 0. (20)

Comparing the characteristic equations corresponding to egs. (8) and (20), one
has that 2 = A(F), that is

;'z‘pn = /‘F(i)F(p)I’(n) (21)

for every element F of the space group F.
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The index / denotes to which simple crystal the atom at position #,,, belongs,
and since the elements of the space group F permute atoms of each simple crystal
among themselves, we have that £(i) = i. In addition, since all atom positions
belonging to a specific simple crystal are generated by F from any one atom posi-
tion of the simple crystal, one obtains from eq. (21) that 4;,, = ;. The Lagrange
multipliers of the solution {S;,,. %,,,} of egs. (4) and (5) are dependent only on
the index 7.

This means that the N ) ; P(i) strong conditions
Sipn ‘ Si(m - Stz =0 (?)
can always be replaced by the M conditions

Z [Sipn ° Sipn - Slz] = 05 (2’2)

pn

where i = 1,2, ..., M, and where M is the number of simple crystals which
constitute the atom arrangement on which the spin arrangement is defined.

If the atom arrangement on which the spin arrangement is defined consists of
a single simple crystal, i.e. M = 1, the condition given by eq. (22) is identical
with the Luttinger and Tisza single weak condition, eq. (9). This includes the
cases of one atom per primitive unit cell, the case originally considered by Lut-
tinger and Tisza'), and all cases of two equivalent atoms per primitive unit
cell®=®13), In the latter cases inversion is always an element of the space group
of the atom arrangement and all atoms belong to a single simple crystal. In gen-
eral, if the atoms in the primitive unit cell are identical and the coordinates of
their positions constitute a set of “coordinates of equivalent positions™ in the
International Tables of X-Ray Crystallography'#) with respect to the space
group F (which is equivalent to the statement that the atom arrangement consists
of a single simple crystal) then the strong conditions, eq. (2), can be replaced by
Luttinger and Tiszas™ single weak condition, eq. (9).

Comparing eqgs. (22) and (12), one has that Freiser’s set of weak conditions can
be used in place of the strong conditions given in eq. (2). However, unless there
is only one atom per primitive unit cell from each simple crystal of the atom
arrangement, the number > ; P(i) of unknown Lagrange multipliers which must
be introduced using Freiser's set of weak conditions, eq. (12), is larger than M,
the number of Lagrange multipliers which must be introduced when using the
conditions given in eq. (22).

Comparing eq. (22) with the use of the single generalized weak condition of
Lyons and Kaplan, eq. (13), one has that considering the subclass of sets of para-
meters {A,,,} where the parameters are independent of the index n is sufficient in
solving the original problem. In fact one can be more restrictive as it is sufficient
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to consider the subclass of sets of parameters where the parameters are indepen-
dent of both the indices p and n.

Work by Kaplan and coworkers®:'*~!¢) have found in the case of cubic spi-
nals. solutions which satisfy the strong conditions and are such that the para-
meters {A4,,,} are dependent on the index p. Comparing their theoretical results
and the experimental results of Hastings and Corliss'”) on the magnetic structure
of MnCr,0,4 with the above results, one concludes that in the magnetic phase of
MnCr, 0O, below 18 K there is an orthorhombic deformation of the atom arrange-
ment on which the spin arrangement is defined?).

3. Calculation of the minimum energy spin arrangement. In this section we out-
line a general method of simplifying the calculation of the solution of egs. (4)
and (5) taking into account the results of section 2. The method used is a well-
known group theoretical method based on the space group symmetry of the atom
arrangement on which the spin arrangement is defined, and used for example in
the theory of lattice dynamics®). The purpose of this section is to present a gen-
eral method which is not dependent on any assumptions on the translational
invariance of the sclution, as the Luttinger-Tisza conjecture, eq. (10). In addi-
tion, the method to calculate the solution of egs. (4) and (5) based on permutation
groups®~®) and applied only in cases where the Luttinger-Tisza conjecture is
assumed to be valid, is shown to be equivalent to this general method.

In matrix notatjon, the problem is to find the eigenfunction S of eq. (6)

JS =S (6)

which minimizes the energy £ given in eq. (1). The matrices J and S are defined in
eq. (7) and A is the matrix:

)“(;xipn)(/}qu) = ;‘iéx/iéij(quamn'
The energy E. using egs. (1), (4) and (5), can be written as
E = NY P(i)}S}. (23)
where P(i) is the number of atoms in the primitive unit cell belonging to the ith
simple crystal, and the sum is over all simple crystals.
We must then find the set of Lagrange multipliers {2,} i = 1,2, ..., M, the
components of the matrix A, which are solutions of det (J — 1) = 0 and which

minimize eq. (23); and the corresponding eigenfunction S of eq. (6). To simplify
this calculation we note that from egs. (15), (19) and (21)

JD (F)S = D (F) S,



THE LUTTINGER-TISZA METHOD 213

where D(F) is the matrix defined in eq. (16). Consequently, the eigenfunction of
eq. (6) are simultaneously basis functions of irreducible representations of the
space group F, in particular, of irreducible representations of F contained in the
representation D(F) afforded by the set of matrices D(F).

We first consider only the subgroup T of primitive translations (E|t,) of the
space group F. and determine the linear combinations of the components of §
which are basis functions of irreducible representations of T contained in the re-
presentation D(T) of T. We calculate the unitary matrix U such that

UD(TYU ' = DJ(T),

where D(T) is the reduced form of the representation D(T). D.(T) is the direct
sum of all irreducible representations of the group T, each irreducible represen-
tation appearing 3 ) ; P(i) times. The matrices of the representation D(T) are
diagonal matrices of the form

—ik -t
Dit) s ipiy g jary = € 050150 paOki »

where k and k" are vectors of the first Brillouin zone of the reciprocal lattice de-
fined by T, and take N possible values. The matrix U is found to be:

ro/ 'k-t,, .
U(,\ipk)(ﬂjqn) = (1 N N)e 5042():‘,/‘61:4-

The matrix Uis used to calculate the linear combinations of the components of S,
denoted by Q7,(k). which transform under translations of T as basis functions
for the kth irreducible representation of T. Since the irreducible representations
of T are one-dimensional. the Q7 (k) are eigenfunctions of the translations of T.
Defining the components of Q as Q. ;x) = Q5,(k), we have

Q=US and (E|0)Q = D,1)0.

That is

0i(k) = (IN/N) e 53, (24)
and

(E11) QLK) = e~ " O (k). (25)

From eq. (25) we have that the Qf,(k) are Fourier transforms of the components
of §+18),
In terms of Q, using the relation § = U~'Q, eq. (6) becomes

UJU-1Q = 10
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which splits into N independent equations
L(k) Q(k) = Ak) Q(k) (26)

for the N values of k, and where the 3 3 ; P(i) dimensional matrices L(k) and A(k)
are defined by

— ap ik (t,—ty)
LK), ipy gy = 2 I Gipm (amy € >
n

l(k)(,xin)(/}jq) = ;'ifsaﬂé' 0

1y'rq

and where
Q(k)(m'p) = Q?p(k)-

A necessary and sufficient condition that a set {4} is a solution of det (J — 1)
= 0, eq. (8), is that the set {4;} be a solution of

det (L(k) — X(k)) = 0 (27)

for some value of k. One therefore determines the solutions {4;} of eq. (27) for
each value of &, and then from among these, the set {#,} which minimizes the
energy given in eq. (23). The corresponding eigenfunction is determined from
eq. (26).

The Luttinger—Tisza conjecture, eq. (10), means that one determines the set {24
which minimizes eq. (22) from that subset of solutions of eq. (27) corresponding
to values of k for which 2k = K, where K is a reciprocal lattice vector. For such
values of k. the eigenfunctions of eq. (26), as can be seen from eq. (24). are in-
variant under all translations of T2.

In general, simplifications of eq. (26) can be made by noting that the matrices
D(F) defined by

E(F)m ipy(pig = Z D(F)mimn(/;qu (28)

commute with the matrices L(k) and A(k) for those elements of F belonging to F,
the space group of the vector k, i.e. for all elements F = (R | e(R) + t) such that
Rk = k + K. The cigenfunctions of eq. (26) are therefore basis functions of the
irreducible representations of the group £, contained in the representation D(F)).
One can then proceed to simplify the calculations of eq. (26) in a manner similiar
to the simplification of the calculation of eq. (6)°).

Recently, Niemeyer and others®>~#:!3) have used a method based on permuta-
tion groups to simplify the calculations of the solution of egs. (4) and (5). They
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consider the case of a spin arrangement defined on a single simple crystal with
one or two atoms per primitive unit cell and assume the validity of the Luttinger-
Tisza conjecture.

In the case of one atom per unit cell, their problem is then to find the lowest
energy eigenfunction g of the equation

(4—2)n=0, (29)
where A4 and 2 are the twenty-four dimensional matrices

A(\u)(/}h) = 2"’()(!)(ﬂ’7+ll}ﬂ (30)
u

Aoaypn = 20,0ap

and

&

’I(,\u) = Su >

x=1,2,3a=1,2...,8 and S} is the nth component of the spin at r,. the
position of one of the eight atoms in the primitive unit cell defined by T2. The
energy of the eigenfunction is proportional to 2 and the index « indexes the trans-
lations (£ | t,) of the group T2.

A group of eight matrices A(P;), i = 1,2, ..., 8 is found which commute with
each other and the matrix 4 of eq. (29). These matrices give the transformational
properties of the components of » under a group of permutations of the values
of the index «

Py =t Py — ﬁZj}A(Pi:)(wa)(ﬂb)’l(ﬁl7)v (31
where

AP)xayippy = OapObpia-
These matrices commute with the matrix 4

A = A(P)" " A AP) (32)
and hence

A(w)(ﬂh) = Aupim(/m‘m- (33)

The simplification of the calculation of the eigenfunctions of eq. (29) are based
on that the eigenfunctions of eq. (29) are simultaneously basis functions of irredu-
cible representations of the group P of permutations P;. Since the permutation
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group P in question is abelian, the irreducible representations are one-dimensional
and the eigenfunctions of eq. (29) are alsc eigenfunctions of the permutations
of P.

We point out that this method based on the theory of representations of per-
mutations groups is identical with the analysis given above based on the space
group symmetry of the matrix J of eq. (6). In fact the matrices A4(P;) defined in
eq. (31) are identical to the matrices which give the transformation properties of
the components S5 of 5, see eq. (17), under the eight translations of T not con-
tained in T2 when eq. (10) is taken into account. Relation (33) follows directly
from egs. (15) and (30) when P; is replaced by the appropriate translation of T
not contained in T-.

For the case of one atom per unit cell, the method used by Niemeyer®) is then
in fact identical with the general method outlined in the beginning of this section,
but in the guise and nomenclature of permutation groups. The simplifications
derived in ref. 5 consequently are identical with egs. (25)-(27) in the case of
vectors k where 2k = K.

In the case of two atoms per primitive unit cell of a single simple crystal®—8-13)
eq. (29) is used, where n is now a fourty-eight dimensional vector with compo-
nents f,qy, @ = 1,2, ..., 16 corresponding to the three components of the sixteen
spins in the primitive unit cell of T2, The sixteen permutation matrices, see
egs. (31)-(33), derived in refs. 6 and 8, in this case correspond to the eight trans-
lations of T not in 72 and to these translations combined with inversion, which in
the case of two equivalent atoms per primitive cell, is always a symmetry element
of the space group F of the atom arrangement. Inversion is also an element of Fy
for values of k such that 2k = K, and the procedure given after eq. (28) can be
used. One finds directly the result that the eigenfunctions of eq. (29) are eigen-
functions not only of the translations of T but also of inversion.

The method based on permutation groups to simplify the solution of eqs. (4)
and (5) has not been applied to problems other than that of atom arrangements
consisting of a single simple crystal with one or two atoms per primitive unit cell.
In fact, the impossibility of extending this method in general to additional cases
has been concluded®'®). The advantage of simplifying the calculation of the
solution of eqs. (4) and (5) using eqgs. (26) and (27) is that it provides a straight-
forward method, based on the space group symmetry of the atom arrangement,
applicable to all possible cases.

4. The Luttinger-Tisza conjecture. The Luttinger—Tisza conjecture, eq. (10), is
the assumption that the lowest energy spin arrangement is invariant under the
subgroup T2 of the space group F of the atom arrangement. In the context of the
method of section 3, this conjecture means that one determines the set {%;} which
minimizes eq. (22) from among the subset of solutions of eq. (27) corresponding
to values of k for which 2k = K. One considers then only eight values of the
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vector k:(000), (300), (050), (004), (0%3), (303), (330) and (§ 1 1) where
the components of k have been given in fractions of the three generating trans-
lations of the reciprocal lattice.

In substances with predominently dipole-dipole interactions, the Luttinger—
Tisza conjecture so far has been found to be valid??), but it is known that it does
not hold for cases with predominently Heisenberg exchange interactions as can
be seen by the work of Yoshimora?!') and Kaplan and co-workers?:'3:'¢), A
proof of the Luttinger-Tisza conjecture has been given by Karl??), but only for
the case of a single simple crystal with one atom per primitive unit cell and with
restrictive conditions on the interaction parameters, e.g. nearest-neighbor inter-
actions only. We will show below that the Luttinger-Tisza conjecture is equiva-
lent to a sufficient, but not necessary, condition for the minimum of the energy £
defined in eq. (23).

We denote by E(k) the energy corresponding to the set {4} calculated from
eq. (27) for a specific value of k. We first show that the energy E(k) as a function
of k has local extremal values at precisely those values of k predicted by the Lut-
tinger—Tisza conjecture, i.e. at those values of k for which 2k = K.

From eq. (27) we have®)

Ek) = E(k + K) (34
and
E(k) = E(—k). ' (35

We expand E(k) in a power series about E(ky), and using egs. (34) and (35) we
have:

E (ko + k) = E(ko) + (ViE (K))y=p, Mk + -

E(—ko) — (ViE (K))iw —, Ak + -+

E(ko) — (ViE (K)i=—poex Ak + -

From the first and third of these relations we have

(Vb (KDi=k, = = (ViE(R)p= x4k

and consequently (V. E (k)), -4, = 0 and E(k) has a local extremal value for those
values of k for which 2k = K, precisely those values of k predicted by the Luttin-
ger—Tisza conjecture.

One can show in a similiar manner that from E(k) = E{(Rk), where R is the
rotation matrix of an element F = (R | »(R) + t) of the space group F, that:

(ViE (k))k=Rko+K = R(V,.E(K)), =ko-*



218 D.B. LITVIN

The gradient of E(k) at a specific value of k is then invariant under all rotations R
of elements of £, the space group of the vector k. The group of all such rota-
tions is referred to as the point group of the vector k. If the point group of the
vector k does not allow an invariant vector, i.c. the point group C;, C,,. D,.
DZII' S4a C4I1'~ kD47 D?_dﬂ D4ha C3i~ D3* D3d~ C3.’lﬂ C()h* D()ﬁ DSIH D6hq T~ Tha O
T4 or Oy, then the gradient of E(k) is zero and E(k) takes on a local extremal
value for this value of k. We note that such vectors & include cascs where 2k # K,
for example, the point R on the surface of the Brillouin Zone of the space group
F = D3} where the point group of the vector & is D,?3).

Consequently, one anticipates local extremal values, possibly local minima, of
the energy E(k) at those values of & for which one or both of the following con-
ditions are satisfied:

1) 2k = K;

(30)
2) the point group of the vector k does not allow an invariant vector.

However, these conditions are only sufficient and not necessary conditions for
local extremal values of E(k), and the above argument based on the symmetry
properties of the function E(k) does not preclude the possibility of additional
values of k for which E(k) has local extremal vatues.

We note that the above results, which inciude the Luttinger-Tisza conjecture.
are identical with conditions used in the Landau theory of second-order phase
transitions**). These conditions arise in the same manner as above as conditions
for the minimum of a function which is dependent on the vector £2%). As in the
case of second-order phase transitions we can distinguish between local minima
of E(k) due to symmetry, with corresponding values of k which satisfy one or
both of the conditions (36), and local minima of E(k) which are not due to sym-
metry but depend on the specific values of the interaction parameters which enter
into eq. (1)513-14:213,
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