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The Dipole Moment Expansion for a Tetrahedral Molecule
in the Ground Vibronic State®

IRVING O71ER,? ARIEH ROSENBERG, AND DANTEL B. Litvix

Department of Plysics, University of Britisle Columbia, Vancouver, Canada

The expansion of the clectric dipole moment operator in terms of angular momentum
operators is examined in detail for a tetrahedral molecule in the ground vibronic state. The
components of this centrifugal distortion moment in the molecule fixed frame are formally
expanded to arbitrary order, with the expansion coefficients heing given in terms of rotation
matrices. FFor terms of rank j less than 15, general expressions are given for the matrix ele-
ments in the symmetric top basis of the space-fixed components of the dipole moment. The
dependence of these matrix elements on the K-quantum number is shown to factor in such
a way that previous first order calculations can he extended to sccond order by replacing the
first order dipole coupling constant u»*® with a function of J which involves w2 and two
second order constants, us® and u . Different functions arc required for Q- and R-branch
matrix elements and explicit expressions are given for both. The third order terms are examined
in detail in the Appendix. A recurrence relation is derived for j < 15 between the tetrahedral
harmonics of types A, and I;. The implications of this work for distortion moment spectros-
copy in tetrahedral molecules are discussed.

1. INTRODUCTION

There has been considerable interest recently in the electric dipole moment that is
generated in the ground vibronic state of a tetrahedral molecule by centrifugal distortion.
The original theoretical works (/~7) on this problem inspired a series of experiments
using a variety of techniques: molecular beams (&), far infrared spectroscopy (9-14),
microwave-infrared double resonance (15) and microwave absorption (/6). In opening
up the field of distortion moment spectroscopy, these theoretical works were concerned
with the first nonzero term in the dipole moment expansion and so considered only the
term of lowest order.

There is now, however, strong experimental evidence that terms of higher order must
be considered in the analysis of the various experiments, particularly those (9-14, 16)
which involve states with large values of the rotational quantum number J. From Stark
shift measurements on the (J = 2) level of CHy, it has been found (&) that the effective
distortion dipole moment up is (5.38 4= 0.10) X 10~ D. On the other hand, if all the
intensity measured in the R-branch spectrum is ascribed to the centrifugal distortion
mechanism, it is found (74) that the effective moment from J = 10 to 15 is larger by a
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factor of ~1.4. It is quite reasonable (14) to attribute an increase of this order with J
to the higher order terms in the dipole expansion.

It is the purpose of the current work to calculate the matrix elements of the dipole
moment operator to high order and to discuss the implications for the analysis of R-
branch and Q-branch spectra in tetrahedral molecules. In Section 2, the expansion of the
dipole moment operator in the molecule fixed frame (MFF) to arbitrary order is put
on a rigorous basis using arguments that can be applied to the Hamiltonian as well.
The expansion is discussed in some detail because no treatment of this type has been
previously presented for either the dipole moment or the Hamiltonian.* The general
term in the expansion is given as a sum of spherical tensors, while the terms of first
and second order are given explicitly as a sum of angular momentum operators.

In Section 3, the dipole moment in the space fixed frame (SFF) is obtained to high
order and the matrix elements are calculated in the symmetric top basis. Explicit ex-
pressions are given for the matrix elements of first and second order. Tt is shown that
earlier first order calculations can be extended to second order simply by replacing the
lowest order moment up by an appropriate effective moment which depends only on J.
In the course of the calculation, a simple relationship is derived between the coefficients
of the tetrahedral harmonics for the A4, representation and those for the F, representa-
tion. The limitations on the results concerning the order of the expansion are described.

In Section 4, the implications of the work for distortion moment spectroscopy in
tetrahedral molecules is discussed and the application of the current results to collision-
induced absorption is considered briefly. An Appendix is included which treats the
third order terms in the dipole moment expansion in some detail.

2. THE DIPOLE MOMENT EXPANSION FOR TETRAHEDRAL MOLECULES
1. The General Expansion

The components f, of the dipole moment operator in the MFF can be expanded as
o = Z Aazn: (1)

where 4.2 is the term of order n. Here « indicates the Cartesian component and the
tilde shows explicitly that the operator is referred to the MFF. We will define the term
“n-tuple” to mean a product of the form J,Js- - -J5, where n factors appear, cach one
being a component of the rotational angular momentum J. The general term 4,2 in
Eq. (1) can be written as the sum of all possible linear combinations of (2n)-tuples which
transform as the ath basis function of the irreducible representation (irrep) F, of the
molecular point group 7',. Each independent linear combination in this sum is multiplied
by its own coupling constant. Because of general symmetry considerations, odd n-tuples
do not appear in this expansion of g, The problem then is to find all the appropriate
linear combinations of (2n)-tuples.

To solve this problem, we first consider the transformation properties of the (2n)-
tuples under the full continuous rotation-reflection group R(3) ® I and then apply the

¢ In high order, the problem arises of the determinability of the coupling constants from the observed
data. This problem is not considered here. See Ref. (17).
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condition that the required linear combinations of (21)-tuples transform as the ath
basis function of the irrep F, of the point group 7. The components J, form a basis
(18) for the three-dimensional gerade irrep D,V of R(3) ® L All 3** possible (2n)-tuples
in these components therefore form a basis for the (21)th direct product representation

D,V =D,YQD,NDQ - @ D,D, 2 factors. (2)

Because the linear combinations of (212)-tuples which are antisymmetric in the (2x)
indices do not contribute, we need consider only the symmetric combinations. These
form a basis for the symmetrized (2r)th direct product representation [D, V" of the
group R3) ® L

The representation [ D, is in general reducible and can be reduced into a direct
sum of gerade irreps Dy (L =0, 1, 2, ...) of the group R(3) ® L Ungerade irreps
do not appear in the reduction because all the factors in Eq. (2) are gerade. Let R
represent a proper rotation by angle 6, about an arbitrary axis and I represent the
inversion. Further, let X;,(R) and X1, (ZR) be the characters of the irrep D, % for elements
R and IR, respectively. Because we are considering only gerade representations, these
two characters are equal. Then (19),

XL(R) = XL(]R) = smf(ZL + 1)01(/2]/511’1[01?/2] (3)

Define X**(R) and X*"(IR) to be the characters of [DJ" for clements R and IR, re-
spectively. Again, these characters are equal. It then follows from work done (20) on
the analysis of overtones of triply degenerate vibrational bands that

4, ..., 2n. 4)

7

2n
X(R) = x*"(IR) = ¥ X¢(R), L =0,2
L=0

Thus each irrep D,™ for even rank L < 2u occurs once and only once (78).

2n

(D, = fv_“o D™ =DODDODH ... P D, (5)

The symmetrized (2n)-tuples can therefore be {ormed into independent linear combina-
tions which are sets of basis functions for all the irreps D, appearing in Eq. (5).

For each irrep D& (L =0, 2, ..., 2n) of the group R(3) ® I, we now subduce a
representation of the point group Ty and reduce this representation into a direct sum
of irreps of the point group 7. Let V(L, F,) denote the number of times the irrep F,
of T’ is contained in the representation of 7'y subduced from the irrep D, of RB) ® L
Let B.2"(L, ) be the linear combinations of the basis functions of the irrep D, of
group R(3) @ I which transforms as the ath basis function of the irrep F, of group 7.
Here ¢ labels the different independent functions which have identical transformation
properties: £ = 1, 2, ..., N(L, Fy). Because each D,™ occurs only once in Eq. (5),
the B2»(L, f) are, for given 2i and L, unique to within a unitary transformation with
respect to ¢. Therefore, the B2*(L, {) for L = 2, 4, ..., 2un include all possible linear
combinations of (2x)-tuples which transform as the ath basis function of irrep Fy and
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include each such combination only once. As a result, we can write

2n N(L,Fp)

A" =X % pra®Bi(L, ), ©)

L=2 t=1

where the pz 2™ form a complete set of independent coupling constants. These con-
stants are real. The total number of constants is

2n

N =3 N(LF. )

L=2

The sums on L in Egs. (6) and (7) start at 2 because A (0, F,) = 0.
To simplify Eq. (6), we define

Gall, 1) = B, 0, 1). (8)

From the uniqueness of the Bn(L, 1) and the fact that (J2+ T2+ T2 is the only
quadratic invariant that can be formed from the components of J, it follows that

B (L, 1) = [Jer06G (1, 1), ©)

It is understood in writing Eq. (9) that,if N'(L, Fy) is > 1, the appropriate unitary trans-
formations must be chosen for both B2 (L, 1) and G, (L, 1). We can now express 12" in
terms of the G.(Z, 1). From Egs. (6) and (9),

_ 2n N(L,F3) _
A= 3 [FJemne 27 L enG (L), (10)
L=2 t=1

For each order u, the only new basis functions which are introduced in Eq. (10) are the
Ga (L = 21, 1). All the other Go(L, 1) have already appeared in the .12 of order s < ».

The analysis which is presented here for the general term in the dipole moment ex-
pansion can be easily modified so as to apply to the terms in the Hamiltonian expansion,
The analog of Eq. (10) for the Hamiltonian has been given previously (21) without
detailed discussion of its basis.* The Hamiltonian expansion to specific values of 1 has
also been used in various problems (22, 23). However, to the authors’ knowledge no
general proof of Eq. (10) of the type given here for arbitrary order has appeared in the
literature for the expansion of cither the Hamiltonian or the dipole moment of a tetra-
hedral molecule. The essential point in the derivation of Eq. (10) lies in the fact that
each D, (L =0, 2,4, ..., 21) appears in Eq. (5) once and only once.

2. Specific Operalors

In order to expand g, to order #, we require all G, (L, {) for I = 2,4, ..., 2n. These
tetrahedral basis functions of species F, can be generated by methods used earlier
(22, 23) to obtain the tensor distortion terms in the rotational Hamiltonian. The

*1In the current work, we are dealing specifically with the F, representation, while Ref. (21) deals
only with the A representation. Howcver, it may be helpful to (he reader 1o see which symbols in Ref.
(21) play the same roles as those used here in Eq. (10). This correspondence is as follows, with current
symbols listed first. 21 <> Q; 1 <> K N(LyEFy) i t s n.
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tetrahedral harmonic R (L, m = 0; y&lp) is constructed by standard methods (24, 25)
for component ¢ = a of representation (yp) = F; in terms of the spherical harmonics
Vi* which are then replaced by the operator equivalent X7 written in terms of the
MFF components of J. Here 7% is component % in the MTF of a spherical tensor of
rank L. Because the 73 are referred to the MFF, the angles in the ¥~ used are mea-
sured in the MFF. The Az are numerical constants which depend only on L and are
inserted to allow for the normalization condition used in the specific definition of the
T‘};[’.

The tetrahedral operators Gu(L, £) can be expressed in terms of the 7% directly from
(Ref. 25, Eq. (3.15)) for @ = &, ¥, & However, it is more convenient to introduce the
spherical basis (26) and work with G, (L, {), where w = +1, 0, —1. Then

3

G+1(L, t) = ZZ.AL[(lI,KeL] L+ (]3,KeLT3L + ds,KeI‘T—sL + d?,KsLT7I' + - ’],
Go(L, &) = G/N2N[Tx” — T_g,"], (11)
G_l(L, t) = —Zi)\LE(Z1,KeLT1L + da,KeI‘T‘*sL + (]5,K2LT5L + ({7,KELT—7L + ct ']’

where (26, 25)
dgrt = DKK/I‘(O, 11'/2, 0). (12)

K. is defined as the one value of |k| which appears in the 73" for Go(L, £). Since L is
even, K, takes (25) the values 2, 6, 10, .... For the particular representation of the
G.(L, 1) given in Eq. (11), there is a one-to-one correspondence between ¢ and K,. In
particular,®

t= (K, +2)/4. (13)

All 7" of odd | k| appear in G.1(L, £) with the sign pattern given in Eq. (11) subject
to the restriction that |k < L. Equation (11) can be summarized in the form

Gw (Ly t) = >\L Z akatf‘kL7 (14)
k

where the range for 2 and the values of the constants a.x”' can be obtained by comparing
Egs. (11) and (14). One important property of these constants is that
— gy (15)

akat =

This property is invariant under a unitary transformation with respect to ¢.

The dipole moment operators of arbitrary order have now been expressed in terms of
the 7%~ Because the operators for first and second order are particularly important,
these shall be written out explicitly in terms of J, and J, = (J, & iJ,) using Egs.
(1), (10), and (11). First, the dix,” are calculated using Eq. (63) of Ref. (24). The T;F
are then expressed in terms of J, and J using the tables available in the literature
(27, 28). Because these tables (and their extension in Ref. (23)) are written specifically
for SFF components, the difference between the SFF and MFF commutation relations
(29) must be taken into account. Because the table in Ref. (27) is explicitly symmetric
in J, and J4, it can be used for the MFF simply by applying tildes and then treating
J+ and J_, respectively, as lowering and raising operators (30). This is the procedure

% This definition of ¢ agrees with that given in Ref. (23). Its relationship to the index # used in Ref.
(39) is also given in Ref. (23).
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used here. Because the tables in (28) and (23) do not have this same symmetry property,
the more general procedure is used of replacing 7 by its Hermitian adjoint (29, 31).
It is interesting to note that the distinction between SEF and MFT commutation rela-
tions does not affect the matrix elements of the operators {1y, which appear (23) in the
expansion of the Hamiltonian. On the other hand, this distinction must be carefully
taken into account in calculating the matrix elements of the corresponding dipole
operators G, (L, 1).

Now a normalization condition must be selected for the T and a value for the
constants Az, for L = 2 and 4. Here we shall follow the normalization of Buckmaster
et al. (28). This is related to the normalization of Smith and Thornley (27) in Ref. (23,
Eq. (10)). The selection of A, then fixes the definition of ur, ) (for all ). For us®,
there arc two commonly used definitions : that of Fox (2}, who uses the symbol Cy; and
that of Watson (3) who uses the symbol 6,77, In Refs. (10-13, 16), the symbol up = Cyy
is used. Here we shall set A\, = —v2 so that

p2® = 0% = —(20))Cs, = — (20)up. (16)

The definition of us™® given in Ref. (/4) is consistent with this value of Ao ™ was
introduced in Ref. (14), but no explicit definition was given. Here we define it by setting
At to unity. The constant 4y has the physical meaning derived in Refs. (2) and (3).
However, p»™® and u;@ are empirical constants whose Interpretation in terms of higher
order distortion effects has not yet been investigated.

The dipole moment can now be written out to second order:

Bo = [p:® + ue @G, (2) + psG,(4): (a7
Go(2) = (+i/2)[T 2 — 7.2, (184)
G(2) = (—iND[T.T= + J=J.], (18b)

Go(d) = L/4DILITE ~ B = 5)(J2 = T 9 + (T2 = JH(T2 = J — 5)],
(19a)

G = L=i/8(NT(T.TP + T 3T) + (72— 3)2 — INNANE:

+J:J.(172 — 3Jt — 1)]. (19b)
Jt and J_ here are lowering and raising operators, respectively. The index ¢ has been
dropped in Egs. (17)-(19) because ¢ can take only one value for Z = 2 or 4 and so is

redundant. It should be pointed out that the first order term in B, given here agrees
with that given in Ref. (3, Eq. (3)).

3. THE DIPOLE MATRIX ELEMENTS
1. Definition of the Problem

In this section, we will calculate the matrix elements of the SFT components G, (L, )
of the tetrahedral dipole operators in the “unsymmetrized” representation (12) where
the rotational wavefunctions are taken to be the normalized symmetric top functions
(25):

JKM) = [(27 + 1)/82* Dy 7% (Q). (20)
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(&1}

Here M and K are the eigenvalues of the projections of J along the SFI* z-axis and the
MFT Z-axis, respectively. The Euler angles © which form the arguments of the rotation
matrix (26) Dax”* are those through which the SFF must be rotated to be brought
into coincidence with the MFF. These angles are measured in the SFF.

Of course, the rotational wavefunctions for a tetrahedral molecule are appropriate
linear combinations of the | /K M). The matrix elements in this symmetrized representa-
tion (12, 23) can be obtained from the (J'K'M'|G,(L, t)|JKM) given here by using
the tetrahedral harmonics (24) and standard matrix multiplication. However, the simple
unsymmetrized representation has two direct uses. First it can provide valuable insight
into problems being considered, and second it often provides the basis of an adequate
approximation.

The rotation matrix D,;*(2) can also act as an operator. If % is held constant,
D, will act as a spherical tensor (18) of rank L and component . Similarly, if m
is held constant, D,,;* will act as a spherical tensor of rank L and component £. In
(J'K'M’'| Dpi*| JKM), the D,i* acts as an (L, m) tensor to change M to (M + m)
and acts as an (L, k) tensor to change K to (K + #). For this matrix element, AM =
(M' — M) =m and AK = (K’ — K) = k. These simple properties of the operator
D,,.~ will be useful in Section 3.2.

2. The Dipole Moment in the SFF

The first step in calculating the matrix elements is to obtain a convenient expression
for the SFF components G,(L, ) from their MFF counterparts. Because the dipole
moment operator is a first rank spherical tensor, it follows that (26, 3)

G(L,1) =3 Z [Dw"Coll, ) + Gu(L, D, ], (21)
It is necessary to symmetrize the transformation because D,,®* and G, (L, ) do not
commute in general. From Eq. (14),
G(L, 1) =3\ X auk™ [ Dy ™", TkL]+7 (22)
wk

where we have introduced the symbol [4, B], to represent the anticommutator of the

operators 4 and B. The individual 7% can be transformed back to the SFF by
T =3 D, OT,L, (23)

In this case symmetrization is not necessary, because both orders give the same matrix
elements. Then,

G(L, 1) = i\ 2 X (=1 au™ Dy, DD, 1P, T, 1], (24)
wk s

By using the Clebsch-Gordan series (26), we obtain

G,,(L, [) = Z Gv(j: L, f)’ (2;)
7
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where
G,,(j, L; [) = %XL(—l)V Z ijLt Z C(l; ]‘; _/~ e S)[D—V+S,T(j)7 TSL]+7 (26)

and
bt =3 (—=DeaHCQ, L, j; —w, b)d(r, —w + ). (27)
wk

Here the C(1, L, j; m, m’) are Clebsch~Gordan coefficients. The sum in Eq. (25) on j
is over the values (L — 1), L, (L + 1); while the sum in Eq. (26) on 7 is over all values
for which there are nonzero a.;™ in Eq. (14) with 7 = (—w + k).

Considerable insight into the structure of the tetrahedral dipole operators G, (j, L, {)
can be obtained from a close examination of Eq. (26). It is clear from Eq. (21) that
G,(L, 1) acts as a first rank tensor under the operations of R(3) applied to the SFT. The
same conclusion can be drawn about the G,{(j, L, {) from Eq. (26). The sum on s can be
interpreted as adding a tensor of rank j with the tensor T's* of rank L to get one of the
first rank. This first rank tensor will act on J and M (but not K) when applied to the
wavefunction |JKM) and will give the usual dipole sclection rules AJ = 0, =1 and
AM = 0, &=1. Under the operations of T4 applied relative to the MI'F, the operator
D_,ys..7 acts as a tensor of rank j component 7, so that G,(j, L, t) acts as a linear
combination of tensors with rank j but different components 7. The relative weight
given the component with a particular value of 7 is uniquely determined by the co-
efficient .7,

Now the operator G,(j, L, {) must transform under the operations of 7'y as an A,
basis function® which results from subducing the irrep D, of the group R(3) ® Iinto
irreps of the point group T'q. The number of independent basis functions for given j
will be denoted by N (j, A2). For N (4, 4;) = 1, there is a single, unique 4. basis function
of rank j. The property which characterizes G,(j, L, £) as this function is the relative
weights b,/Z¢ given terms of different 7 in Eq. (26). Conscquently,

bert = B‘].Lta'rj) (28)

where the a7 are the constants (24) that define the 4. tetrahedral harmonics of rank j
and 87"t is a constant independent of 7 which allows for the fact that the b, and the
a,7 can be normalized differently. The critical feature of Eq. (28) is the factorization of
the Lt dependence from the 7 dependence.

Equation (26) can now be written

(;v(j, [‘7 f) = %AL(_lyﬁth Z aT“fZ Cv(ly [‘7 ]) Y S)[D,”.S’,j, TSL]+‘ (29)

Since the ¢ dependence enters only through the multiplicative constant 8/, we can
define

GV(j? ]‘> = Z G,,(]‘, L) l), (30)
¢
where G, (7, L) is given by Eq. (29) with 877 replaced by [32 8/ ]. By combining Eqs.

6 The definition of the irrep A, used here is that of Hougen (32) and Watson (3). The correlation with
the alternative definition of Jahn (33) and Hecht (34 is given in Ref. (23).
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(27) and (28), we obtain an explicit relationship between e, and @,z :

Bl =3 (=1)an™C(1, L, j; —w, k)8(r, —« + k). (31)
wk

Because only j < 15 is being considered, N (j, 42) < 1. These results apply therefore
to all ranks j < 15 for which G,(j, L) is not identically zero.

Equations (28)-(31) have several important implications. Equation (31) provides
a mapping from / to j. It shows that a necessary condition for G,(j, L) to be nonzero
is that N(j, 42) > 1. For given L, the number of nontrivial values of j equals the
number of values of t. That is, for given L, the number of nontrivial G, (3, L) equals the
number of independent sets of a ™"

Lt1

N, Iy = X N(, Ag). (32)
=11

This result can be proved for all L directly from Ref. (24, Egs. (11)—(15)). The mapping
from { to j provided by Eq. (31) also provides a method of calculating the tetrahedral
harmonics of rank 7 type A, (i.e., the «,7) from the tetrahedral harmonics of rank Z
occurrence ¢ type Fy (i.e., the a,™). This result provides a method of calculating the
tetrahedral harmonics of type 4, (e.g., see Appendix) and leads to relationships between
the dgg* defined in Eq. (12) and the Clebsch~Gordan coefficients.

Another implication of Eq. (29) and the one of central importance here lies in the
fact that the K dependence of (J'’K'M'|G,(j, L, 1)|JKM) is independent of L and ¢.
This result will be proved in Section 3.3 and its application to distortion moment spec-
troscopy will be discussed in Section 4.

Equation (28) is a group theoretical result whose derivation does not depend on the
numerical values of «.7 and e, [t applies only for V(j, 4:) = 1. In cases where
N(J, 42) > 1, Eq. (28) and the results obtained from it would have to be gencralized.
However, since V' (j, 4,) exceeds unity only for 7 > 15, this limitation is of no physical
interest here. The validity of Eq. (28) is not directly limited by the value of N (L, F).
Some interesting features arise when N (L, Fs) > 1, and these will be discussed in the
Appendix where the (L = 6) case is treated.

3. The Matrix Elements of G,(j, L, 1)

The matrix elements of G,(j, L, {) can be calculated from Eq. (26) using standard
angular momentum theory (18, 26, 28, 31). The result is

(J'K'M'|G,(j, L, ) |[JKM) = (=1)7+/(\/2)C(, 1, T M, v, M)
XLQj+D Q@I+ 1)/Q) + DIF(L, j5 7,78 X a[CU, 4,5 K, —7, K')

>0

+(_1)7C(]7 j: ]/;Ky Ty K/):Iy (33)

where

F(L, j; 1, J) = (J

T :u)J]/ b + (=0)HJ||IT HJ’>{] 1 ]I} (34)
Al lL ] ] L L J/ ] .

Here (J]|T7||J) is the reduced matrix element of the spherical tensor T~ as defined in
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terms of 35 symbols in Ref. (28, Eq. (7)). The explicit values of the reduced matrix

elements are given in Ref. (28, Eq. (9)). The {i } j} are 0j symbols (37). In deriv-

ing Egs. (33) and (34), we have used Ref. (31, Eq. (6.2.8)) 1o introduce the 67 symbols
and Egs. (31) and (15) to change the sum on 7 so that it runs over only positive values.

The fact that F(L, j; J, J') contains two terms results directly from the symmetri-
zation introduced in Eq. (21). For (-branch transitions, the second term in Eq. (34)
equals the first except for the sign (—1)#% For j odd, the two terms are identical and
the symmetrization has no effect on the (-branch matrix elements. For Jj even, however,
the two terms cancel and the Q-branch matrix elements vanish as a result of the sym-
metrization. This leads to the interesting result that for even J there is no Stark effect.
This case arises first in third order (i.e., L = 6). For the R branch, the two terms in
Eq. (34) are different in general, but are equal for the particular case of first order
(i.e., L = 2). Consequently, the expressions given in Refs. (2, 6) for the first order
dipole operator agree with those obtained from Eq. (33) in spite of the fact that the
symmetrization was neglected in Refs. (2, 6).

Equation (33) shows explicitly that the K-dependence of the matrix element is fixed
by j alone; it does not depend on L or £. To put this result into a form that is particularly
useful here, consider two tetrahedral dipole operators G,(j, L, {) and G,(j, L', t') of
the same j but different L and/or ¢. It follows from Eq. (33) that the ratio of the two
sets of matrix elements is given by

W= (G, L', D)/(GoG, L, ) = DB (L, 5 7, V88 E(L, 3 T, )80,
35)

This ratio can equally well be calculated using 6,7t and 8,72 instead of the B’s. The
7 selected is arbitrary since the result is independent of 7. The factorization of the K
dependence in Eq. (33) leads directly to the result given in Eq. (33) that W is inde-
pendent of K.

Because the matrix elements to second order are of particular interest in studies to
date of the centrifugal distortion moment, explicit expressions will be given here for the
(L = 2)and (L = 4) matrix elements. For both of these . values, ¥ (L, Fy) = 1so that
¢ is redundant and G,(j, L, {) reduces to G,(j, L)- (See Eq. (30).) Furthermore, there
can be only one nonzero G, (j, L = 2) and one nonzero G, (j, L = 4). Since N(1, 4,)
=N(2,42) = N(4,4s) = N(5,4;) = Oand V' (3, A ») = 1, these two nonzero operators
are G, (j=3,L=2)and G, (j = 3, L = 4). We shall write these at G, (L = 2) and
G, (L = 4), respectively, suppressing the ;.

It now follows immediately from Eq. (35) that the matrix elements of G,(4) are pro-
portional to those for G,(2). The constant of proportionality W defined in Eq. (35) can
be evaluated using Eq. (34) for the F’s and Eq. (27) for the #%. The matrix elements
of the dipole moment operator to second order can then be written

(VKM || JKM) = u(efl)(J'K'M'|G,(2)| JKM), (36)
where for the Q branch:
ulefl) = uo(J) = wu® + J(J + Dwe® — [1/3A 4/ (T + 1) — 15]w®;  (37a)
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and for the R branch:
plefl) = pr(7) = p® + (J + %@ 4+ [1/ADILU + 12 + 5Ju®.  (37b)

ue(J) and up(J) were determined from the I’s and Eq. (17).
The matrix elements of G,(2) can be found from Egs. (33), (34), (31), (14), and (11).
For the Q branch:

KM \GA2)|JKM) = iC(J, 1, J; M, v, M)

X327 —2)(27 — )T +3)(2J + 4)/4012 o (J, K);  (38)
and for the R branch:
J+1, KM G, Q)| JKM) = iCU, LT+ M, 0, M)

X[(U; 1) (27)2J§+8) (27 + 4)(2J + 5)
20027 + 3)

]ifl(f, K), (9)

where

U, K) =CU, 3, T+ A;K,2,K') —C(J,3, ] + A; K, =2, K').  (40)

Equation (38) agrees with Ref. (6, Eq. (17)). Equation (39) agrees with Ref. (12, Eq.
(15)) and Ref. (2, Eq. (9)).

4. DISCUSSION

A general expansion to arbitrary order has been given for the MFF components f,
of the centrifugal distortion dipole moment and explicit expressions have been given
for the expansion coefficients @i % The derivations presented of the expansion procedure
can be easily modified so that it applies to the Hamiltonian. Expressions have been
derived for the SI'F components u, from which a recurrence relation has been obtained
between the tetrahedral harmonics of type F, occurrence ¢ rank Z and the tetrahedral
harmonics of type Ay rank j = (L — 1), L, and (L + 1), provided § < 15. The matrix
elements of the tetrahedral dipole operators G,(4, L, ) have been calculated in the un-
symmetrized representation. The K dependence of these matrix elements has been
shown to be independent of L and /. Explicit expressions have been obtained for the
dipole matrix elements to second order.

The current work has many implications for past and future studies of distortion
moment spectra of tetrahedral molecules. The importance of the higher order correc-
tions has been previously established for CH, (74). The intensity observed in the six
R-branch transitions for J = 10 to 15 was compared to that calculated from the value
of uy® determined earlier (§) from Stark shifts within the (J = 2) manifold of levels.
If all the observed intensity is ascribed to the centrifugal distortion mechanism, then
the effective moment for the far-infrared measurements is ~1.4 times that for the
molecular beam Stark shift determination.

This increase is easily understood in the context of Egs. (36) and (37). The far-
infrared experiment measured uz(J) averaged from (J = 10) to (J = 15). The molecu-
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lar beam experiment measured uq(2). The observed difierence in effective moments can
be accounted for if the second order constants are the order of 2 X 10~ of the first
order moment in magnitude (74). This agrees with the estimate in Ref. (2) of the size
of the higher order terms. If |ux®| and [us@| are indeed ~2 X 10-% of @] then
their contribution to the molecular beam measurement of the (J/ = 2) Stark effect is
smaller than the experimental error. However, with modest refinements in the =2
experiment and/or extension of the work to the (J = 3) level, the contribution of the
higher order terms to the molecular beam results would be significant.

The vy and », fundamental bands of SiH, are currently being studied using high-
resolution infrared laser spectroscopy (35). Stark shifts have been measured for high
rotational levels and the centrifugal distortion moment is being determined from the
data. If a first order analysis were adequate, then the value of us® obtained would
equal that determined (/3) from the intensity of the R-branch transitions for J = 14
to 19.

However, in second order, we see the laser experiment measures wo(J) while the far-
infrared valueis ur (/) averaged from 14 to 19. If the second order terms are as important
in SiH; as they appear to be in CH,, then the values of wu(eff) in the two experiments
might well be significantly different. For example, if |us@/u®| = 2 X 10~ in SiH,,
then for J = 18, uq(18) differs from ux(18) by the order of 409, This difference is en-
hanced by the fact that the terms in u;® have opposite signs in the expressions for
pe(J) and wug(J). In CH,, the evidence (8, 14) suggests that g»® and w,® have the
same sign. If this is the case in SiH,, then [uo(J)! will be smaller than tup()]. In
third order, the R-branch intensities receive contributions from two additional constants,
while the Stark shifts receive contributions from only one of these. (See Appendix.)
One of the most promising methods of determining the various dipole moment constants
individually is to combine Stark shift measurements with intensity studies on the
R-branch transitions.

The form of u(eff) also has important implications for the frequency analysis of the
R-branch transitions that have been observed in CH, (9, 14), SiH, (10, 13) and GeH,
(11, 12). Tor a given J — J + 1, the many tetrahedral components were not resolved
but were observed as a single R branch line. To analyse the frequencies v; observed for
these lines, it was necessary to calculate the intensities of all these components. Because
the second order effects can be taken into account simply by changing the effective
moment from u;® to ug(J) as was shown in Sec. 3.3, the relative intensities of the
different tetrahedral components within a given (J — J + 1) line do ot change when
we go to second order. As a result, the treatment developed in Refs. (12) and (13) for
analyzing the observed frequencies is valid to second order. From the work in the
Appendiy, it is clear that third order terms will introduce additional frequency shifts.

In general, the earlier calculations on distortion moment spectra can be extended
from first to second order simply by replacing u»® with u(eff) as given in Eq. (37).
However, third and higher order effects cannot be taken into account in such a simple
manner. To treat these effects, new matrix elements as given in Eq. (33) must be calcu-
lated. For each order above second, there is more than one independent dipole operator
G, (L, 1), i.e., N(L, Fy) > 1. The new features which arise from this are discussed in the
Appendix, where the (L = 6) case is treated in some detail.
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Although the current work has been concerned with centrifugal distortion moments,
many of the results apply to dipole moments of other physical origin. For example,
the integrated intensity for a given (J — J + 1) R-branch transition summed over all
contributing tetrahedral components has been calculated for both the distortion moment
(12) and the collision-induced moment (36). It has been shown (37) that the ratio of
these intensities is a function only of J. This result follows directly arguments similar
to those which showed that W in Eq. (35) is independent of K. In fact, it can be shown
by such arguments that, except for this function of J, the collision-induced dipole matrix
elements for the individual tetrahedral components in the R branch are given by Eq.
(33). This application to collision-induced absorption will be discussed elsewhere (38).

APPENDIX

The magnitude of the second order terms observed for CH, indicates that third order
terms (n = 3, L = 6) may well be important. For this reason, the third order terms
will be discussed briefly here. Because N (6, Fz) = 2, the expansion of the dipole moment
to third order will introduce two new tetrahedral MFF dipole operators G, (L = 6,
{=1)and G, (L = 6, t = 2) with their associated constants ug,:1‘® and us2®, respec-
tively. The matrix elements arising from these two operators are not simply proportional
to those for L. = 2 or 4, as can be seen from Eq. (33). There will be other third order
terms (see Eq. (10)), but these are proportional to the lower order contributions. Here
we shall confine our attention to the new operators.

It is convenient to introduce the operator V., (L = 6, §) which includes the constant
16,:¢% in its definition:

1703 (6y i) = #G.t(ﬁ)éw(6y ﬂ (41)

The s ® are defined so that A\s = 1. Expressions for the two sets of ¥,(6,) can be
obtained from Eq. (11). K, takes the values 2 and 6 which correspond respectively to
!/ = 1and 2, as can be seen from Eq. (13).

When 17,(6, 7) is transformed to the SFF, it leads to two independent operators.

2
VV(j) 6) = Z [.L(,,g(ﬁ)G,,(]., 6) l) (42)

=1
Here j = 6 or 7 since N (6, A,) = N(7, A5) = 1, but N(5, A2) = 0. Equation (42) is

analogous to Eq. (30). Because the two G,(J, 6, #) for fixed j differ only by a multipli-
cative factor, Eq. (42) can be written

where

o

E(7,6) = 22 850, © (44)

=1

and

(7(/7 6) = 1’(_1),, Z a‘sz C<1; L; i} - S)[D—H»S,Tj) ,T-\'L]Jr' ('1'5)
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[See Eq. (29).] From Egs. (43) to (45) and (31), it has been found that

—i/3G )
V,6,6) = a6, 6)[—@ ](—w 5 C,6,65 =, S=\FDrrss® + Doy o)
8 s
+(11)§(D—V+s,2(6) + D~v+s,——2(6)), 1‘36]+, (46{1)

)
VV(7y 6) = ﬁ(7; 6)<8)(_1)V Z C(17 67 7; —Y s)[(ll)%(D~v+x,6(7) - D~V+S,‘6(7))
+(13)%(D~v+s.2(7) - D-V—rsy—Z(D)a T86]-+; (‘K)b)

where
£(6,6) = (11/56) s 19 — 3(5/56) 4,5, (47a)

B(7,6) = 3(5/56)u6,® + (11/56)%u5,2®. (47b)

Equations (46) and (47) give us explicitly the necessary dipole moment operators in the
SFF. By using Eq. (33) with 87 replaced by (j, 6) the matrix elements of V.(4,6)
can be calculated. From Eqgs. (33) and (34), it is clear that V.,(6, 6) will have nonvanish-
ing matrix elements only for the R branch, while V,(7, 6) will have nonzero matrix ele-
ments for both the R and () branches.

It is clear from Eq. (47) that the a(j, 6) are related to the ug,,® through a unitary
matrix M. It was noted in Section 2 that the operators G, (Z, ¢) are defined only to within
a unitary transformation. If we had selected our representation with respect to { to be
related to that given in Eq. (11) by the matrix M, then 7,(6, 1) would transform to
V,(6, 6) and V,(6, 2) would transform to V.(7, 6). The new unitary matrix relating
£(J, 6) to ue,® would be diagonal. The form of the operators G/(§, 6) is not affected by
the representation actually used.

The o,7 in Eq. (45) were calculated from Eq. (31). Their values can be scen directly
from a comparison of Eqs. (45) and (46). These a,7 can be compared with the coefficients
defining corresponding tetrahedral harmonics for j = 6 and 7 given by Jahn (33). To
within an overall normalization constant (which depends on 7), the two sets of coeffi-
cients agree. This illustrates the use of Eq. (31) to generate tetrahedral harmonics.
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