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The use of k-q functions is introduced into the Landau theory of second order phase tran-
sitions. The expansion of an arbitrary density function in a crystal is given in terms of basis
functions of irreducible representations of a space group which are linear combinations of
k-q functions. This leads to a new condition on the irreducible representations which can
be associated with second order phase transitions.

Nous introduisons les fonctions k—q dans la théorie de Landau de transitions de phase du
second ordre. Le developpement d’une fonction quelquonque de densité dans un cristal
g’exprime en fonctions de base des réprésentations irréductibles d’un groupe d’espace; ces
fonctions de base étant des combinaisons linéaires de fonctions k—q. Ceci méne & une condi-
tion nouvelle sur les réprésentations irréductibles qui puissent étre associées & une transi-
tion de phase du second ordre.

1. Introduetion

In the Landau theory of second-order phase transitions in crystals[1], a density
function g(r) which characterizes the crystal is expanded as

o) = T O§= i (). M
k*xj
The functions f%**(r), j = 1, 2, ..., d, for specific k* and «, transform as a set of
basis functions of the irreducible representation (irrep) A4**~ of the symmetry
space group F of the crystal before the phase transition. The sum in expansion
(1) is over all irreps of the space group F and over a single set of basis functions
of each irrep of F. The thermodynamic potential of the crystal is written as
a function of pressure and temperature, and as a functional of p(r), and is ex-
panded in a power series in terms of the coefficients C%*«. The values of the
coefficients C%** which minimize the thermodynamic potential after the phase
transition are determined, and then from (1) using these values of the coefficients
one determines the symmetry of the crystal after the phase transition.
Implicit in expansion (1) is the existence for every space group F of a com-
plete set of functions with the following two properties: 1. The complete set of
functions can be partitioned into subsets, each subset of which consists of a set
of functions which transform as a set of basis functions of an irrep of F. 2. There
is one and only one subset of basis functions for each irrep of F. We will show
in Section 2, by considering the so called k-q functions defined by Zak [2]
that an expansion similar to (1) does exist. We show, however, that there exists
in general more than a single subset of functions which transform as a set of
basis functions of each irrep of F. Consequently, expansion (1) must be replaced
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by an expansion of the form

olr) = 3 CYromfirany), @
k*xjm

where there is an additional summation over an index m which indexes the sub-

sets of functions which transform as sets of basis functions for a specific irrep

A% of R,

In Section 3 we discuss the symmetry restrictions on the coefficients C%*om of
expansion (2). We derive a new condition on these coefficients using properties
of the k—q functions and that the function o(r) is defined on a discrete set of
points of the crystal. Lastly we discuss the relationship between this new condi-

tion and the condition on the coefficients ferived by Kovalev [3]. “

2. Expansion of g(r)

Let (R | #(R) 4+ t) denote an element of a Space group F. R is a proper or
improper rotation matrix, #(R) a column matrix representing the non-primitive
translation associated with R, and # a primitive translation. The set of all
primitive translations £ constitutes the subgroup T of F. One can associate with
the subgroup T of F a group K of translations such that £ . K = 2an for all
translations £ of T and K of K where n is an integer dependent on ¢ and K. It
has been shown that for a given space group F the eigenfunctions of the quan-
tum mechanical operators of translations ¢ of T in “direct space” and K of K in
“reciprocal space” form a complete set of orthonormal functions. These eigen-
functions, called k-q functions, are denoted by wrq(r) where the indices k
and q are, respectively, vectors in the first Brillouin zone and the first sym-
metric unit cell. The k—¢ functions are [2]

1/2 .
Yig(T) = ((?:E)?) A:: 3r —q —t) ekt 3)

where 7 is the volume of the first symmetric unit cell and the sum is over all
primitive translations ¢ of the subgroup T of F. _

Using the k-q functions corresponding to a given space’ group F one can
expand an arbitrary scalar function o(r) as follows:

o) = 5 Crapug(r) , | @
kq

where the sum is over all vectors & in the first Brillouin zone and vectors q in
the first symmetric unit cell of the space group F.

We will now show that the complete set of k—q functions can be partitioned
into subsets of k—q functions or linear combinations of subsets of k-q functions
which transform under elements of the space group F as sets of basis functions
of irreps of F. To show this we first determine the transformational properties
of the k-q functions under elements (B|®(R) 4+ t) of F:

(B12(B) + 1) yg(r) = pug((R | v(B) + t)17) =

=(E;?)m 2B — Re(R) — BT —q — ) et . (5
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The §-function can be rewritten as 8(r — z(R) — ¢ — Rq — R¥') and replacing
the sum over ¢’ with & sum over £’ = R#’ — £ the right-hand side of (5) becomes

inee[_T__\'* — — — ') oiBE-t7
€ ( (2n)3) tz dr — Rq —¢(R) —t")e .

We define the vector k’, a vector in the first Brillouin zone, such that k’ =
= Rk 4 K(R, k), where K(R, k) is a translation belonging to K. In a like
manner we define the vector q’, a vector in the first symmetric unit cell, such
that q’ = Rq 4- ¢(R) + (R, q) where (R, q) is a primitive translation be-
longing to T. Replacing the sum over ¢ with the sum over ¢ = £’ 4 t(R, q),
the right-hand side of equation :(5) bgcomes :

oik’- (t—t(R,q)) T _\* 2or —q —t)ek -t
(27)® 2

and therefore
(B 7(B) + t) yug(r) = &' (t~4R.D) g0 (1) , (6)

where k' = Rk -+ K(R, k) and 9’ = Rq + ©(R) + (R, q).

We now define the subset Spq of k-q functions consisting of the function
Yug(r) for the specific values k and q, and all distinct k-q functions yyq (1)
obtained using (6) by applying all elements of F to ygg(r). The complete set of
k—q functions can be partitioned into subsets Syq. It follows from their defi-
nition that each subset Siq consists of a set of k-q functions which constitute
a set of basis functions for a representation, possibly reducible, of the space
group F. The representation A*¥ of F associated with each subset Spq can be
reduced into a direct sum of irreps A%*> of F. Let U denote the unitary matrix
which reduces the representation A*2, and f¥**(r) the j-th basis function of
a set of basis functions of the k*a-th irrep of F contained in the reduced form
of the representation A*¢ of F. These basis functions are linear combinations
of the k-q functions in Syg: .

fironr) = é UgesaniyiaWreq (1) » ' (7

where the sum is over all pairs of indices (k'q’) of k-q functions belonging to
Skq, and the index n =1, 2, ..., d where d denotes the number of times the
irrep A*** is contained in the reduced form of A*4. Since the k-q functions
are orthonormal and the matrix U unitary, the functions f%*n(r) are also ortho-
normal. One can also invert equation (7),

pwar) = 3 Ugdeanpaear () ®)
*anj

where the sum is over all basis functions of all the irreps in the reduced form
of the representation Az of F. \

The expansion of an arbitrary scalar function o(r) given in (4) can be rewritten
then, using (8), as (2). Whera the sum is, as we show below, over all irreps
of the space group F and where there is an additional summation over an index
m which indexes the linear independent sets of basis functions of each irrep of F.

To show that the sum in (2) is over all irreps of F we consider a set Sheq of
k-q functions where q is a general vector, i.e. no two vectors q’' = Rq -+
+ 7(R) + ¥(R, q) for all elements (R|%(R)) of F are the same. This set of
k-q functions constitutes a set of basis functions for a reducible representation
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of ¥, which when reduced is the direct sum of all irreps A%* of F, for this specific
value of k, and where each irrep appears once. Considering a second set Srq,
of k-q functions, where q, is also a general vector and such that q.Fq, we
conclude that each irrep of F appears more than once in the summation on the
right-hand side of (2) and one necessarily must include an additional summation
over an index which we have denoted by m.

We have therefore shown that there exists a complete set of orthonormal func-
tions f¥**™(r) which are linear combinations of k-q functions (see equation
(7)) such that subsets of functions f¥*sm(r) for constant k,«, and m, constitute
a set of basis functions for the k*a-th irrep of the space group F. An arbitrary
scalar function can be expanded with respect to this set of functions and this
expansion is given in (2).

3. Symmetry Conditions

In the Landau theory of second-order phase transitions symmetry conditions
on the coefficients of expansion (2) following from the minimization of the
thermodynamic potential have been derived and are as follows [1]:

1. Non-zero coefficients C¥**™ are associated with a single irrep A%*s of the
space group F, and a single value of the index m, and this irreducible representa-
tion A¥** is such that: ‘

2. The symmetric cube [4***]® of the irrep A*** does not contain the identity
irrep of F.

3. The anti-symmetric square {4%**}2 of the irrep A*** does not contain any
irrep in common with the vector representation of F.

While conditions 1 and 2 are generally accepted, there has been extensive dis-
cussion in the literature on the validity of condition 3 [4 to 8].

The above conditions were derived on the basis of considering the minimiza-
tion of the thermodynamic potential. We shall now derive an additional condi-
tion by taking into account that the function o(r) is defined on a discrete set of
points of the crystal. The density function g(r) which we consider can be written
as

or) = X olr) dr — 1) , (9)

where the sum is over a discrete set of points »; of the crystal. The symmetry
space group of this set of points is F. The positions 7; can also be denoted by
Ty = ¢ + & where q, is a vector in the first symmetric unit cell and £ a primitive
translation belonging to the subgroup T of F. Equation (9) can then be rewritten
as
o(r) = Z,‘; o g +8)3(r —q.— 1), (10)
a

where the sum is over all positions q; in the first symmetric unit cell and over
all primitive translations ¢ of T.

From (3) we see that the k-q function ype(r) contains the 3-function
3(r — q — t). Comparing (4) and (10) we conclude that the expansion of o(7r)
in terms of k-q functions is of the form

o(r) = X Craprai(T) (11)

kq;
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where the sum is over all vectors k and over only those vectors q corresponding
to the positions q,, the positions in the first symmetric unit cell at which the
function g(r) is defined. Consequently, the expansion given in (2) is of the form:

er) =, B Cyeniyne) a2)

where '’ denotes that the sum is over only those basis functions f**m(r) which
are linear combinations of the k-q functions yue,(r) appearing in (11). Conse-
quently we have an additional condition placed on the irrep A*** which satisfies
conditions (1) to (3):

4. A set of basis functions of the irrep 4%** can be formed out of linear combi-
nations of k—q functions yue,(r) where q; are position vectors at which the
function p(r) is defined.

For example, consider a function g(r) defined at the positions »; = £. The
space group F is in this case a symmorphic space group. Equation (11) becomes

o(r) = { Cropro(r) -

A set of k-q functions Sy consists of the functions ypge(r), Vieo(T)s oo s Yheno(T)
where the k-vectors k, k,, ... k, constitute the “star” k* of the vector k. The
set of functions Sy¢ constitutes a set of basis functions for the irrep A**1 of F,
where o = 1 denotes the identity irrep of the little group of the vector k.
Consequently, expansion (12) is of the form

o(r) = X C¥fs*i(r), -
k*j

where the sum is over all irreps A**1 of F, each one once, and over no other
irreps of F. :

One can also determine from (12) in phase transitions associated with specific
irreps of F' that the function g(r) below the phase transition may necessarily
vanish on a subset of points on which it is defined.

As an example of this consider the function g(r) defined on a set of points
invariant under the space group F = C};, and where q, = (0, 0, 0), q, = (0, v, 0),
and ¢, = (0, —y, 0). For a specific vector k there are two sets of k-q func-
tions Spq, and Siq, where the first set consists of k-g functions with q=q
and the second set with ¢ = q, and q,. The set of functions Sy, is a set of basis
functions of the irrep A**! of F, the set of functions Syg, of a representation of
F which can be reduced to the direct sum of the irreps A**1 and A**4, A**1 and
A4¥°2, or A**1 if the little group of the vector k is, respectively, the point group
Cen, C,, or C; and C,. The expansion of o(r) is therefore of the form

2 Con Cs
o(r) = X X OFimpl*im(r) + ) Ck*4gk*4(r) + 3 O%*2g*2(r)
m=1k*j E*j %)
where

RE“I(r) = Bof5*1(r) 4 Buogh™(r)
and B is an arbitrary two-dimensional unitary matrix. f¥**(r) and g¥**(r) are
linear combinations of k-q functions belonging to the sets Skq, and Spq,,

A
respectively, and 3’ denotes a sum over all stars k* of a vector k, where the
L+

little group of the vector k is the point group A.
If the irrep associated with the phase transition is A¥*'2 or A**4, or the ap-
propriate value of k, then since the functions gk*%(r) and g%"4(r) are linear com-
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binations of kq functions only of the set Sgq,, one concludes that below the
phase transition g(r) = 0 for r = q, 4+ ¢, and that the non-zero values of o(r)
are only at positions » = q, + £ and r = q, + &.

If the irrep associated with the phase transition is A**! then the function
o(r) is expanded in terms of the functions 2%*(r) for specific m. The functions
K" 1™(r) are linear combinations of functions f4*1(r) and g¥*1(r). The exact form
of the linear combinations is not unique but dependent on the arbitrary unitary
matrix B. Because of this arbitrariness, below the phase transition, the func-
tion g(r) may be 1. non-zero only at r = q; + ¢, 2. non-zero only at r = q, + ¢
and r = q; 4 £, or 3. non-zero at all positions ¢, -+ &.

The fourth condition on the irreps 4*** derived above is related to a condition
on the irreps derived by Kovalev [3]. Consider the function g(r) defined on the
discrete set of points q; + & which is invariant under the symmetry space group
F. Define the group of the vector q; + &, Fy,.+, as the subgroup of all elements
of F such that

Flgi+1) =qi+1t.

Applying an element g of Fy,.s to o(r), summing over all elements of Fg, .,
and taking r = q,; 4 £ one has

* * 1 *
o(q; + &) = 3 Clromfietom (q, 1 t)ﬁ 2 A¥e(g)y,
i o

where N is the order of the group Fy,,¢. Kovalev’s condition, a necessary condi-
tion that the function g(r) which is defined at positions q; + & is not identically
zero, follows immediately (y***(9) denotes the character of A***(g)): The irrep
A¥**= ig such that

2 2+ 0 (13)

9eFqytt

for at least one position vector q; + ¢. If (13) equals zero for all vectors q; + 2,
then the function o(r), defined at the positions q; + ¢, is identically zero for all
values of the coefficients C%**m. Consequently, there will be no phase transition
associated with the irrep A%*=.

Condition (4) derived above replaces any need for the Kovalev condition. As
we will now show, the function g(r) given in (12), for a given irrep, is identically
zero if and only if the coefficients C%*™ are identically zero. Using (7) we have

2 le(q: + B2 = Z‘ C';-““'"C{;‘am' «
qit T

X (kZ' ) U GeramsYtemagm) U lieams)hepas) ,,Z,' Vhnan( @i + 1) Pity,(qe + 1) -
mGm £
(Fepqp)

The last summation can be replaced by the integral

f 7Pkmqm(7') w:ﬂp(r) dr

since the functions f¥**m(r) are linear combinations of k-q functions yig(r)
where q is some value q,. From the orthonormality of k-q functions, and of
rows of the matrix U it follows that

2 lo(qe + B2 = X |C% ™2
qit J
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and that the function o(r) defined on the points q; + £ is identically zero if and
only if all coefficients vanish.

Condition (4) places a condition on the irreps of F which can be associated
with a second-order phase transition which gives rise to a non-identically zero
density function at positions q; -+ # of a crystal. Moreso, one can directly deter-
mine from equations (11) and (2), using the transformational properties (equa-
tion (6)) of the k—q functions yge(r) where ¢ = q,, which of the irreps of F
satisfy this condition.
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