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USE OF AN ELEMENTARY GROUP THEORETICAL METHOD IN
e DETERMINING THE STRUCTURE OF A BIOLOGICAL
CRYSTAL FROM ITS PATTERSON FUNCTION

D.B. Litvin

Crystallographers have been using X-rays to investigate the
structure of biologically important macromolecules for over forty
yearsl. One type of these are the so-called spheroidal or globu-
lar macromolecules, such as myoglobin, which is responsible for
the storage of oxygen in muscle tissue, and hemoglobin, which is

responsible for transporting oxygen in the blood stream. There

R ¥

are other types, such as the fibrous, fiber-like macromolecules
found in for example hair and skin, but we will limit our interest
to the globular type. To have an idea of the size, weight, and
number of atoms in such macromolecules, in Table 1 we compare
these characteristics of some typical globﬁlar macromolecules with

those of some familiar molecules.

Most globular macromolecules can be crystallized. In forming
a crystal these macromolecules are not to any large extent dis-
torted, there are in general only a few molecules in the unit cell
of the crystal, and the identity of each molecule is preserved.
The term '"biological crystal" in the title of this talk refers to

such a crystal.

4; The object of investigating the structure of such biological
crystals is to determine the structure of the macromolecules. To

determine the structure of the crystal one attempts to calculate
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the electron density p(r) of the crystal via the Fourier expansion.

o(r) = %-']Z: F(k)e—Z‘nik'I‘

where the Fourier coefficients F(k) = lF(k)lela(k)

are called the
complex structure factors, o(k) the phase of the structure factor,
and V is- the volume of the unit cell of the crystal. Because of
the translational symmetry of the crystal, there is a summation
over all vectors k' of the reciprocal lattice associated with the
translation group of the crystal. One then interprets this elec-

tron density in terms of the atomic structure of the macromolecule.

From experimental X-ray diffraction data one obtains the mag-
nitude of the structure factors |F(k)|. (In practice one does not
obtain |F(k)| for all values of k, and in fact uses only an ap-
proximation for the above expression for the electron density of
the crystal. However, we will not discuss this complication.)
Knowing only the magnitude of the structure factors one cannot

determine the electron density; one needs also the phases.

To determine the phases the following method has been used:
the X-ray data from the crystal containing the molecules whose
structure we want to determine, is compared with the X-ray data
from the same crystal where in each molecule a small number of
atoms have been replaced by a second set of atoms which contains
a heavy atom. This method is called the "isomorphous replacement
method'". The differences in the X-ray data are used to determine
the phasés. Using this method of determining the phases, the
electron density maps of myoglobin and hemoglobin were determined
in 1959.

To investigate the structure of these biological macromole-
cules and bypass the need for artificially alteriﬁg the structure
of the macromolecules, in the past fifteen years the so-called
"molecular replacement' method has been developedz. This method,

which we will discuss here, uses only the magnitude of the
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structure factors |F(k)| which are obtained from the X-ray data.

This method consists of three steps.

1) The rotation problem: determine the point group of the
molecules in the crystal, and their orientation with respect to

the translational symmetry vectors of the crystal.

2) The translation problem: determine the vectors between
the molecular positions in the crystal. These vectors are called

translation vectors.

3) The phase problem: using the information obtained in the

first two steps, determine the phases of the structure factors.

With respect to the third step, I will only comment that
there has been so far only limited success in determining phases
using this methodg. What has been successful recently is the use
of the information obtained in the first two steps in combination
with the isomorphous replacement methodlo. I will concentrate on
the first two steps. Procedures were introduced over ten years
ago to generate data from which one is able to solve the rotation
and translation problems. However during this time no general
method was derived to analyze this data systematically, and con-
sequently, as I will show, misinterpretations of data have oc-
curred. I will show that a general method to systematically ana-
lyze this data can be formulated, and that to do so one needs to
introduce only truly elementary group theoretical arguments. It
is surprising that these elementary group theoretical arguments

were not applied to this problem until very recently.

The solutions of the rotation and translation problems are
based on the analysis of a function which can be calculated from
the magnitude of the structure factors |F(k)|. This is the
Patterson function introduced in 1934.

P(r) = %]2( |F(k)|262ﬂik.r.
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This function is the self-convolution (self-correlation) of the

electron density of the crystal.
P(r) = f p(r)p(xr'+r)dr'.

Because in the biological crystal the macromolecules preserve
their identity, the electron density of the crystal can be written
as a sum of the electron densities of the molecules, and the

Patterson function can be written as

P(r) = j,g,t ijt(r)

where j and k index the molecules in the unit cell of the crystal,

t the translations of the crystal, and
= [} ' ]
Pixe (™) = [ 0500 ey (x'4r)dr

the convolution of the electron density of the jth molecule in the

unit cell with the kth molecule in the tth

unit cell. The convo-
lution function ijt(r), in general, is called a cross-Patterson
function, and in the special case where j = k and t = 0, ijo(r)

is called a self-Patterson.
The two problems:

1. The rotation problem

Here one wants to determine the point group and orientation
of the molecules in a biological crystal. The crystals which we
consider are assumed to be made up of only one kind of biological

macromolecule.

To determine this, one looks for relations between the point
group and orientation of the molecules in the crystal and proper-
ties of the Patterson function. Consider the electron density
pjo(r) of the jth'molecule in the unit cell. This electron den-

sity is localized because of the finite dimension of the molecule,
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about the center of mass rj of the jth molecule. The symmetry
point group of the molecule is the set of all proper rotation mat-

rices P such that

pjo(rj"'pu) = pjo(rj"'u) .

(Because the biological macromolecules are made up of '"'left-handed"
amino acids, the symmetry point group of the molecule consists
only of proper rotation matrices.) We choose a coordinate system
in the crystal; then the group of matrices P, which is the symme-
try point group of the jth molecule, is defined with respect to
this coordinate system. The orientation of the molecule is the
orientation of the rotation axes of the rotations which are re-
presented by these matrices. Another molecule in the crystal has
as its symmetry point group a group of matrices P' also defined
with respect to this coordinate system. The two groups of mat-
rices are in general different but equivalent, i.e. they both be-
long to the same class of point groups and are denoted by the same
symbol in, e.g., international notation. When referring to the
point group of a molecule we will sometimes mean a specific group
of matrices defined in the chosen coordinate system, and at other
times, the class of point groups to which this group of matrices

belong. The meaning should be clear from the context.

It follows that if P is the symmetry point group of the jth
molecule, then the self-convolution of the electron density of the

jth molecule, i.e. the jth self-Patterson function

ijo(r) = ojo(r')pjo(r'+r)dr

is invariant under all rotations of P, i.e., ijo(r) = ijo(Pr).
ijo(r) is also invariant under inversion, and consequently P x 1
is an invariance point group of ijo(r). We shall assume that

P x 1 is the symmetry point group of ij(r).

As this self-Patterson is localized in a volume about the
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origin of the Patterson function, Rossmann and Blows, in order to
determine from the Patterson function the point group and orienta-
tion of the molecules, introduced in 1962 the rotation function
R(A):

R(A) = { P(r)P(Ar)dr
U

where A is a proper rotation, and the integration is over a volume
about the origin of the Patterson function. This is an overlap
integral of a volﬁme abbut the origin of the Patterson function
with a rotation image of the same volume. Relative maxima of this
rotation function, as a function of A, are called peaks of the ro-
tation function. Obviously if ijo(r) is invariant under a rota-
tion P then there will be a peak in the rotation function at A = P.
Consequently by determining the peaks of this rotation function,
one can obtain information on the point group of the molecules in
the crystal. While this rotation function has been successfully
used, a general method has been available for less than a year to
determine systematically the point group symmetry of the molecules
from information provided by the rotation function4. To derive
this method, one needs to apply only very elementary group theo-

retical arguments.

Consider a biological crystal consisting of identical mole-
cules generated by a space group G from a single molecule at posi-
tion r- Let T denote the translational subgroup of G, and
(Rj|Tj) j=1,...,n, the coset representatives of T in G. We will
consider the case where r, is a general position, i.e. the n vec-

1

tors rj = (le'rj)r1 are distinct. We then have n molecules in the
unit cell, and the electron density of the molecule at r. is re-

lated to the electron density of the molecule at Ty by
pjo(rj+U) = olo(rl+RjU)

where rj = (lerj)rl. That is, we have n identical molecules in

different orientations in the unit cell, and their mutual orienta-
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tion is determined by the rotations of the space group of the
crystal. It also follows that the self-Pattersons ijo(r),
j=1,...,n, which are all localized about the origin of the
Patterson, are identical, in different orientation, and their
mutual orientations are also determined by the rotations of the

space group of the crystal.

All peaks of the rotation function correspond to rotations
which

1) Leave a self-Patterson ijo(r), for some j, invariant; or

2) Rotate a self-Patterson P..O(r) into the orientation

of a self-Patterson P (r), where j # k.

kkO
Let P denote the symmetry point group of the molecule at Ty

1) The group of rotations {R(jj)} = {RjPRgl} is the symmetry
point group of the self-Patterson ijo(r); and

2) The set of rotations {R(jk)} = {RkPRgl} is the set of all

rotations which rotates ijo(r) into the orientation of Pkko(r).

Therefore, all peaks of the rotation function R(A) correspond

to all the rotations contained in the set of rotations4:
[{R(3k)}I],k=1,...,n]. 1

One now has a systematic method to analyze the data obtained

from the rotation function.

1) From the rotation function calculate all rotations which

correspond to all peaks.

2) Determine the point groups such that the set of distinct
rotations in (1) is identical with the set of rotations corre-
sponding to peaks of the rotation function. If P is such a point
group, the conjugate point groups RjPRgl, j=1,...,n, where Rj is
a rotation of the space group of the crystal, are also such point
groups. If there is only one set of such conjugate subgroups

1

RjPR5 » j=1,...,n, we will say that P is the symmetry point group
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of the molecules. The orientation of the rotation axes of these
conjugate subgroups, with respect to the translational vectors of
the crystal, determine the orientation of the molecules in the .
crystal., If there is more than one set of such conjugate sub-
groups, the solution of the rotation function problem is not
uniquely determined by this method. However, in practice it is
impracticable to search for all peaks of the rotation fumction,
i.e. to calculate R(A) for all possible rotations A. One must

then use an alternate method:

1) From the rotation function calculate the rotations corre-

sponding to some of the peaks.

2) Determine the point groups such that the set of distinct
rotations of (1) includes all those rotations found in step 1 from

the rotation function.

3) Determine if there are peaks of the rotation function cor-

responding to the additional rotations of (n.

Example. Satellite Tobacco Necrosis Virus (STNV)t A few
years ago there was a debate as to whether the protein coat of
this "'spherical" virus was of cubic 0(432) or icosahedral J(532)
point group symmetry. A rotation function study was then made of
a crystal containing two STNV molecules in the unit cells. The
crystal was monoclinic of space group symmetry C;(CZ), and
the orientations of the two STNV molecules were related by a ro-
tation of 180°. It was felt that a rotation function study of
this crystal would easily determine the point group since there
are 4-fold rotations contained in the cubic point group and none
in the icosahedral, and 5-fold rotations in the icosahedral and

none in the cubic.

A set of strong peaks were found with corresponding rotations
which were exactly those proper rotations of a cube, and this was
interpreted as meaning that the STNV molecules were of cubic sym-

metry. There were peaks corresponding to 5-fold rotations, which
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are characteristic of icosahedral symmetry, but these peaks were

much lower than the cubic peaks.

This interpretation was immediately challenged and it was
shown that all the peaks of the rotation function corresponding to
5-fold rotations could be interpreted as two molecules of icosa-
‘hedral symmetry in two different orientations related by the rota-
tion of 180° of the space group of the crystalG. There is general
agreement that this is the correct interpretation and that the
STNV molecules do haﬁe icosahedral symmetry. However in this re-
interpretation the stronger cubic peaks were explained away in an

argument that approximated this monoclinic crystal as being cubic!

All these peaks can be explained using the above formalism
and taking the point group of the STNV molecules as being icosa-
hedra14: If one calculates the set of rotations in (1) taking
j,k=1,2, R2 the rotation of 180° of the space group, and P as the
icosahedral symmetry point group of one of the molecules, one
finds 240 rotations. These include the icosahedral rotations of
both molecules, and a set of cubic rotations, exactly that set of
cubic rotations determined from the rotation function. Each of
these cubic rotations either leaves both molecules invariant or
interexchanges the two orientations, explaining the high corre-
sponding peaks, since all other rotations either leave only one
molecule invariant, or rotate one molecule into the orientation
of the other. One finds also that this set (1) of rotations con-
tains additional rotations which have not yet been determined.
However, even without determining peaks of the rotation function
corresponding to these rotations, it does seem that the symmetry

point group of the STNV molecules is icosahedral.

2. The translation function

Information on the point group and orientation of the mole-
cules in a biological crystal is found, using the rotation func-

tion, by considering that volume of the Patterson about the origin
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of the Patterson function. Information on the translation vec-
tors between molecules is found using a similar method, but con-
sidering other parts of the Patterson. One uses a so-called

translation function T(x,A):7

T(x,A) = [ P(x+r)P(x+Ar)dr.
U

The translation function like the rotation function is an overlap
integral of a volume U of the Patterson function with a rotated
image of the same volume, but unlike the rotation function, the
centre of the volume is now a variable, and not restricted to be

at the origin of the Patterson function.
This translation function is non-zero when

1) The volume U intersects with a cross-Patterson ijt(r)
and the intersection is left invariant by the rotation A about x;

or

2) The volume‘U’intersects two cross-Patterson ijt(r) and
Pj'k't'(r) and one is transformed into the other by the rotation
A about x. The relative maxima of a translation function T(x,A)
as a function of x, for constant A, are called the peaks of the
translation function, and the positions of these peaks are re-
lated to the translation vectors between molecules in the crystal.
In Figure 1 we have drawn a model crystal, in Figure 2 the corre-
sponding Patterson function, and in Table 2, the positions of the
peaks of the corresponding translation function T(x,A). The
group theoretical arguments which enter into determining the re-
lationship between the peaks of the translation function and the
translation vectors between the molecules are similar to those

used in predicting the peaks of the rotation function:

Necessary and sufficient conditions that the translation
function T(x,A) has non-zero values associated with the transfor-

mation of ijt(r) into Pj,k,t,(r) are:
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TABLE 2

it., %(tx+ty)

b b
A21: A12 + tX’ E' (1’1:0): '2— ('1’190) + tx

b b
A + 'é' (1’1,0): A21 + E ('1,1:0)

b b
A12 + tx *3 (1,1,0), A12 + tx ty (-1,1,0)

b b
Byys By * tos 3 (1,1,00, 7 (11,1,0) + t

b
A +-2—(1,1,0), Az

b
21 + E ("1’1:0)

1

b b
A12 + tx s (1,1,0), A12 + tx + 5 (-1,1,0)
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1) the rotation A is such that
P.  (r -r +t+A_1u) =P (r, ,-T. ,+t'+u);
jkt 'k 7j Jk'tT kT G ’

-T., v t' - x;

2) A(rk-rj+t-x) é Ty i

3) the vector ly, where -y = T - rj + t - x is within the

volume U.

The first two conditions demand that ijt(r) is transformed
into Pj'k't' by a rotation A about the point x, and the third con-
dition, that the volume U of the Patterson function centered at x
intersects both ijt(r) and Pj,k,t,(r). Using group theoretical
arguments like those used for the rotation function one can show
that all rotations which satisfy the first condition are those
denoted by {A(jkj'k')}

{AGK,3'k")} = [{RGI"IMRKK') I + T[{RGGK") IN{R(Kj")} .
If this set of rotations is empty, then ijt(r) and pj'k't'(r)
are not congruent. For rotations A contained in {A(jkj'k")}, the

positions x are calculated from the second condition.

The concept of the translation function T(x,A) was intro-
duced by Rossmann, Blow, Harding and Coller in 19648. However
they considered only the case where A = m, and only in this case
has the translation function been put to actual use with some
success. Why these people use only this special case is unclear;
it is probably because no general method was developed to predict
the peaks of the translation function. One now has such a gen-
eral method, which needs only very elementary group theoretical

arguments to derive,
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