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A new class of groups is defined for describing the‘symmetry of spin arrangements in magnetic
crystals. The general structure of these new groups, which we name wreath groups, is determined
in a mathematically rigorous manner. Wreath groups are particularly suitable for describing
incommensurate spin arrangements w1th varying magnitudes of spins. The use of wreath groups
to classify all spin arrangements a/nd the effect of such wreath group symmetries on elastic
magnetic neutron diffraction are briefly discussed.

1. Introduction

In a method based on magnetic groups, three-dimensional spin arrange-
ments S(r) are characterized by a label which in the simplest case contains a
three-dimensional magnetic space group, the magnetic symmetry group of the
spin arrangement, and the orientation and magnitude of a single spin'). For
three-dimensional spin arrangements, as the incommensurate helical spin
arrangement in MnAu,?), one needs to specify in such a label an infinity of
spins since the magnetic symmetry group of such a spin arrangement is a
two-dimensional magnetic space group. Using spin groups®*) instead of mag-
netic groups, such a spin arrangement can be characterized by a label
containing a single spin because the spin symmetry group of the helical spin
arrangement in MnAu, is a three-dimensional spin space group. However,
when using either magnetic. groups or spin groups, other three-dimensional
spin arrangements, as the incommensurate linear transverse-wave spin
arrangement in TbAu,’), can not be characterized by a label containing a
single spin. This is because such a spin arrangement is not invariant under any
three-dimensional magnetic space group or spin space group. The reason such
three-dimensional spin arrangements have magnetic and spin- symmetry
groups of lower dimensionality has to do with the varying magnitude of the -
spins of such spin arrangements and the definition of magnetic and spin group
elements. ,

- Magnetic groups and spin groups are groups of pairs of coupled trans-
formations, one of space-time and the second of spin space, the vector space
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of spins, i.e. the values of the function §(r). Characteristic of all magnetic and
spin group elements is that the corresponding spin space transformation can
be represented by a three by three proper or improper rotation matrix. Since a
spin and its rotated image are of the same magnitude, the invariance of a spin
arrangement under a magnetic or spin group element implies relationships,
relative orientation and position, only among spins of the same magnitude.
Magnetic and spin group elements can not provide relationships among spins
of different magnitudes. Consequently, for three-dimensional spin arrange-
ments, as the incommensurate linear transverse-wave spin arrangement in
TbAu, with its spins of varying magnitude, the magnetic and spin symmetry
groups are not three-dimensional, but of lower dimensionality.

In section 2, after a brief review of terminology and definitions of magnetic
and spin groups, we introduce new transformations of spin space. These new
transformations of spin, space coupled with the usual transformations of
space-time determine a new type of pair of coupled transformations. Charac-
teristic of this new type of coupled transformations is that the invariance of a
spin arrangement under such a coupled transformation can imply relationships
among spins of different magnitudes. Groups of such coupled transformations
which are symmetry groups of some spin arrangement are named ‘“wreath
groups”. The structure of wreath groups are determined in section 3. In
sections 4 and 5, the use of wreath groups in classifying all spin arrangements
and the effect of wreath group symmetries on elastic magnetic neutron
diffraction are briefly discussed.

2. Spin arrangements and wreath groups

We use the following notation and terminology®): E(3) X E(1) is “space-
time™” the product space of a three-dimensional euclidean point space called
‘“space” and a one-dimensional euclidean point space called “time”. (r, t) is a
. point in space-time in some coordinate system. & (3) X €,(1) is the Newton
group, the direct product of the euclidean group &.(3) consisting of all proper
and improper rotations and all translations of E(3), and the euclidean group
&,(1) consisting of time inversion and all time translations of E,(1). An element
of &,(3) will be denoted by F =(R | v) where R is a three by three proper or
improper rotation matrix and v is a three by one column translation matrix.
An element of €(1) is denoted by (A | 7) where A is an element of the time
inversion group A consisting of the unit element E =1 and time inversion
E’'=—1, and 7 is any real number representing a time translation.

A crystal is a subset C(3) of points in E,(3), the points being the positions
at which atoms are located. A crystal C,(3) is “invariant” under an element F
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of &,(3), and F is said to be a ‘“‘symmetry element” of the crystal, if for each
point r of C,(3), Fr =(R lv)r =Rr +v is also a point of C,(3). The set of all
such symmetry elements constitutes a group F called the “symmetry group”
of the crystal. : '

Consider a subset Cy(3)Xx E(1) of space-time. A “spin arrangement” is
defined as a function S(r, t) which maps points (r, t) of C,(3) X E(1) to vectors
S of a vector space V*. V* is a three-dimensional carrier space of the
irreducible representation ((R ;‘l v), (A l 7))-> D}{(R I v)xI'7(A l 7) of the
Newton group, where D7 (R | v):’= OrR, 8g =det R, and I'1(A | T) =84, 84 = +1
if A=E, 8§, =—1if A=E'. The vector space V* is called “spin space” and
vectors S *“‘spins”. '

We are interested in spin arrangements defined on a crystal C,3) and
restrict ourselves to the case of static spin arrangements, the invariance of
spin arrangements under timﬁ translation always being understood without
being explicitly stated. Consequently, we shall write S(r) instead of S(r,t)
and consider the subgroup G =Fx A of the Newton group, where F is the
symmetry group of the crystal Cy(3) and A is the time inversion group.

Because spin space is a carrier space of an irreducible representation of the
Newton group, each transformation G = (F, A) of G=FXx A implies a trans-
formation 8,8xR of spin space. Consequently, a spin arrangement S(r) is
transformed by an element G = (F, A) of G into the spin arrangement denoted
by [848:R||[F1S(r), where

3
[848kR|[F1S'(r) = 8,8x 121 R;SI(F'r). 6))

We interpret the symbol [6,8zR||F] as an operator on the space of all spin
arrangements on a given crystal. A spin arrangement S(r) is invariant under
an element G = (F,A)of G=Fx A if

[848-R||F1S(r) = S(r),- 2

and G is said to be a a “magnetic symmetry element” of the spin arrange-
ment. The set of all such magnetic symmetry elements constitutes a group M
called the “magnetic symmetry group”!) of the spin arrangement. .
Additional operators on the space of all spin arrangements on a given
crystal have been introduced in defining the concept of the “spin symmetry
group” of a spin arrangement®*). These additional operators are denoted by
[B|E] where B is a three by three rotation matrix representing any proper or
improper rotation of spin space. A spin arrangement S(r) is transformed by
an operator [B||E] into the spin arrangement denoted by [B||E]S(r), where

3
[BJEls'(r) = E B;S'(r).
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All products of operators [8,8zR||F] and [B||E] generate a group which is the
direct product €25 X 2 of the group £2; consisting of all operators of the
form [BJE], and the group {2 consisting of all operators of the form [E|F]
. where F is an element of the symmetry group F of the crystal C,(3). An element
[B||F] of £25 X £ transforms a spin arrangement $(r) into a spin arrangement
denoted by [B||F1S(r), where

3 ‘ .
(BIF1S'(r) = 3 ByS'(F~'r) | 3)
= j

‘A spin arrangement S(r) is invariant under an element [B||F] of 25 % 2 if
[B||IF1S(r) = S(r) @

and [B]|F] is said to be a “symmetry element” of the spin arrangement. The
set of all such symmetry elements of S(r) constitutes a group called the “spin
symmetry group” of the spin arrangement’*).

Two characteristics of the operators on the space of all spin arrangements
on a given crystal defined above in eqs. (1) and (3) are :

1) The action of the left-hand-side component of the operators [8,8zR||F]
and [B||F] is independent of the position r. That is, the three by three
matrices 5,6rR and B acting in spin space on the components S’ of the spins
S(F~'r), on the right-hand-side of eqs. (1) and (3), are not dependent on the
position r.

2) A necessary condition for operators [8,8zR|F] and [B]|F] to be sym-
metry elements of a spin arrangement S(r) is that, for all r, the magnitude of
the spins S(r) and S(F~'r) must be the same. This follows from the action of
operators on a spin arrangement defined in eqgs. (1) and (3), and the definition
of a symmetry element in eqs. (2) and (4).

We shall now introduce new operators on the space of all spin arrange-
ments on a given crystal, new operators which do not necessarily possess the
two above characteristics of operators previously defined in egs. (1) and (3).
These new operators will be denoted by [V(r)|E] where V(r) is a function
which maps points r of the crystal C,(3) to spins V of the vector space V*,
The action of an operator [V(r)|E] on a spin arrangement S(r) is defined as
follows: A spin arrangement S(r) is transformed by an operator [V(r)| E] into
a spin arrangement denoted by [V(r')|E]S(r) (the argument r of the function
V(r) has been replaced by r’ to distinguish it from the argument of the spin
arrangement $(r)) and defined by

[V(r)EIS(r) = S(r) + V(r). 3

Since both S§(r) and V(r) are spins, vectors in the vector space V*, the vector



WREATH GROUPS 343

sum on the right-hand side of eq. (5) is well defined. The action of an operator
[V(r")E] on a spin arrangement S(r) is position dependent. That is, the value
of the function V(r’) added to the right-hand side of eq. (5) is dependent on
the value of the spin arrangement’s argument r, its position, of the spin
arrangement S(r) on the left-hand side of eq. (5).

The set of all operators [V(r)[E] where V() is a function which maps
points r of the crystal to vectors V of spin space, can be promoted to a group
{2y by defining the product of two operators [Vi(r)E] and [V(r)|E] as:

VMIELVARIE] = [Vi(r) + Vi(r)| E).

We consider the set of all pairs [V(r)|F] of operators [V(r)|E] of the group
)y and operators [E||F] of the group £2r, where F is the symmetry group of
the crystal C,(3). The action of an operator pair [V(r)|F] on a spin arrange-
ment S(r) transforms S$(r) into the spin arrangement denoted by [V(r')|F1S(r)
and defined by

[V(rIF1S(r) = S(F-'r) + V(r), ’ ©6)

where again, as in eq. (5), the action of the operator pair [V(r)||F] is position
dependent. It follows from the definition of action, eq. (6), that the product of -
two operator pairs [V\(r)||F.] and [Vy(r)||F,] is given by

IViOIFVAP)|Fo] = [Vi(r) + VoFi'r)|FLF. )

The set of all pairs [V(r)|F] of operators [V(r)]E] of £, and [E|F] of £
together with the product defined in eq. (7) constitutes the semi-direct product
02,0) 0 of the group 2y by the group 2. The identity element of this group
is [V(r)|F.] where F, is the identity element of F and V.(r) is the function
which maps all points r of the crystal Cy(3) to the null vector of spin space.
The inverse [V(r)|F1™" of an element [V(r)|F] is given by [V(r)|F] ' ="
[=V(Fr|F . '

This semi-direct product £2,() £ is called the “wreath product” V*®$2x
of spin space V*, considered as an abelian group V* under vector addition,
and the group 2. That is V*®) 02 = 2,(5) . A brief review of the con-
struction of wreath products of groups is given in appendix L

A spin arrangement S(r) is said to be ‘“‘invariant” under an operator
[V(r)|F] of the wreath product V*@ . if

[VEIFIS() =S(r) @®

for all r of the crystal Cy(3). We shall say in such a case that [V(r)|F] is a
“symmetry element” of the spin arrangement S(r). It follows from eqs. (6)
and (8) that [V(r)||F] is a symmetry element if
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S(F'r)+ V(r)=S(r), 9.

and consequently, unlike magnetic and spin group operators defined in egs. (1)
and (3), for the operator [V(r)|F] to be a symmetry element, it is not
necessary for the spins S(r) and S(F'r) to be of the same magnitude.

The set of all symmetry elements [V(r)]|F] of a spin arrangement S(r) is
called the “symmetry group” of the spin arrangement S(r). We now define a
wreath group: a subgroup of the wreath product V*@)4$2; will be called a
“wreath group” if it is.the symmetry group of some spin arrangement.

3. The structure of wreath gfoups

In this section we determine the structure of wreath groups, subgroups of
wreath products V*(®) £ which are symmetry groups of spin arrangements.
We show that wreath groups are those subgroups of wreath products V@) 02
which are isomorphic to F. We first show that the symmetry groups of all spin
arrangements are such subgroups, and then show that every such subgroup is
the symmetry group of some spin arrangement.

Consider an arbitrary given spin arrangement S(r) defined on a crystal C,(3)
whose symmetry group is F. The wreath group of this spin arrangement is the
subgroup of the wreath product V*®) £y consisting of all operators [ V(r)|F]
which are symmetry elements of the spin arrangement. For each element F
of the symmetry group F of the crystal, there exists a single function V(r),
‘which we denote as Vg(r), such that [Vg(r)|F] is a symmetry element of the
spin arrangement. For each F, the function Vg(r) is determined from eq. (9)
the condition that [Vp(r)|F] is a symmetry element of the spin arrangement
S(r). This condition, rewritten in a form to determine the function Vg(r), is:

Ve(r)=S(r)— S(F'r). a0

For a given spin arrangement S(r), the function Vz(r) defined in eq. (10) is
unique. Consequently, for each element F of the symmetry group F of the
crystal, there is a single operator [Ve(r)|F] of the wreath product VW2,
which is a symmetry element of the spin arrangement.

The set of all such symmetry elements [ Ve(r)|| F] constitutes a group. To prove
this we must show that operators [Vg(r)|F] with Vg(r) defined by eq. (10)
satisfy the product rule given in eq. (7). That is, we must show that Vg(r)+
Ve(F1'r) = Vg g(r). Using eq. (10) we have:

Vi(r) + Ve(Fi'r) = S(r) - S(Fi'r) + S(F1'r)— S(F3'Fi'r)
= S(r)~ S(F,F)~'r)
= Vplpz(r).
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Consequently, the wreath group of a given spin arrangement S(r) consists of
all operators of the form [Vx(r)||F], for all F of the symmetry group F of the
crystal, and where Ve(r) is defined in eq. (10). Since a single function Vg(r) is
coupled to each element F and the product rule eq. (7) is satisfied, the wreath
group is isomorphic to F, the symmetry group of the crystal on which the spin
arrangement is defined.

We shall now show that every subgroup isomorphic to F of a wreath
product V'@, is a wreath group, the symmetry group of ‘some spin
arrangement: Consider a. crystal /generated by the group F from a general
position ry. That is, all positions of the atoms of the crystal are obtained by
applying all elements of F to the position-ry, and such that F,ry# For, if
F, # F,. Consider a subgroup isomorphic to F of the wreath product V@) {2,
whose elements are denoted by [Ve(r)||F] and which satisfy the product rule
eq. (7). We shall now construct a spin arrangement on the crystal generated
by F from the general position r,, whose symmetry group is this subgroup of
V@05

At ry we assign an arbitrary spin S(ry). We assign at F~!r, for all F, the spin
S(F'ry) defined by

S(F~'r) = S(ro)— Ve(ro), ~oan

where Vi (ro) is the value of the function Vi(r) of the operator [ Ve (r)||F] at r.
To show that this spin arrangement is invariant under the subgroup isomor-
phic to F of V* ™2 one must show, see eq. (9), for all F and atomic
positions r, that S(F~!'r)+ Vi(r) = S(r). From the product rule eq (7) for
arbitrary elements F and F, of F we can write

Ver(ro) = Vi(ro) + Ve(F1'r),
which can be rewritten, adding S(r,) to both sides, as
S(ro) = Vir(ro) + Ve(F1'ro) = S(ro) — Vi,(ro).
Using eq. (11) we can then write
S(F7'Fi'rg)+ Ve(Fi're) = S(Fi'ry),
and finally by denoting the arbitrary atomic position Fi'r, by r, we have
S(F7'r)+ Ve(r) = S(r).

Therefore, we have shown that every subgroup isomorphic to F of a wreath
product V*®)42; is a wreath group, the symmetry group of a spin arrange-
ment.
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4. Classification labels of spin arrangements using wreath groups
. i
In this section we discuss three examples of assigning a wreath group to a
given spin arrangement. :

Example 1. We considér the incommensurate linear transverse-wave spin
arrangement defined on the terbium atoms of a-TbAu,°®). The symmetry group
of the terbium atom arrangement is the space group F =14/mmm (D}]) and
the atom arrangement is generated by F from ro = (0,0, 0). The spin arrange-
ment on the terbium atoms is given by S(r)=zScos(Q:r) where S is a
constant, Q = Q(x +y)/V2 and the wavelength A =27/Q of this linear trans-
verse-wave spin arrangement is incommensurate with the atom arrangement,
see fig. 1. In terms of magnetic groups, this spin arrangement is specified by
the “C1’ classification label”, in the sense of Opechowski and Dreyfus?), as
follows: / ,

[(14/mmm; c.;m.mis; S(ro) = (0,0, S), S((n, n, 0)re) = (0,0, S cos(nQ))].

This label indicates that while the symmetry group of the terbium atom
arrangement is the three-dimensional space group I4/mmm, the magnetic
symmetry group of the spin arrangement is the two-dimensional magnetic
group cmm’. This three-dimensional spin arrangement is generated by the

Z

XY

[
N U N e

Fig. 1. The incommensurate linear transverse-wave spin arrangement of a-TbAu,. Only the terbium
atoms are shown.
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two-dimensional magnetic group from the spin S(r;) and the infinity of spins
on the xy-axis which are speciﬁed by the additional condition S((n, n, O)rg) =
(0,0, S cos(nQ).

In terms of wreath groups, the correspondmg label specifying this spin
arrangement is

(14/mmm;[V=(r)|F1; S(ro)=(0,0, S)],

where the wreath group consists bf all elements [Vz(r)|F], for all F of the
symmetry group F = I4/mmm of hhe terbium atom arrangement, and where
Vi(r) = zS(cos(Q * r) — cos(Q - F7'r)). The functions Vz(r) have been defined
using eq. (10). This spin arrangement is generated by the wreath group from a
single spin S(ry).

Example 2. This is the case of the incommensurate linear transverse-wave
" spin arrangement on the dysprbsium atom arrangement in DyC,’). The sym-
metry group of the dysprosnum atom arrangement is F =14/mmm (D}}) and
the atom arrangement is generated by F from ro = (0,0, 0). The spin arrange-
ment on the dysprosium atoms is given by $(r) = 2S5 cos(Q - r) where Q = Qx
In terms of magnetic groups, the classification label of this spin arrangement
is o
[I14/mmm; p,,m.mim.; S(ro) = (0,0, S),
S((n, 0,0)re)= (0,0, S cos(nQ))],

where pm’'m’'m is the two-dimensional magnetic symmetry group of this spin
arrangement. In terms’ of wreath groups, the classification label of this spin
arrangement is the same as that in example 1, except that the functions Vg(r)
differ here in that Q = Qx.

Example 3. This is the case of the ferromagnetic spin arrangement of
nickel®). The symmetry group of the crystal is F = Fm3m (O;) and the crystal
is generated by F from r, = (0, 0, 0). The magnetic group classification label of
this spin arrangement is

[Fm3m;I4/mm'm’; S(ry)=(0,0,95)].

while the atom arrangement is of cubic symmetry, the magnetlc symmetry
group is of a lower symmetry class, i.e. tetragonal.

In terms of wreath groups, the classnﬁcatlon label of this ferromagnetic spin
arrangement is:

[Fm3m; [V(r)|F);S(ro) = (0,0, S)].

The wreath group of this spin arrangement is cubic, consisting of elements
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[V(r)|F] for all F of the cubic symmetry group of the atom arrangement.
Characteristic of all ferromagnetic spin arrangements, the function V.(r),
which is coupled to all elements F of F, is the function that maps all points of
the atom arrangement to the null vector of spin space.

"'5. Wreath groups and magnétic scattering of neutrons

In this section we brieﬂy" indicate how the wreath group symmetry of a spin
arrangement S(r) manifests itself in elastic magnetic scattering of unpolarized
neutrons by a magnetic single crystal. For simplicity we consider the case of a
spin arrangement where all spins have the same magnetic structure factor f.
The cross section for such a scattermg process is usually taken to be

f

o (k) = PO = |k /P(k)/kP

where k is the scattermg vector and k its magmtude ‘The scattermg amplitude
P(k) is given by

P(k)=f X e*"S(r),

where the sum is over all atomic positions of the crystal on which the spin
arrangement S(r) is defined. ‘
The scattering amplitude can be rewritten as

Pl)=f 2 e* “IS(r - 1),

where the sum is over all atomic positions in, the primitive unit cell of the
crystal and over all translations of the translational subgroup of the symmetry
group F of the crystal. We use eq. (10), in the case of F=(E | t) to replace
S(ri—t) in the above equation by S(r;)— V,(r;)), and rewrite the scattering
amplitude as

P)=f 2 e* " IS(r)—f Z e* " T e™ 'V, (r).

The wreath group symmetry of a spin arrangement manifests itself in the
elastic magnetic scattering of unpolarized neutrons via the sum X, e * "' V,(r).

Considering the case of the linear transverse-wave spin arrangement
defined on the terbium atoms of a-TbAu,, discussed in the preceeding section,
the sum =, e 'V,(r) can be calculated using the functions V,(r) given in the
classification label of this spin arrangement. One obtains pairs of non-
vanishing values of this sum, which infers pairs of non-vanishing values for



WREATH GROUPS 349

the scattering amplitude, and in turn, of the cross section, for values of the
~ scattering vector k such that k = K + Q. K is a reciprocal lattice vector and Q
is the constant vector in the definition of the functions V,(r). Such pairs of
satellite reflections have been exberimentally determined in a-TbAu,?).
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Appendix I

Wreath products of groups

The construction of wreath products of groups can be divided into three
steps>'%):
First, let P be a finite or infinite group, and H a set of order |H|. We define

PY =PxPx---xP,

the direct product of P taken H times. Elements of P¥ are |H|-tuples of
elements of P, i.e. each element of P¥ is a set {P, | h € H} of H elements of P
indexed by the elements of H. In other words, each element of P¥ is a
function on H whose values are in P. We shall denote each element of P# by
f, a function on H whose values f(h)=P, are in P. P¥ is the set of all
functions on H with values in P.

The set P? of all functions f can be promoted to a group by defining the
product of two elements of PH, i.e. of two functions. f, and f,, as follows:

fif2(h) = fi(h)f(h). ' , (A.1)

The identity function f. is defined by f.(h) = P, for all h of H, where P, is the
identity element of P. The inverse function f™' of f is defined by f'(h) =
[f(h)]! for all h of H.

Second, let @ denote the group of all permutatlons of H, and let F be a
group homomorphic onto a subgroup 8r of 6. The group F is also homomor-
phic onto a group ¢r of automorphisms of the group P¥, the automorphisms
¢r being defined, for all h of H, by
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&ef(h) = f(Op-1h). , ' (A2)

FinaHy, we define the set |
{fIF }f P, FeF}

of all pairé (6} | F) of elements, f belonging to the group P? and F belonging to
F. This set of pairs is promoted to a group by deﬁmng the product of two
pairs of elements (f; | Fi) and.(f, | F;) as

(1 l F)(f, I Fz) =(f- ¢F,f2"Fsz), : ' | b (A3)

where ¢rf, is defined by eq. (A.2) and the product of functions f, - ¢rf> by
eq. (A.1). The identity element of this group is (f. | F.) where f. is the identity
element of P¥ and F. the identity element of F. The i inverse (f | Fy'of (f| F)
is given by (f| F)™' = (¢ f | F7).

The set of all pairs (f | F) together with the product defined in eq. (A.3)
constitutes the semi-direct product P?(5),F of the group P? by the group F
determined by the homomorphism of F onto the group of automorphisms ¢r.
It is this semi-direct product which is called the “wreath product” P@F of P
by F, that is P®F = PAG),F.

In this paper we are interested in wreath products P@F P" OLF where
P is the three-dimensional vector space V*, i.e. spin space, considered as an
abelian group under vector addition. H is the set of all points r in E,3) of a
crystal C,3), and F is the symmetry group of the crystal. Denoting the
functions f(h) of P! by V(r), and defining the action of permutations of 85 as
0gr = Fr, eq. (A.2) becomes ¢rV(r) = V(F~'r). Finally, rewriting the product,
eq. (A.1), of two functions Vi(r) and Vy(r) in additive notation as {V,+
Vol (r) = Vi(r) + Vi(r), the product given in eq. (A.3) of two elements of the
wreath product takes on the form of eq. (7) given in the text.
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