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Abstract— The theory of crystallographic color groups is shown to provide informa-
tion which simplifies determining the irreducible representations which satisfy
the criteria of the Landau theory of continuous phase transitions and in deter-
mining the possible species of nonmagnetic ferroic crystals.

INTRODUCTION: COLOR GROUPS

Generalizations of the classical crystallographic groups have been named color
groupsl,z. The elements of color groups consist of elements of classical crystallo-
graphic groups combined with some additional operator. A %eneral theory of crystallo-
graphic color groups has been given by Koptsik and Kotzev! and has been the topic of
some recent reviews3:>%. Well known special cases of color groups are magnetic groups-,
and spin groups®-10, These and other color groups have been used in the classification
of spin arrangementss; of crystals with defects4, and incommensurate crystalsll’lz. We
consider here the so-called P-type permutational crystallographic color groups™. Permu-
tational color groups are color groups where each element g of a crystallographic group
G is combined with a single permutation p of a permutation group P. All permutational
color groups can be derived using -a method given by van der Waerden and Burckhardtl3:
For each group G and subgroup H' of G one constructs a permutational color group, de-
noted by G(H'), by combining with each element g the permutation of the left cosets giH
of G under the action of the element g of G.

There is no general agreement on the definition of equivalence classes of these
groups4. We have used a definition of equivalencels3 chosen on the basis of physical
applications of these groups and tabulatedl4 all permutational color point groups.  Be-
cause of our choice of definition of equivalence, the number of such groups is greater
than that tabulated by othersls15.16, In Table I we list those permutational color poin
groups G(H') with G=0 (432).

The application of permutational color groups to the Landau theory of continuous
ph§se transitions is via the irreducible representations contained in the repregentatio

associated with each permutational color group G(H'). The representation Dg is the
transitive permutation representation of G on the subgroup -H' generated by the permuta-
tions p combined with each e¢lement g in the permutational color group G(H")14, In gen—
eral, the representation D; is reducible into a sum of irredgcible representations of
the group G. The irreducible representations contained in DE have been tabulated for
all permutational color point groupsl4. In Table I we have listed the number of times
each irreducible representation of G is contained in Dg for each of the permutational
color point groups G(H') with G=0.
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TABLE I LANDAU THEORY

The Landau theory of continuous

My f fy Ty Ts Specie phase transitionsl’ can be applied to
o) . transitions in a crystal between phase
) 1 2 3 e F 4
of symmetry G and H', a subgroup of G.
oty : ' 2 : . » The density function of the crystal ir
the low symmetrv phase is written as
Mcf) 1 1 " ” r p1(r)= Polr) + ZC%W%(r) where pg is
the density function of the high sym-
otc,) 1 1 " s F metry phase and the functions W%(r) ar
_ ‘ basis functiqns of irreducible repre-~
NQZJ“X”) 1 1 " sentations D; of the high symmetry
phase. For a given high symmetry G and
ofc,) 1 1 1% F continuous phase transition associated
with a sgecific irreducible represen-
o(n,) 1 1* tation Dy, the lower symmetry H' is
Zxr) ' found by minimizing the thermodynamic
0D, ™™ 1 1 2* potential ¢(p,T,C%) of the crystal,
where p is pressure and T temperature,
o(p,) 1 1e with the coefficients C%, for the spe-
cific J, as variational parameters.Thi
oem ! b minimization determines the density
o0) " function, above equation, and subse-

quently the symmetry of the low sym-
metry of the low symmetry phase.

Several group theoretical cri-
teria have been introducedl’-21 which limit the possible symmetries of the low sym-
metry phase which can arise in a continuous phase transition. These criteria can
be reformulated!4 on the basis of the theory of permutational color groups and the rep-
resentations associated with these groups. Some of these criteria are discussed below.

1. Landau Subgroup Criterion: The group H' is a subgroup of the group G. All sub-
groups can be found in a tabulation of the permutational color groups G(H'). A complete
list of all permutational color point groups is given in reference (14), those with G=0
in Table I. A partial list of permutational color space groups has been pule'.shed]—":"zzl23

2. Subduction Criterion8: The irreducible representation DJ associated with a con-
tinuous phase transition between phases of symmetry G and H' must be such that D& re-
stricted to the subgroup H' contains the identity representation of H'. This criterion
can be reformulated as followsl4,24, The irreducible representation D& associated with :
continuous phase transition between phases of symmetry G and H' must be contained in the
representation DE associated wjith the permutational color group G(H'). The irreducible
representations contained in Dg associated with all permutational color point groups
have been tabulatedl4, for those groups G(H') with G=0 in Table T. Reading across this
table, for example, the row alongside G(H') = 0(C3), one finds that the irreducible
representations Dé = T1, Ty, T4, and I's, satisfy the subduction criterion for continu-
ous phase transitions between G=0 and H'= C3 Reading down the table, for example the
column under DG=F3, one finds that this irreducible representation Satiﬁfies the suhduc-
tjon criterion for continuous phase transitions between G=0 and H'=C3,C C%Y,DEZ’XY’XY),

29x54 P i 1,C2, )
Dy=2s C4> and D4. Such tables can also be used in the case of equitranslational
phase transitionsi?,

3. Chain Subduction Criterionl?:20: The chain subduction criterion further limits
the continuous phase transitions associated with an irreducible representation D&. A
continuous phase transition associated with Dé which satisfies the subduction criterion
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for a transition between G and H' may in fact give rise to a phase transition not to H'
but to a larger subgroup of G. The chain subduction criterion takes this into account.
The phase transitions which satisfy the chain subduction ¢riterion are found in the
tables of the-irreducible representations contained in Dg 14 (Table I) and are marked
with an asterisk. Reading across Table I, for example the row alongside G(H')=0(C3) one
finds that only the irreducible representation D8=P4 satisfies the chain subduction
criterion for phase transitions between G=0 and H'=C3. Reading down Table I, for example
the column under D6=P3, one finds that I'3 satisfieg t?e chain subduction criterion only
for the transitions between G=0 and H'=D4 and DEZ’X’Y .

The low symmetry groups H' which arise in a continuous phase transition associated
with an irreducible representation which satisfies the chain subduction criterionl
coincide, in the case of point groups, with the tabulation given by Janovec, Dvorak and
Petzelt25 and for equitranslational phase transitions with the tabulation of '"Maximum
Epikernals" of Asher?5,

4. Tensor Field Criterionl8: A phase transition in a crystal is a result of a change
in some physical property of the crystal. If the physical property is defined by a ten-
sor on the atoms of the crystal, then the tensor field criterion states that the irredu
cible representation Dy associated with the phase transition between G and H' must be
contained in the tensor field representationRgEF: DEF=DE X DBERM. Dg is the representa-
tion of the physical property tensor and DEE the permutation representation which de-
scribes how the atoms permute under elements of G--.

, It has been shown that the representations DEERM are related to the representation
G associated with permutational color groups G(H')14. For example, if G is th& point
group of the crystal and H' the site point group of one of the atoms, then the k=0 irre-
ducible representations contained in the permutation representation are the irreducible
representations contained in Dg associated with the permutational color point group G(H")
Tables of the irreducible representations Dg contained in the second equation, above,
for tensor representations Dj = DV, the polar_vector r?presentation, G» the axial vec-
tor representation, DX X DA, and ?DX]Z, and DEE = Dg for all permutational color
point groups G(H') have been tabulated2’7. Table II lists such a tabulation for the groutr
G(H') = 0(0). Additional physical applications of these tables are considered else-

where<«/, TABLE II

POSSIBLE SPECIES OF NONMAGNETIC FERROIC r r r r r

CRYSTALS 1 2 3 4 5
DH' i

The possible species of nonmagnetic
ferroic crystals28 can be determined from

the tables of irreducible representations Dy x D 1
contained in the representation Dg asso-

. . A H
ciated with the permutational color point Dy x Dy 1
groups G(H'). Consider a phase transition v A
between a prototypic phase of prototypic (B x Bg) x D ! 1 1 1

point group symmetry G and a ferroic phase
with H' as the ferroic point group of one
of the orientation states. Let the orien-
tation state be characterized by a phy-
sical property tensor which transforms under G, in the simplest case, as a single irre-
ducible representation DE. Full or partial ferroic species GFH' are determined by the
chain-subduction criterion as follows: (1) If the irreducible representation Di is con-
tained in Dg', and the number of times appears with an asterisk, GFH' is a full ferroic
specie; (2) If Dg is contained in D% , and the number of times appears without an as-
terisk, GFH' is a partial ferroic specie.
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For example, electric polarization transforms as the polar vector representation
DX. For the point group G=0, from Table II, DX=F4. From the column under Ty, in
Table I, one finds thatOFCL OFC§Y, OFC3, and OFC4 are full ferroelectric species,
and OFC§ is a partial ferroelectric specie.
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