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The theory of permutational colour groups and the representations associated with them are
briefly discussed. These groups are then applied to. the group-theoretical analysis and
classification of continuous phase transitions. assuming the Landau theory.

1. Introduction

In many problems in solid state physics it is often necessary to determine
relationships between the symmetry group G of a crystal and its subgroups H
or factor groups F, and between the representations of these groups. This
information can be found in the theory and tables of generalized crystal-
lographical groups. known as *‘colour groups™'?). The general theory of
colour groups based on group extension theory. was proposed by Koptsik and
Kotzev'*) and has been the topic of some reviews™”). The purpose of this
paper is to demonstrate the advantages of the application of one type of
colour groups, called permutational colour groups, in the group-theoretical
analysis and classification of continuous phase transitions based on the
Landau theory*"™) (see ref. 11 for more details and tables).

2. Permutational ‘/:olonr groups G’ = G/H'/H(F, F"),

Let G be a crystallographic group and P C S, a transitive group of
permutation of n objects, a subgroup of the symmetric group S.. The
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permutational colour group G” -is defined =113y a5 a subdirect product of P
and G, i.e. it is a set of pairs of elements (P,8), pEP, g€G. which is a
subgroup of the direct product group P x G with the same composition law

(P1, 81XP2, 82 = (P12, 818 EGP C P x G. (D

We shall use only those colour groups G”, which are isomorphic to G. In this
case there is a homomorphism 7: G = P, and all G” ~ G can be constructed")
by pairing of each g € G. with its image #(g;)=p,€PCS, The set
{n(g)|g€G)=1; is a transitive permutation representation of G. Each
representation IT§ of dimension n =[G : H'] can be constructed’) as a set of
permutations of the left cosets g.H' of the coset decomposition of G with
respect to its subgroup H'C G

- --8H ... ~( Y 2
mao=(n )= () =mep, @
The kernel Ker IT¥ of the representation IT# is an intersection of all those

subgroups of G that are conjugated with H'. This intersection, called a core
of H'. is the maximal invariant subgroup H of G, contained in H'

H=mCore H' = Q gH'g ' =Ker1¥ qG. 3
€

The group p C S, is isomorphic to the factor group G/H = F, considered as
an abstract group F, and H'/H = F' is a subgroup of F of index n = [F: F]=
[G:H'], with the property Core F’ = C,. Hence. the transitive representation
ITf is a faithful representation of F = G/H and is identical with the group of
permutations P C S,. For these groups P the symbols (F, F'), were used by
Koptsik and Kotzev?), where all 45 such groups, for the 32 point groups, were
tabulated.

Permutational colour groups G?, isomorphic to G, are completely deséribed
by the symbol G/H'/|H(F, F'),, which is a compact form of the diagram:

G D H>H=CoreH'
sl ol o}
G/H DH'|H o C,

f I I .
F D F' & Cy=Core F', ' 4

where G/H = F~(F,F),C S, n=[F:F]=[G:H".

Two colour groups are equivalent (and are considered as one group in the
tables) if G, = G and their subgroups H; and H} are conjugated in G. In this
case D and D are equivalent.

Usually a large number of colour groups have the same permutation group
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P=(F,F), and a number of different groups G and H' have similar
group-subgroup relations. This was a basis for a classification of the colour
groups®) and it is precisely this similarity in subgroup relations which was
later called'’) an *‘exomorphism™. For example, all 3-colour groups, and all
subgroup relations between G and subgroups H' of index 3 belong to two
classes, with (F, F"), equal to either (Dy, C3)s or (C;, Ci)s; while all 2-colour
groups correspondingly belong to (C,, C\).

The transitive permutational representations IT§ and IT¥ can be written in
matrix form, as n X a matrix D¢ and D, where

i 'av. ' =1 '
Dﬂmnsp’ﬂ““’ gH', orgiag €H',

0, otherwise. ©)

Obviously, these matrices form the representation of G, induced”) by the
trivial representation D}, of its subgroup H’'C G; i.e. D§ = D} 1 G, and also
Df = D}- 1 F. At the same time D’ is the representation of G, engendered")
by a representation D¥ of its factor group F = G/H, H = Core H' (often DF
is called”) the image of D%, i.e. DF =Im D4, where F=G/H, H=
Ker D& = Core H". .

For the engendered representations we shall use the symbol “ft”, i.e.
D¥ = DE#G. and each D4 € D¥ is engendered by some D:€ DF, Di; =
D1 G.

The list of all 279 non-equivalent permutational colour point groups
G/H'|H(F, F"), and the reduction of the associated permutation group
representations DY = X, (D¥ | D;)D}; has been presented by Birman, Kotzev
and Litvin"). '

3. Application to Landau theory _

The theory of permutational colour groups and corresponding tables'*')
can be applied in the Landau theory*') in two ways: in the classification of
the transitions. and in the reformulation of the group-theoretical criteria.

If G is the group of the higher symmetry phase and {Hj, H3, ...} is the set
of all its subgroups, in the list of groups G/H'/H(F, F"), one can find all
possible groups H' C G of the lower symmetry phase, one group at each class
of conjugated subgroups. Then, for the given G and the chosen H' one can
find the irreducible representation D/, responsible for the transition by
eliminating “forbidden™ representations. First of all the *“Subduction Cri-
terion™) is applied. In terms of colour groups this means: for G and H'C G
one finds G/H'/H(F.F"). and the permutational representation D& =
Dit G =3, (D¥ | D5)Ds. From the Frobenius Reciprocity Theorem") it
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follows that all Dj, which are not contained in D¥, are eliminated:
(D5 | H'| D)= (D)1 G | Dk). For the point groups (and for k=0
representations of the space groups) these coefficients are tabulated by
Birman, Kotzev and Litvin''). : .

The next step is. the “Kernel-Core Criterion™: it was shown by Birman,
Kotzev and Litvin") that if the transition from G to H', is associated with a
single irreducible representation, Di, it should be Ker Di=CoreH'=H. In
other words, for G/H'/H(F,F w representations D§ € DY, but with
Ker D}, # H. are also eliminated. This criterion can be expressed in different
form: Ker D} = Core H’ if and only if D is engendered by a faithful
irreducible representation Df of F=G/H which is contained in D%. It
follows that if the factor group F = G/H has not any faithful irreducibile
representations D (when F = Dy, Day, Ca, D, Cen De for example), or if
Df & Df for some (F, F"),, then the transitions cannot be continuous for all G
and H' in the corresponding G/H'/H(F, F)..

In a similar way the “Landau Stability Criterion™, which eliminates each
Dj, containing D} in its symmetrized cube, should be applied. The represen-
- tation D} is called “Landau-active”, if and only if D&&[DLP, i.e.
(ID5P| D)= 0. A | .

But. if D} = D} tt G. then ((DLF| DY = (IDEY | DY), where. in addition, Dj
should be a faithful irreducibie representation. The faithful irreducible
representations of F = C;, Dy, T, and I's of O are not Landau-active. and all
transitions G — H' with G/Core H' = C;, D,. T, cannot be continuous. (This is
an additional proof of the “Landau Index-3 Subgroup Theorem™: all 3-colour
groups, (G: H') = 3, are of the type (C,, C )y~ C; and (Ds, Cis=Dy.)

The application of the “Chain Subduction Criterion” in the frame of colour

- groups is also simplified. For a fixed Dj; it is necessary to investigate only the
subgroup H' with Core H'= Ker D%, i.e. a small number of colour groups
G/H'|H(F, F"), with the same H and F. .

The application of the permutational representations D% in the “Tensor-
Field Criterion”, and many exampies, together with the full tables of per-
mutation colour groups can be found in Birman, Kotzev and Litvin').
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