33. On the structure of a biological crystal
determined by its Patterson function

D. B. Litvin

Crystallographers have been using X-rays to investigate the
structure of biologically important macromolecules for over
forty years.! One type of these is the so-called spheroidal or
globular macromolecules, such as myoglobin and hemoglobin.
Most globular macromolecules can be crystallized. In forming
a crystal these macromolecules are not to any large extent dis-
torted, there are in general only a few molecules in the unit cell
of the crystal and the identity of each molecule is preserved.
The term ‘biological crystal’ in the title refers to such a crystal.

The object of investigating the structure of such biological
crystals is to determine the structure of the macromolecules.
To determine the structure of the crystal one attempts to cal-
culate the electron density p(r) of the crystal via the Fourier
expansion

p(r) = (1/V)D_ F(k) exp(~27ik - r)
k

where the Fourier coefficients F(k) =| F(k) | exp(ia(k)) are called
the complex structure factors, o(k) the phase of the structure
factor, and V is the volume of the unit cell of the crystal.

To investigate the structure of these biological macro-
molecules using only the magnitudes of the structure fac-
tors, the so-called ‘molecular replacement’ method has been
developed:? This method consists of three steps.

1) The rotation problem: determine the point group of the
molecules in the crystal, and their orientation with respect
to the translational symmetry vectors of the crystal.

2) The translation problem: determine the vectors between
the molecular positions in the crystal. These vectors are
" called translation vectors.

3) The phase problem: using the information obtained in the
first two steps, determine the phases of the structure fac-
tors.
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The solutions of the rotation and translation problems are
based on the analysis of a function which can be calculated
from the magnitude of the structure factors F(k). This is the .
Patterson function introduced in 1934;

P(r) = (1/V)D_ | F(K) |* exp(2xik - r).
k

The function is the self-convolution (self-correlation) of the
electron density of the crystal:

P(r) = /p(r’)p(r'+r)dr'.

Because in the biological crystal the macromolecules preserve
their identity, the electron density of the crystal can be written
as a sum of the electron densities of the molecules, and the
Patterson function can be written as

P(r) = Y Pjelr)

Tkt

where j and & index the molecules in the unit cell of the crystal,
t the translations of the crystal, and

ijg(r) = /pjo(r')pkg(r'+ r)dr'

the convolution of the electron density of the jth molecule in
the unit cell with the kth moleule in the tth unit cell. The con-
volution function Pji(r), in general, is called a cross-Patterson
function, and in the special case where j = k and ¢t = 0, P;;o(r)
is called a self-Patterson. There are two problems for consid-
eration:

1. The rotation problem

Here one wants to determine the point group and orientation
of the molecules in a biological crystal. The crystals which
we consider are assumed to be made up of only one kind of
biological macromolecule.
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To determine this, one looks for relations between the point
group and orientation of the molecules in the crystal and pro-
perties of the Patterson function. Consider the electron density
pjo(r) of the jth molecule in the unit cell. This density is lo-
calized because of the finite dimension of the molecule, about
the center of mass r; of the jth molecule. The symmetry point
group of the molecule is the set of all proper rotation matrices,
P, such that

pio(rj + Pu) = pjo(rj + u)

(because the biological macromolecules are made up of ‘left-
handed’ amino acids, the symmetry point group of the molecule
consists only of proper rotation matrices). We choose a coordi-
nate system in the crystal; then the group of matrices P, which
is the symmetry point group of the jth molecule, is defined
with respect to the coordinate system. The orientation of the
molecule is the orientation of the rotation axes of the rotations
which are represented by these matrices. Another molecule
in the crystal has as its symmetry point a group of matrices
P' also defined with respect to this coordinate system. The
two groups of matrices are in general different but equivalent,
t.e., they both belong to the same class of point groups and are
denoted by the same symbol in, e.g., international notation.

It follows that if P is the symmetry point group of the jth
molecule, then the self-convolution of the electron density of
the jth molecule, t.e., the jth self-Patterson function

Pijo(r) = [ e osolr’ + r)ir

is invariant under all rotations of P, i.c., Pjjo(r) = Pjjo(Pr).

Pjjo(r) is also invariant under inversion, and consequently P x1
is an invariance point group of P;jo(r). We shall assume that
P x 1is the symmetry point group of Pj;o(r).

As this self-Patterson is localized in a volume about the
origin of the Patterson function, Rossmann and Blow,? in order
to determine from the Patterson function the point group and
orientation of the molecules, introduced (in 1962) the rotation
function R(A):

R(A) = / P(r)P(Ar)dr

U
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where A is a proper rotation, and the integration is over a vol-
ume about the origin of the Patterson function. This is an
overlap integral of a volume about the origin of the Patterson
function with a rotation image of the same volume. Relative
maxima of this rotation function, as a function of 4, are called
peaks of the rotation function. Obviously if P;;o(r) is invariant
under a rotation P then there will be a peak in the rotation
function at A = P. Consequently by determining the peaks
of this rotation function, one can obtain information on this
point group of the molecules in the crystal. A general method is
available to determine systematically the point group symme-
try of the molecules from information provided by the rotation
function.* To drive this method, one needs to apply only very
elementary group theoretical arguments.

Consider a biological crystal consisting of identical
molecules generated by a space group G from a single molecule
at position r,. Let T denote the translational subgroup of G,
and (R; | r;)j =1,---n, the coset representatives of T in G. We
will consider the case where r, is a general position, s.e., the n
vectors r; = (R, | r;)r, are distinct. We then have n molecules
in the unit cell, and the electron density of the molecule at r,
is related to the electron density of the molecule at r; by

pjo(ri +u) = pro(r1 + Rju)

where r; = (R; | r;)r,. That is, we have n identical molecules
in different orientations in the unit cell, and their mu-
tual orientation is determined by the rotations of the space
group of the crystal. It also follows that the self-Pattersons
Pjjo(r), j =1,---,n, which are all localized about the origin of
the Patterson, are identical, in different orientation, and their
mutual orientations are also determined by the rotations of the
space group of the crystal.
All peaks of the rotation function correspond to rotations
which
1) Leave a self-Patterson P;;o, for some j, invariant; or
2) Rotate a self-Patterson P;;, into the orientation of a self-
Patterson Pi;o, where j # k.
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Let P denote the symmetry point group of the molecule at r,:

1) The group of rotations {R(jj)} = {R,PR;"} is the symmetry
point group of the self-Patterson P;;,: and

2) The set of rotations {R(jk)} = {RcPR;'} is the set of all
rotations which rotates P;;, into the orlentatlon of Piro(r).
Therefore, all peaks of the rotation function R(4) corre-

spond to all the rotations contained in the set of rotations:*

[{R(jk)} jsk=1,---,n]. (1)

One now has a systematic method to analyze the data ob-
tained from the rotation function.

1) From the rotation function calculate all rotations which
correspond to all peaks.

2) Determine the point groups such that the set of distinct
rotations in equation (1) is identical with the set of rota-
tions correspondlng to peaks of the rotation fuction. If P
is such a point group, the conjugate point groups R; PR‘ )
j=1,---,n, where R; is a rotation of the space group of the
crystal are also such point groups. If there is only one set
of such conjugate subgroups R; PR;*, j =1,---,n, we say the
‘P is the symmetry point group of the molecules The ori-
entation of the rotation axes of these conjugate subgroups,
with resepct to the translational vectors of the crystal, de-
termine the orientation of the molecules in the crystal. If
there is more than one set of such con_]ugate subgroups, the
solution of the rotation function problem is not uniquely
determined by this method. However, in practice it is im-
practicable to search for all peaks of the rotation function,
t.e., to calculate R(A) for all possible rotations A. One must
then use an alternative method:

1) From the rotation function calculate the rotations corre-
sponding to some of the peaks.

2) Determine the point groups such that the set of distinct
rotations of equation (1) includes all those rotations found
in step 1 from the rotation function.

3) Determine if there are peaks of the rotation function cor-
responding to the additional rotations of equation (1).
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Example: satellite tobacco necrosis virus (STNV).

A few years ago there was a debate as to whether the protein
coat of this ‘spherical’ virus was of cubic 0O(432) or icosahe-
dral J(532) point symmetry. A rotation function study was
then made of a crystal containing two STNV molecules in the
unit cell.> The crystal was monoclinic of space group symme-
try C3 (C2), and the orientations of the two STNV molecules
were related by a rotation of 180°. It was felt that a rotation
function study of this crystal would easily determine the point
group since there are 4-fold rotations contained in the cubic
point group and none in the icosahedral, and 5-fold rotations
in the icosahedral and none in the cubic.

A set of strong peaks was found with corresponding ro-
tations which were exactly those proper rotations of a cube,
and this was interpreted as meaning that the STNV molecules
were of cubic symmetry. There were peaks corresponding to
5-fold rotations, which are characteristic of icosahedral sym-
metry, but these peaks were much lower than the cubic peaks.

This interpretation was immediately challenged and it was
shown that all the peaks of the rotation function corresponding
to 5-fold rotations could be interpreted as two molecules of
icosahedral symmetry in two different orientations related by
the rotation of 180° of the space group of the crystal.® There
is general agreement that this is the correct interpretation and
that STNV molecules do have icosahedral symmetry. However
in this reinterpretation the stronger cubic peaks were explained
away in an argument that approximated this monoclinic crystal
as being cubic!

All these peaks can be explained using the above forma-
lism and taking the point group of the STNV molecules as being
icosahedral:* if one calculates the set of rotations in equation
(1) taking j,k = 1,2, R, the rotation of 180° of the space group,
and P as the icosahedral symmetry point group of one of the
molecules, one finds 240 rotations. These include the icosahe-
dral rotations of both molecules, and a set of cubic rotations,
exactly that set of cubic rotations determined from the rota-
tion function! Each of these cubic rotations either leaves both
molecules invariant or interchanges the two orientations, ex-
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plaining the high corresponding peaks, since all other rotations
either leave only one molecule invariant, or rotate one molecule
into the orientation of the other. One finds also that this set,
equation (1), of rotations contains additional rotations which
have not yet been determined. However, even without deter-
mining peaks of the rotation function corresponding to these
rotations, it does seem that the symmetry point group of the
STNV molecules is icosahedral.

2. The translation function

Information on the point group and orientation of the
molecules in a biological crystal is found, using the rotation
function, by considering that volume of the Patterson about
the origin of the Patterson function. Information on the
translation vectors between molecules is found using a simi-
lar method, but considering other parts of the Patterson. One
uses a so-called translation function 7'(z, 4) introduced by Ross-
mann, Blow, Harding, and Coller,”

T(z,A) = / P(z + r)P(z + Ar)dr.
U

The translation function, like the rotation function, is an over-
lap integral of a volume U of the Patterson function with a
rotated image of the same volume, but unlike the rotation
function, the center of the volume is now a variable, and not
restricted to be at the origin of the Patterson function.

This translation function is non-zero when:

1) The volume U intersects with a cross-Patterson P;(r) and
the intersection is left invariant by the rotation 4 about z;
or :

2) The volume U intersects two cross-Pattersons Pj(r) and
Pjrp(r) and one is transformed into the other by the rota-
tion 4 and X. The relative maxima of a translation function
T(z,A) as a function of z, for constant 4, are called the peaks
of the translation function, and the positions of these peaks
are related to the translation vectors between molecules in
the crystal. The group theoretical arguments which enter
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into determining the relationship between the peaks of the

translation function and the translation vectors between

molecules are similar to those used in predicting the peaks
of the rotation function.

Necessary and sufficient conditions that the translation
function T(z, A) has non-zero values associated with the trans-
formation of Pji(r) into Pjip(r) are:®

1) the rotation A is such that

Piee(ri —mj +t4+ A7 ) = Pjp(ry — 7} + 1 +u);

2) A(re — 1y +t—x) =rp—rj +t' -z,
3) the vector iy, where —y = r; —r; +t —z is within the volume
U.

The first two conditions demand that Pj:(r) is transformed
into Pj(r) by a rotation about A about the point z, and the
third condition demands that the volume U of the Patterson
function centered at z intersects both Pj(r)) and Py (r). Us-
ing group theoretical arguments like those used for the rotation
function one can show that all rotations which satisfy the first
condition are those denoted by {A(jk,;'k')}

{A(3k,5'F')} = [{R(35")} n {R(kK)}] + T[{R( ')} n {R(k5")}).

If this set of rotations is empty, the Pj.(r) and Pjix.(r) are
not congruent. For rotations A contained in {A(jk,j'k')}, the
positions z are calculated from the second condition.
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