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ABSTRACT

Given a crystal whose Symmetry group is a three-dimensional
space group. We set out a procedure, called scanning, by which one can
determine the layer group symmetry of all planes in the crystal which
are invariant under a two~dimensional subgroup of the translational
subgroup of the space group. An example of scanning is given of a
crystal with space group symmetry Cmcm (Dial?).

Given a three-dimensional Euclidean point space and a three-
dimensional space group G defined in this space in a natural
coordinate system (0;7T:,7:,Ts) where O is the origin of the coordinate
.system and Ti, T;,and Ty are a set of generators of the translational
subgroup T of G. We set out a procedure to determine all planes in
this space which are invariant under a two-dimensional subgroup T of
T and the subgroups Gi of all elements of G which leave each of the
planes invariant. Gy will be called the sympetry group of the plane
and a set of generators of the translational subgroup T. of Gy will be
denoted by T:; and T:,. . ’

A We denote an element of G by (R | t(R)+T) where R is an element
of the point group R of G, t(R) is the non-primitive translation
asgociated with R, and T is a translation of the translational’
subgroup T of G.

' Sets of parallel planes are defined by a vector u, a vector
perpendicular to the planes. Specific planes are defined by vectors d
2 au where a is a real number. The vector d is a vector from the
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origin to a point on the plane.

A necessary, but not sufficient, condition that a plane
defined by a vector d is invariant under an element (R| t(R)+T) of ¢
is that Rd = #d. Since d = au, Ru = #u for such elements of g,
Consequently, this condition determines the maximal possible point
group of planes in the set of planes defined by u, i.e. the maxima]
possible point group Risaz of Gi. For a given u and rotation R of the
maximal possible point group Rias: we shall determine if there exigts
planes defined by d = au which are invariant under an element
(R | t(R)+T) of G. '

We first change the origin of the coordinate system from O to
Ord, a point on the plane defined by d = au. In the natural coordinate
system (O+d;Ti,T:,Ts) an element G of G has the form (R | t(R)+d-Rd).
We now introduce a new basis for the natural coordinate system: We
define a new set of generators T:;,T:s;, and T3’ of the translational
subgroup T of G. Tiy and Tiz are the generators of T., the
translational subgroup of Gy. Using

T=mTis +mTig +mly’
where m; ,ms , and my are integers, and
t(R) = t(R)1aTis + t(R)12Tis + t(R)2'T’
d-Rd = (d-Rd)11Tzs +(d-Rd)1aTiz + (d-Rd)s'Ty’

we have that the element (R | t(R)+d-Rd) in the natural coordinate
system (O¢d;T:1,Tis,Ts’) is written in component form as:

(R t(R)ri+m+(d-Rd)rs, t{R)ra+m+(d-Rd)r2, t{R)s'+ms+(d-Rd)s’

A necessary and sufficient condition that (R | t(R)+d-Rd) is &
sympetry element of the plane defined by d = au and is an element of
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the group Gu is t(R)s' + ms + (d-Rd)s' = 0 which can be written as

t(R)s' + (dRd)a’' = 0

vhere " £ 0 " means equal to zero modulo one. This condition is used
to determine which are thg values of é, if any exist, such that
(R | t(R)+T+d-Rd) is an element of the symmetry group Gu of the
plane specified by the vector d = au.

As an example we consider the orthorhombic space group G =
Cocm (Diaxt?7). We choose the natural coordinate system (O;T:,T:,Ts)
where the generators of the translational subgroup T of G are

7, = (1/2,1/2,0) Ti = (1/2,-1/2,0) Ts = (0,0,1)

and the origin O is chosen such that coset representatives (R] t(R))
of the coset decomposition of G with respect to T can be taken as:

(El 0,0,0) (Cas | 0,0,1/2) (Cay| 0,0,1/2) (Cu‘ 0,0,0)
(110,0,00  (m]0,0,1/2)  (m}0,0,/2)  (m | 0,0,0)

We scan along the z-direction by taking u = (0,0,1) and
consequently d = a(0,0,1). The maximal possible point group Rimaz =
mmm (D:a). In the coordinate system (Ovd; Tes,Tes, Ts') where Tig = Ti,
Tis = Ts, and Ts' = Ti, the coset representatives take the form
(R | t(R)+d-Rd):

(810,0,00 (Cre] 0,0,1/2) (Car| 0,0,2/2 + 28)  (Cax | 0,0,28)

(1]0,0,2a) (m | 0,0,1/2 +2a)  f(my | 0,0,2/2) (m | 0,0,0)
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Applying condition (1), we have three cases: -

1) For an arbitrary value of a, there are two elements which
satisfy this condition: (E]0,0,0) and (m | 0,0,0).-

2) For a = P/2, where P is an arbitrary integer, i.e. 2a % 0,
we have four elements which satisfy this condition: (Bl 0,0,0),
(Cax ] 0,0,0), (1}0,0,0), and (m | 0,0,0).

3) For a = (P+1/2)/2, i.e. 2a +1/2 % 0, we have four elements
vhich satisfy this condition: (E|0,0,0), (Cay |0,0,0), (m] 0,0,0),
and (m } 0,0,0). ‘

The symmetry group Gi of a plane d = a(0,0,1) is one of the
eighty layer Groups. The standard symbols for the Layer Group
symmetry of the planes, in the coordinate system (Obd3 Tos s Tea Ty,
for the above three cases are, respectively:

1) cllm in the coordinate system with the x and y coordinates
interexchanged.

2) cl12/m in the coordinate system with the x and y
coordinates interexchanged.

3) cmm2.
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