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A classification of domain pairs via a group theoretical classification of the corresponding pairs of a
full physical property tensor characterizing the domains has been introduced by V. Janovec (Czech.
J. Phys., B22, 974 (1972)). This classification scheme is extended here from the case of Sfull physical
property tensors, where each domain is characterized by a unique form of the physical property tensor,
to the case of partial physical property tensors, where more than a single domain is characterized bya
specific form of the physical property tensor.

I. INTRODUCTION

A ferroic crystal contains two or more equally stable domains of the same structure
but of different spatial orientation. These domain can coexist in a crystal and may
be distinguished by the values of components of certain macroscopic tensorial
physical properties of the domains. Crystals in which the domains may be distin-
guished by spontaneous polarization, magnetization, or strain are called primary
ferroic crystals. Crystals whose domains are characterized by differences in the
dielectric permittivity tensor or piezoelectric tensor are examples of secondary
ferroic crystals.'* Ferroic crystals have been discussed by Newnham® and Wadhawan*
and secondary ferroic crystals in particular by Aizu,! Newnham and Cross®¢ and
Newnham and Skinner.”

Aizu®~1° has introduced point group classification schemes for ferroic crystals.
These classification schemes are based on relationships between the point group
symmetries of the domains of a ferroic crystal and the point group symmetry of
the non-ferroic or prototypic high symmetry phase of the crystal. In addition, each
class of ferroic crystals has been given a tensorial classification according to a
macroscopic tensorial physical property tensor’s ability to distinguish between the
domains. Aizu has tabulated the tensorial classification of primary ferroic crys-
tals.®!! A method to determine the tensorial classification of ferroic crystals with
respect to an arbitrary macroscopic tensorial physical property tensor has been
given by Litvin'? and used to determine the tensorial classification of non-magnetic
crystals for all physical property tensors of rank less than or equal to four.13

In the study of the mutual relationships between domains, the simplest object
one can consider is a pair of domains, i.e., a domain pair. A classification of domain
pairs via a tensorial classification of corresponding pairs of a full physical property
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tensor characterizing the domains was introduced by Janovec.'* This classification
scheme is extended here from the case of full physical property tensors, where
each domain is characterized by a unique form of the physical property tensor, to
the general case of partial physical property tensors, where more than a single
domain is characterized by the same specific form of the physical property tensor.

In Section II we review the definitions of the subgroups of the high symmetry
phase and the physical property tensor which characterize the domains. The clas-
sification of tensors and tensor pairs into classes of crystallographically equivalent
tensars and tensor pairs, which provides for a classification of domains and domain
pairs, is given in Section III. Section IV gives a relationship between the tensors
characterizing the domains and the corresponding set of distinct tensors. The central
theorem giving the classification off domain pairs for a partial physical property
tensor via a classification of ordered distinct tensor pairs is presented in Sec-
tion V. This theorem determines the number of classes and a representative ordered
distinct tensor pair of each class. The ordered distinct tensor pairs belonging to
each class are then determined. /

II. DOMAINS AND PHYSICAL PROPERTY TENSORS

Let G denote the point group of the high symmetry phase and H the point group
of one of the domains. We denote by D®, i = 1,2, . . . ,q the ¢ domains and by
H® i =12, ... ,4q the corresponding point groups of each domain. Let T denote
a spontaneous property tensor which arises at the phase transition. We denote by
T9,i =12, ... ,q the corresponding specific forms of the tensor T characterizing
each of the g domains. ‘

The number g of domains is equal to the number of left cosets in the coset
decomposition of G with respect to H

G=H+gH+...+gH (2.1
where g, = 1, g, . . . ,g, are the coset representatives of this coset decomposition.
The number g of domains can also be defined as

q = N(G)/N(H) 22)

where N(G) and N(H) denote the order of the groups G and H, respectively.

We choose domain D™ as a domain whose point group H® is equal to H. The
remaining domains are defined by relating their respective point groups H®, i =
2,3, ... ,q, to the point group HV = H via the coset representatives of the coset
decomposition (2.1). The domains D® and the point groups H®, i = 2,3, . . . ,q,
are defined by:

DY = g.D® 2.3)
H® = g.Hg, ! (2.4)
where g;, i = 2,3,. . . ,q, are the coset representatives of the coset decomposition

(2.1). It follows that the specific forms 7®, i = 1,2,. . . ,q, of the tensor T char-
acterizing each of the domains is related by the same coset representatives to 7™,
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the form of the tensor T characterizing domain D). We denote the specific form
TW of the tensor T characterizing domain D by T, and we have

0 = gT i=23,...,4 (2.5)

where g;, i = 2,3,. . . ,q are the coset representatives of the coset decomposition
(2.1).

Let G, denote the stabilizer of T in G. This subgroup Gr of G is the set of all
elements g of G which leave T invariant: -

gT =T (2.6)

Since T characterizes domain D® whose symmetry group is H, it follows that
hT = T for all elements h of H and: '

HC Gy 2.7)

The stabilizer G of the tensor T in G is identical with H or contains H as a proper
subgroup. The dichotomy of equation (2.7) distinguishes between tensorial prop-
erties which represent full and partial ‘physical property tensors. If H = Gy then
the physical property tensor T is a full physical property tensor, if H C G then
the physical property tensor T is a partial physical property tensor.

For full physical property tensors, where Gy = H, the tensors T®,i = 1,2, . . . q,
are distinct, and we have ¢ distinct domains, i.e., each domain is characterized by
a unique form of the tensor T. For partial physical property tensors, where G O
H, the tensors T®, i = 1,2, . . . ,q, are not all distinct, and we have g, < g distinct
domains. More than one domain is characterized by a single specific form of the
physical property tensor T. The number g of distinct domains is given by

qr = N(G)/N(G7) 2.8)

and the number d; of domains with the same form of the physical property tensor
T is given by:

dr = N(Gr)/N(H) 2.9)
From Equations (2.2), (2.8) and (2.9) we have that':
q = qrdr (2.10)

III. CLASSES OF TENSORS AND TENSOR PAIRS

For a given group G and physical property tensor T, a set of tensors T, i =
1,2, ... ,n,can be partitioned into classes of crystallographically equivalent tensors
with respect to G: Two tensors T® and 7 are said to be crystallographically
equivalent with respect to G and belong to the same class of crystallographically
equivalent tensors with respect to G, if there is an element g of G such that:

gT® = TO G.1)

The set of tensors which constitute a single class of crystallographically equivalent
tensors with respect to G is denoted by G(T®) where T® is a representative tensor
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of that class. All tensors of the class G(T™) can be generated by applying all
elements g of G to the representative tensor 7®. For a given group G, subgroup
H, and physical property tensor T, the tensors T®, i = 1,2, ... ,q, defined by
Equation (2.5), constitute a single class of crystallographically equivalent tensors
with respect to G denoted by G(T).

For a given group G, subgroup H, and physical property tensor T one can define
the ¢* ordered tensor pairs (70), T®), i,j = 1,2, . . . ,q. This set of ordered tensor
pairs can be partitioned into classes of crystallographically equivalent ordered ten-
sor pairs with respect to G: Two ordered tensor pairs (7%, T®) and (T, TU?)
are said to be crystallographically equivalent with respect to G and belong to the
same class of crystallographically equivalent ordered tensor pairs with respect to
G, if there is an element g of G such that

(T®, T9) = (T®, gT0)) (3:2)

that is, if 7O = g7 and T® = gTU). The set of ordered tensor pairs which
constitute a single class of crystallographically equivalent ordered tensor pairs with
respect to G is denoted by G(T®, TW) where (T®, T0) is a representative ordered
tensor pair of that class. All ordered tensor pairs belonging to the class G(T®, TW)
can be generated by applying all elements g of G to the representative ordered
tensor pair (7@, TW).

The tensor and tensor pair classification is also a classification of domains and
ordered domain pairs: Two domains D® and D® belong to the same class of
crystallographically equivalent domains with respect to G and T if the corresponding
tensors 7® and T are crystallographically equivalent tensors with respect to G.
Two ordered domain pairs (D®, D®) and (D%, DU") belong to the same class of
crystallographically equivalent ordered domain pairs with respect to G and T if the
corresponding ordered tensor pairs (T, TW) and (7%, 7UY) are crystallograph-
ically equivalent ordered tensor pairs with respect to G.

IV. DISTINCT TENSORS

Let7,®,a = 1,2, . . . ,q, denote the q; < q distinct forms of the tensor T among
the g tensors T®, i = 1,2, . . . ,q, characterizing the g domains D9, i = 1,2, . . . q.
We choose T, = T = T and define T,®,a = 2,3, ... ,q5, by

T, =gT a=23,....4r 4.1

where the g, are the coset representatives in the coset decomposition of G with
respect to G

G = Gy + &Gy + . . .8,,Gr (4.2)

The tensor T® characterizing domain D® is the distinct tensor 7,® if the it
coset g;H of the coset decomposition (2.1) of G with respect to H is contained in
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the a'" coset g,G of the coset decomposition (4.2) of G with respect to G;: From
equation (2.4)

TO = ghT = g,T
and
TO = gg,T

where g7 is an element of G, and g; is taken as an element of the a' coset of the
coset decomposition (4.2). Consequently:

T = 5T =T,®

For example, we consider the case where G = m3m, H is the subgroup 4,, and
a polar vector physical property tensor. In Table 1 we list the elements of each
coset in the coset decomposition, Equation (2.1), of G with respect to H. There
are ¢ = 12 cosets and the coset representatives g, i = 1,2, ... ,12, are chosen
as the first element in each row of coset elements in Table 1. In Table 11, we index
each of the 12 cosets, list the coset représentatives g;, the point groups H® defined
by Equation (2.4), and the polar vector tensors T® defined by Equation (2.5).

In Table III, we list the elements of each coset in the coset decomposition,
Equation (4.2), of G with respect to the stabilizer G, = 4.mym,, of T in G. There
are gy = 6 cosets and the coset representatives g,, a = 1,2, . . . ,6, are chosen as
the first element in each row of coset elements in Table III. In Table IV, we index
each of the 6 cosets, list the coset representatives g,, and the distinct tensors T,®
of Equation (4.1). The correlation between the distinct tensors 7, and the in-
dividual domains’ characteristic tensors 7 is also given: The indexes i of tensors

TABLE 1

Coset decomposition of G = m3m with
respect to H = 4x. Each row lists the
elements of a left coset g;H, i =

1,2, . ..,12. We choose the coset
representatives g; as the first element in
each coset.

1 2 4 &
1 m, 4, 43
2, 2, 2, 2.
m, m, m,, my.,
2., 4 3 352
2, 4, 35z 3,z
2, 4 3%, %
2, 4, %z 3
m,, Zi 3. 35
ms, Zy §Eyz 3!)’5
mg, 42 3%: jgyz
m,, 3, B 3.
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TABLE II

Listed are the indexes i of the cosets of the coset
decomposition of G = m3m with respect to H =
4x, coset representatives g, the i domain’s
symmetry group H®, and the specific form 7® of
the polar vector tensorial property tensor T.

i g H® T®
1 1 4, (A,0,0)
2 1 4, (—A,0,0)
3 2, 4, (—A,0,0)
4 mZ 4X (A ’0 !0)
5 2. 4, (0,0,A)
6 2, 4, 0,0,—A)
7 %, 4, (0,—A,0)
8 2, 4, (0,A,0) ~
9 m,, 4, (0,0,—A)
10 ms, 4, (0,0,A)
11 ms, 4, (0,A,0)
12 m,, 4, (0,—A0)

T® identical with the distinct tensor 7,® are given in the last column of row “a”
of Table IV. These have been determined by finding all cosets g;H of the coset
decomposition of G with respect to H, Equation (2.1) and Table I, contained in
the coset g,G of the coset decomposition of G with respect to G, Equation (4.2)
and Table III. For example, for a = 1, i = 1,4, since both cosets g,H and g, H,
see Table I, are contained in the coset g,G, see Table III.

V. DISTINCT TENSOR PAIRS

To each domain there corresponds a distinct tensor T,® and to each ordered
domain pair there corresponds an ordered distinct tensor pair (7,®,T,®). All

TABLE III

Coset decomposition of G = m3m with respect to the stabilizer G, = 4,mm,, of
the polar vector T in G. Each row lists the elements of the left cosets g,Gr, =
1,2, ..., 6. We choose the coset representatives g, as the first element of each
coset. Dashed lines separate sets of cosets which constitute double cosets of the

double coset decomposition of G with respect to G;. We choose the double coset

representatives g, as the first element of each double coset.

1 2x 4x 4§ mz my m}'Z my z
1 m, 4x 43 2: 2}' 2)’1 2;1
2 - -
2 & B 3 g me 3 3
222 4y 3;‘:yz 3xy2 ;, m,, xyz 3;5zyz
2 2 - 3 =
25}’ 43 3xyz 3J'cyz my, 4, 33}:1 3,,),1
2 35
2xy 4: 33)’2 3xyz m Iy 43 3372 3 Xyz
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TABLE IV

Listed are the indexes “a” of the cosets of the coset
decomposition of G = m3m with respect to G =
4,m,m,,, the coset representatives 2., the corresponding
distinct tensor T, and the indexes of the cosets g of
the coset decomposition of G with respect to H = 4,
contained in each coset g,Gr of the coset decomposition of
G with respect to G.

a . TP i
1 1 (A0,0) 1,4
2 1 (=A0,0) 2,3
3 2. (0,0,A) 5,10
4 2z (0,0,—A) 6,9
5 23 (0,—A,0) 7,12
6 2,, (0,A,0) 8,11

ordered distinct tensor pairs can be partitioned into classes of crystallographically
equivalent ordered distinct tensor pairs as are all ordered tensor pairs in Sec-
tion III. Two ordered distinct tensor pairs (T,®,T,®) and (T,*, T,®") are said
to be crystallographically equivalent with respect to G, and to belong to the same
class of ordered distinct tensor pairs, if there is an element g of G such that

(T®, T,®) = (8T, gT,*") 5.1

that is, if 7,® = gT,/" and T,® = gT,®.

The number of classes of ordered distinct tensor pairs (T,®, T,®) is the same
as the number of classes of tensor pairs (7, TW). This number of classes is
determined by the following theorem:

Let G be the point group of the high symmetry phase, H the point group of a
domain, and T the specific form of the physical tensor T invariant under H. The
number N of crystallographically equivalent ordered distinct tensor pair classes is
equal to the number of double cosets in the double coset decomposition of G with
respect to Gt

G = G;eGT + Gng(dc)GT + ...+ GTgN(dC)GT (5.2)

where Gy is the stabilizer of T in G and g, k = 1,2, ... N, are the double
coset representatives. A representative ordered distinct tensor pair of each class of
crystallographically equivalent ordered distinct tensor pairs is given by (T,g,99T),
k=12, ..,N

Proof: In each class G(T,®, T,®) there is at least one ordered distinct tensor
pair of the form (7, T,(): From Equation (4.1) T,® =g,T, and (g,~ T @ g, 1T, ®)
is also an ordered distinct tensor pair in the class G(T®, T,®). It follows that

@ T8 'T®) = . '8.T.8.7'8T)
(T.g.877)

= (T.g.D)

(T, T/9)
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where g,7' g, =g.gr and g is an element of G,. Since the number of double
cosets in Equation (5.2) is less than or equal to the number of cosets in Equation
(4.2), the number of classes is then N < 471, less than or equal to the number of
distinct tensors T,). The number N of classes is equal to the number of classes of
ordered distinct tensor pairs of the form (T, T,©).

Two ordered distinct tensor pairs (7, T,) and (T, T,") belong to the same class
of ordered distinct tensor pairs if and only if there is an element g of G such that
gT = T and gT,*) = T,, that is, if and only if g is an element of G, and T,®
and T, belong to the same class of ordered distinct tensors G,{T,®). Conse-
quently, the number N of classes of ordered distinct tensor pairs equals the number
of classes G{T,/®) in a partition of all distinct tensors 7, into classes with respect
to Gr. The class G(T) contains all distinct tensors T,®. Consequently G(T) can
be partitioned into a sum of the N classes G{T,®):

G(T) = GHT) + G(T,/?) + ... + G(T™) (5.3)

The elements of G which when applied to T give rise to distinct tensors of the class
G(T/®) are found by noting that:

GH(T®) = Go@.T) = G2T) = G18.GH(T) (5.4)

That is, the set of elements of the double coset G,g,G generate from T all distinct
tensors of the class T7(T,®). Consequently, there is a one-to-one correspondence
between the double cosets of the double coset decomposition of G with respect to
Gr and the classes G7(T,®). The number N of crystallographically equivalent
ordered distinct tensor pairs is then equal to the number of double cosets in the
double coset decomposition of G with respect to Gy given in Equation (5.2). It
follows from Equation (5.4) that since g, is an element of the double coset
G181 *)Gr, that a representative ordered distinct tensor pair of each class is given
by (T,8,99T) for k = 1,2, ... ,N. g.e.d.

The above theorem is independent of which domain’s point group is chosen as
the subgroup H of G. The number N of classes of crystallographically equivalent
ordered distinct tensor pairs remains the same, however the theorem’s represent-
ative ordered distinct tensor pairs may change: Let H' # H be a point group of
a domain. By Equations (2.4) and (2.5) we have that H' = g,Hg, *and T' = g,T
for some specific value of the index i. It follows that G, the stabilizer of 7" in
G, is G;' = g,G.g . By rewriting Equation (5.2) as G = g;Gg,~! one obtains
that the double coset decomposition of G with respect to G, contains N double
cosets with double coset representatives g, = g,g,(%)g. =1 The representative
ordered distinct tensor pairs

(T".899T') = (g;T.88:“g: '¢.T)
= g(T,8.%T)

that is, for each k, (T", g,“9'T") and (T,g,“9T) are ordered distinct tensor pairs
belonging to the same class of crystallographically equivalent ordered distinct tensor
pairs. Consequently, replacing the subgroup H of G in the above theorem by the
conjugate subgroup H' of G leads to a change in the theorem’s representative
ordered distinct tensor pair of each class.
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As an example, we take the case where G = m3m, H = 4,, and a polar vector
property tensor T, considered in Section IV. The stabilizer of T in G is G, =
4,m,m,,. The coset decomposition of G with respect to G, Equation (4.2), is given
in Table III. The double coset decomposition of G with respect to Gy, Equation
(5.2), is also given in Table ITI'*: Dashed horizontal lines separate sets of cosets
of Equation (4.2) which are contained in the same double coset of Equation (5.2).
From Table III, we have that there are 3 double cosets in the double coset de-
composition of G with respect to G;. We choose the first element of each double
coset in Table III as the double coset representative g,(4®). In Table V we index
the double cosets, give the double coset representatives g,), and give the rep-
resentative ordered distinct tensor pair (T,g,9T) for each of the N = 3 classes
of crystallographically equivalent ordered distinct tensor pairs.1®

Since there are q; = 6 distinct tensors in this case, see Table IV, there are
gr* = 36 distinct ordered tensor pairs which are classified into three classes of
crystallographically equivalent distinct ordered tensor pairs. A distinct ordered
tensor pair (7,,T,®) belongs to the class whose representative distinct ordered
tensor pair is (7,8,9T) if the product of the coset representatives g, g, is an
element of the k™ double coset of the double coset decomposition of G with respect
to G

(Td(a)) Td(b)) = (gaTagb T)
= _g—a(T’ga_lng) ‘
Writing g,7'g, as the element g;8,%Yg,’ of the double coset decomposition, we
have '
= 8T.8:8:“8'T)

= B.8r(gr 'T.8%'T)
and since T is invariant under elements of G,

(T, T,®) =2.8K(T,8.9T)

and (T,®,T,®) belongs to the class whose representative ordered tensor pair is
(T,89T). In Table VI we have tabulated the ordered distinct tensor pairs (7,®,7,®)
belonging to each class of crystallographically equivalent ordered distinct tensor

TABLE V

Listed are the indexes k = 1,2,3 of the double coset
decomposition of G = m3m with respect to G, =
4,m,m,,, the double coset representatives g{*, and the
representative ordered distinct tensor pair (7,g{%T) of
each class of crystallographically equivalent ordered
distinct polar vector tensor pairs.

k gzdc) ( T, gidc) T)

1 1 ((A,0,0,( A,0,0)
2 2z ((Ay 0) 0)’(_A’ 0! O))
3 2. ((A,0,0),( 0,0, A))
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TABLE VI

Listed are the indexes k = 1,2,3 of the classes of
crystallographically equivalent ordered distinct polar
vector tensor pairs along with the pairs of indexes
(a,b) of each ordered distinct tensor pair (T®,T®)

belonging to each class.

(a,b)

(1,1), 2.2), (3,3), (4,4), (5,5), (6,6).
(1,2), (2,1), (3,4), (4,3), (5,6), (6.5).
(1,3), (14), (1,5), (1,6), (2,3), (2,4).
g,i), (2:6), (3.1), (3,2), (3,5), (3,6).
(5.3

W= X

1), (4.2), (4,5), (4,6), (5,1), (5,2).
3), (5.4), (6,1), (6:2), (6,3), (6,4).

pairs, by listing the pairs of indexes (a,b) alongside the corresponding index k of
the representative ordered distinct tensor pair (7,g,99T). We note that for this
particular case of a polar vector, the three classes of crystallographically equivalent
ordered distinct tensor pairs can be interpreted as the three classes of parallel, anti-
parallel, and perpendicular polar vector pairs. '
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