SPATIAL DISTRIBUTION OF LAYER AND ROD SYMMETRIES
- IN A CRYSTAL
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A method is established for determining the spatial distribution of layer and rod
group symmetries in a crystal. This method is based on the use of the so-called
scanning theorem and scanning groups - equitranslational subgroups of the space
group of the crystal, each of them uniquely being defined by a chosen set of paral-
lel planes or lines. Classifying directions of planes and lines into orbits under the
action of the point group of the space group in question, one applies the scanning
theorem only to a chosen representative from each orbit.

In analogy with Wyckoff positions, planes and lines which transect a crystal are
classified into orbits under the action of the crystal’s space group; the layer and
rod groups corresponding to each such orbit are conjugate subgroups of the space

group.
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Given a crystal of a specific space group symmetry we pose the following problem:
Determine the layer group and rod group symmetries of, respectively, all planes and lines
which transect the crystal. This problem is of interest in the consideration of domain walls,
twin boundaries '3, and dislocations %, and in general, in the study of planar and linear
defects. Hermann ® has considered a more general problem of determining all subgroups of
a given space group. More recently, Wondratschek ¢ and Kopsky and Litvin 7 have dealt
with this problem. We shall sketch here a systematic group theoretical approach to this

- problem using so-called scanning groups and the scanning theorem 8. An example is given

for a crystal with space group symmetry P4;/mbec(DL2). A complete tabular solution for all
space groups is to be given elsewhere °.
Let G = {G,Tg, P,ug} denote a space group, where G is the point group, Tg

the translational subgroup, P the origin, and a mapping ug : G — V/(3) defines the




set {ug(g),9 € G} of non-primmitive translations associated with the elements g of G.
Consider a crystal of space group symmetry G and a set of parallel planes (P + 7, V1) and

a set of parallel lines (P + 71, V2) where V; and V; are respectively a.two-dimensional and

one-dimensional subspace of V(3) spanning both together just V(3). Under the scanning
of layer groups with a plane orientation V; along the line (P, V,) we will understand the
determination of the manner in which the layer group changes as we shift the plane along
the line (P, V;). Similarly, the term of the scanning of rod groups with a line orientation
V; along the plane (P, V) will stand for the determination of the manner in which the rod
group changes as we shift the line on the plane (P, V}).

Let H; be the largest subgroup of G which leaves V] invariant. The scanning group for

* the space group G and planes of orientation V] is the equitranslational subgroup M, of G:

H; = {H,, T, P,ug|H, }, where a mapping ug,y, is the restriction of the mapping ug to
the subgroup H; of G. The scanning theorem states that the scanning of layer groups with
the plane orientation V; is identical for the space group G and for the scanning group H 2.

For G = P4;/mbe(D}}) and Vi = V(b,c) and V; = V(a), the scanning group is
H; = Pbam(D3,). Scanning the layer groups with this planar orientation, perpendicular to
the a axis, one determines:

Shift x: 7, = xa Layer Group

X (L11)pm11 Pzym,l1l
0,1/2  (L14)p2/mll  p,,2/m11  (T1)
1/4, 3/4 (L28)pm21b pz,ym221ybx

where in the first column is the position of the plane along the scanning direction, the x-axis
of the space group G. The second column gives the layer group in the numbering and notation
of reference (9), and the third column gives the layer group with subindices indicating the
corresponding axes in the space group G. Scanning for rod groups of the lines of orientation
V(a) one determines:

Shift (y,z): m = yb + zc Rod Group

(v,2) (R1)pl1l pxlll

(%:0),(1/2) - (R4)pm11 pxm,11

(0,2),(1/2,2) (R3)p211 Pe2a11
(1/4,2),(3/4,2) (R5)pcll pxCyll (T2)
(0,0),(1/2,0),

(0,1/2),(1/2,1/2) (R6)p2/mi11 Px2,/m,11
(1/4,0),(3/4,0),

(1/4,1/2),(3/4,1/2) (R17)pmc2, PxMyCy21x

In analogy with Wyckoff positions, the planes and lines which transect a crystal are classified
into orbits, sets of equivalent planes and lines. We write the coset decomposition




G = H] + g2H1 + + ngl-

For planes, for example, we have a set of planar orientations V(a;, b;) = ¢;H;V(a;, b;) with
scanning groups H; = {H;, Tg, P,ugn,} conjugated to H; in' G where H; = gH, g7, With
the use of the above coset representatives the space group G can analogously be written as a
union of the left cosets {g; | ug(gi)}H1, i=1,...,p . Applying successively all the representa-
tives {g; | ug(gi)} to all planes involved in the suborbit in H; one easily obtains the whole
orbit of planes in G. ,

In the above example G = Dy, Hy = Day, p = 2, g2 = 4,, ug(92) = ¢/2, Hy = Dy,
and H, = {H;,Tqg, P,ugn,} = Dj,. Consequently, the plane orientations V(b,c) and
V(a,c), perpendicular to the a and b axes, respectively, constitute a single orbit, and the
results of scanninng of planes of orientation V'(a,c) can be determined from Table 1 above
by rotating (in this case) the shift vectors and conjugating the corresponding layer symmetry
groups by the element {4, | ¢/2}. One has:

Shift y: 7 = yb Layer Group
y (L11)pmll Pzxm,ll
0,1/2 (L14)p2/m11 Pz,x2,/m 11 (T3)
1/4, 3/4 (L28)pm2;b PzxMz21by

Analogously, line orientations V(a) and V(b) constitute an orbit, and the results of scanning
of rod groups of lines of orientation V(b) can be derived from Table 2. One obtains:

Shift (x,z): 1 = ya + zc Rod Group

(x,2) (R1)p111 pyl11

(x,0),(x,1/2) (R4)pm11 pym,11

(0,2),(1/2,2) (R3)p211 - Py2,11

(1/4.2),(3/4,2) (R5)pell Pyl (T4)

(0,0),(1/2,0),

(0,1/2),(1/2,1/2) (R6)p2/mll Py2./m,_11

(1/4,0),(3/4,0),

(1/4,1/2),(3/4,1/2) (R17)pmc2, PyM;Cx21y
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