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We divide pairs of domain states into three classes: completely, partially and non-transposable domain
pairs. We show that two groups can be associated with a domain pair: the twinning group and the
symmetry group of the pair. The twinning group determines which secondary order parameters are the
same and which are different in two domain states of a domain pair. The symmetry group of a trans-
posable domain pair allows one to express the order parameters and irreducible constituents of material
property tensors in such a way that their components in two domain states are either the same or differ
only in the sign. The analysis of domain distinction is illustrated on a simple example.
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1. INTRODUCTION

Domain bulks (domain states) of two domains simultaneously observed by a single
apparatus can exhibit different properties although their crystal structures are the
same and differ only in their spatial orientation. Which properties are the same
and which are different depends on the symmetry of one domain state and on the
spatial relation between both domain states. We have shown that for all non-
ferroelastic domain pairs' and for a class of ferroelastic domain pairs called com-
pletely transposable? this information can conveniently be expressed by a dichro-
matic (black and white) crystallographic point group and that the tensor components
distinct in two domain states differ only in the sign.

In this paper we indicate how the analysis can be extended to other domain
pairs. First, we divide domain pairs according to their internal symmetry expressed
by possible transpositions of domain states. Then we discuss the distinction of
domain states in terms of the primary and secondary order parameters of the phase
transition and demonstrate the significance of so called twinning group in distin-
guishing domain states according to the secondary order parameters. Finally, we
show how the symmetry of a domain pair can be utilized in domain distinction.
The exposition is accompanied by a simple example which illustrates the main steps
of the analysis. Similarly as in the preceding papers'-? we confine ourselves to the
continuum description and point groups symmetry.
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2. SYMMETRY GROUP AND TWINNING GROUP OF A DOMAIN PAIR

We consider crystalline domains which arise in a phase transition from a parent
(ordered) phase of symmetry G to a distorted (disordered) phase of symmetry F,
where F is a subgroup of G, F < G. We shall refer to the bulk structures of these
domains in polydomain samples as dpomain states. Several disconnected domains
of possibly different shape can have the same domain state. Consequently, domain
states of a polydomain sample represent structures that appear in the sample,
irrespective of in which domain and irrespective of the domain’s shape. We shall
confine ourselves to single domain states which we shall denote S, S,, . . ., S,.
Their number n equals the index of Fin G, n = |G| : |F|, where |G| and |F] is
the number of symmetry operations of G and F, respectively. Single domain states
are symmetrically equivalent in the group G, i.e. each two domain states can be
related by an operation g from G.

Most often, domains are distinguished by their bulk properties, i.e. according
to their domain states. Then the problem of domain distinction is reduced to the
distinction of domain states. To solve this task we have to describe in a convenient
way the distinction of any two of all possible n domain states. For this purpose we
use the concept of a domain pair denoted by {S;, S;} and defined as an unordered
set consisting of two domain states S; and S;.

Let us first examine the symmetry of a domain pair {S;, §;}. If F; and F; are the
symmetry groups of §; and §;, respectively, then any operation f that belongs both
to F;and to F;, f € F; N F; = F, is a symmetry operation of {S;, S;}. If, moreover
there exists such 8 €G whlch transposes (interexchanges) S; and S;, g% S, =
g;S; = S, then all operations from the left coset g} F; do so as well (the asterlsk
denotes operations interexchanging two domain states). These operations are also
symmetry operations of {S,, S;} since for unordered sets (domain pairs) {S;, S;} =
{S;, S;}. Thus the symmetry group J; of the domain pair {S;, S;} can be, in a general
case, expressed in the following way?:

J; = F; + giF, €))

Domain pairs can be classified according to their symmetry J;. Pairs for which
g; exists we call transposable (or ambivalent') domain pairs, pairs for which an
interexchanging operation g cannot be found are called non-transposable (or polar')
domain pairs. The symmetry of a non-transposable pair is reduced to F;.

All operations that transform S, into S; (irrespectively how they transform S;)
are contained in the left coset g;;F; since g;F; S = g;S; = ;. If{S;, S;}isa transposable
pair and, moreover, F; = F; = F; then all operatlons of the left coset g,;F; transform
simultaneously §; into S. We call such pairs completely transposable domain pairs.
The symmetry group J; of a completely transposable pair {S;, S;} is

Jy = F; + g;F;. @)

If F;, # F;then F; < F; and the number of transposing operations of a transposable
domain pair is smaller than the number of operations transforming S, into S;. We
call, therefore, such pairs pamally transposable domain pairs.

The transformation properties of a domain pair {S;, S; ;} are described by the
symmetry group F; of S; and by all operations g;F; that transform S; into S;. The
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smallest subgroup K;; of G that contains both F; and g,F; will be called the twinning
group of the domain pair {S,, S;}.* For the completely transposable pairs the union
of F; and g,F; forms already a group, K;; = F; + g; F;, which is identical with the
symmetry group J; of the domain pair (see Equation (2)), K;; = J;;. For the partially
transposable and non-transposable domain pairs the group K; comprises besides
F; and g;F; further left cosets and can be written in the following form>*
K;=F, + g;Fi + -+ + guiF,. 3)

The twinning group K;; plays a basic role in the symmetry analysis of domain pairs.
i
(e
X

2y rm
(%) -[2—
ms

"

I‘3

m

y

h

l 2,
FIGURE 1 Exploded view of the single domain states of the distorted phase resulting from the phase
transition with the symmetry reduction 4/mmm  2mm. Four single domain states 1, 2, 3, and 4 are
represented by the solid rectangles, the arrows correspond to the spontaneous polarization (primary

order parameter of the transition). The dashed square in the center represents the parent phase. Single
domain states are related by depicted symmetry operations of the parent phase.

(1,3}
(1,2}
[m; [m, my
"ﬁ\y\ 3
l 2 w142 | 'y
1 1

2, l

2,

FIGURE 2 Graphical representation of domain pairs {1, 2} and {1, 3} depicted as two superimposed
domain states. Symmetry operations marked by an asterisk interexchange the two domain states of the
domain pair. :
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To illustrate our exposition we consider a phase transition in which the symmetry
group of the parent phase is G = 4/mmm and the domain state S, in the distorted
phase has the symmetry F; = 2,m,m,. This is a proper (full) ferroelectric and
improper (partial) ferroelastic transition with spontaneous polarization as the pri-
mary order parameter and spontaneous deformation as the secondary order pa-
rameter. The distorted phase can appear in n = |4/mmm| : |2mm| = 16:4 = 4
single domain states §; = 1, S, = 2, §; = 3, S, = 4 which are presented in a
graphical form in Figure 1. From these domain states one can form six non-trivial
domain pairs which can be divided into two classes of crystallographically equivalent
pairs. The representative domain pairs of these classes are {1, 2} with perpendicular
polarization and {1, 3} with antiparallel polarization. Both these domain pairs are
represented graphically in Figure 2 as superpositions of corresponding domain
states.

The domain pair {1, 2} is partially transposable since there exist operations g}
interexchanging domain states 1 and 2, e.g. m},, and F, N F, = 2,mym,Nm,2,m,
= {m,} (see Figure 2). The symmetry group of this domain pair is

Jl2 = {mz} + 2:y{mz} = 2xymiymz' _ (4)
It is easy to show that the twinning group of this domain pair equals
Ky, ={2mm,} +4-2.mm}+ -2 mm,} + #-2,m,m,} = 4lmmm. (5)

On the other hand, the domain pair {1, 3} is a completely transposable domain
pair since there exist interexchanging operations gf;, e.g. m}, and F, = F, =
2,m,m, (see Figure 2). The symmetry group and the twinning group of this pair
are, therefore, identical and equal

"13 = K13 = {2xmymz} + m:.{zxmymz} = mxmymz‘ (6)

3. ORDER PARAMETERS AND DOMAIN DISTINCTION

Generalizing slightly Aizu’s concept of full and partial ferroelectric (ferromagnetic,
ferroelastic) phases® one can divide quantities (material properties) of domain states
into three categories:

1. Quantities that are the same in all domain states. If we denote by vy and
¥Y the value of such a quantity vy in the domain state S, and S;, respectively, then
¥# = 9 for all domain pairs {S;, S;}.

2. Quantities that are different in all domain states. A quantity ¢ will belong to
this category if ¢ # ¢ for all non-trivial domain pairs {S;, S;}, i # j.

3. Quantities that are different in some but not in all domain pairs. The quantity
A will belong to this category if there exist at least two different domain pairs
{Si» S;} and {S,, S,,,} such that A\ # A\D and A\ = \™ i + j m # I.

To which category certain property \ belongs is determined by a group L, called
the stabilizer of A). This is a group which consists of all operations g € G that
leave A invariant,

L; = {g € G|g\® = O}, ™

If L, = G then X = v is an invariant of G and belongs to the first category. If
L; = F,, where F; is the symmetry group of the domain state S;, then \ belongs to
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the second category and is identical with the primary order parameter® ¢ of the
transition G \y F,. Finally, if the stabilizer L, is an intermediate group,

F, <L, <G, (8)

then \ belongs to the third category and can be identified with the secondary order
parameter® of the transition G \y F; (and the primary parameter of the transition
G N L).

As it is shown elsewhere,* the twinning group K;;, introduced in the preceding
section, determines whether \ is the same or different in S; and S; of a chosen
domain pair {S;, S;}. If the stabilizer L, contains the twinning group K as its
subgroup, i.e. if

K, =L, €]
then X is the same in both domain states, A() = A()_ In the opposite case, i.e. if
L,NK; # K, (10)

the domain states S; and S; differ in the secondary order parameter A, A©) # (),

In our example there is just one intermediate group L, = m,m,m, that fulfills
condition (8). For the representative domain pair {1, 2} with K,, = 4/mmm the
condition (10) is fulfilled, hence the domain states 1 and 2 differ in the secondary
order parameter A. On the contrary, for the pair {1, 3} with K;; = m,m,m, the
condition (9) is obeyed and the secondary order parameter \ has, therefore, the
same value in both domain states 1 and 3.

The transformation properties of the quantities vy, ¢, and \, respectively, are
specified by the representations D' (one-dimensional identity representation), D¢
and D* of the group G. The dimension d, and d, of D® and D* determines the
number of components of the order parameter ¢ and A, ¢V = (¢, @i,

o)), N = AP, NP, L, D), respectively. The representations D* and D* of
the order parameters can be either irreducible or can be decomposed into a sum
of irreducible representations,

= > meD, @11)

where D’ are irreducible representations of G and m¢ are their multiplicities in
D*. Similar decomposition holds for the reducible representation D* of the sec-
ondary order parameter \.

In the tables of Reference 7 we find that the primary order parameter ¢ of the
phase transition 4mmm N 2,m,m, transforms according to the 2-dimensional
irreducibie representation D¢ = E, and that in the domain state 1 the second
component ¢{ = 0. The representation D* corresponding to the intermediate
group L, = m,m,m, is the one-dimensional representation B,, which defines the
transformation properties of the only secondary order parameter \.

The order parameters ¢ and A can be associated with linear combinations of
material property tensor components that transform according to D¢ and D* (e.g.
in Reference 7 such low-rank tensorial basis functions that transform according to
D are given for all point group symmetry reductions). In another approach, which
is described in detail elsewhere,® the material property tensors are decomposed
into so called irreducible constituents which transform according to the irreducible
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representations of G and can be, therefore, associated with order parameters. An
irreducible constituent of a tensor can be labelled by the symbol of the correspond-
ing irreducible representation; in the decomposition of some tensors several con-
stituents can appear that transform according to the same representation. The
number of components of a D'-irreducible constituent equals the dimension of the
corresponding irreducible representation D'. The components of an irreducible
constituent can be expressed as linear combinations of the usual tensor components.

This way of expressing tensors is appropriate for discussing tensor distinction of
domain states. To illustrate this point we turn again to our example. In Table I
three types of tensors, namely V, [V?], and [V?]V, are expressed in terms of
irreducible constituents. It can be shown that two A, -irreducible constituents ap-
pear in the tensor T ~ [V?] and that their values are A = 3(T,, + T») and B =
T;;. These constituents have the same value in all four domain states. One E,-
irreducible constituent appears in the polar vector T ~ V (polarization) and its two
components correspond to the first two components T, and T, of T ~ V with T,
= 0 in the domain state 1 (in Table I the non-zero value of components is denoted
by P). The tensor T ~ [V?]V consists of five E,-irreducible constituents that cor-
respond to the following couples of tensor components: (T, T5,), (Ts, Ty3), (Ts,,
T3,), (Ts3, Ty3), and (T,, Ty,). The values of the non-zero components of these
constituents are in Table I denoted by Q, R, S, U and W, respectively. Each of
these couples can be associated with the primary order parameter ¢ and is, there-
fore, different in two domain states of any non-trivial domain pair. The B,,-irre-
ducible constituent is associated with the secondary order parameter A. It appears
once in the tensor T ~ [V?], where its value C = (T,, — T,).

TABLE 1

Tensor distinction of representative domain pairs {1, 2} and {1, 3}. Tensor designation:
V ... polarization, [V?] . . . deformation, permittivity, [V*]V . . . piezoelectricity, electrooptics.
A, B .. . values of the A, -irreducible constituents, C. . . value of the B, -irreducible constituent,
P,Q,R, S, U, W...values of the E, -irreducible constituents.

tensor domain states |
1 | 2 ] 3 |
(P,0,0) ©,2,0) _
v (Py+ P P, = Pa,0) ! (Py = Puy Prt Pu,0) I (-£,0,0) I
A+C 0 0 A-C 0 0 A+C 0 0
vy 0 A-C 0 0 A+C 0 0 A-C 0
o o B 0o o B o o B
Q 0 0 0 RO
RO o 0 Qo - S
S 00 0 5 o S 0 o
0 0 0 00U o o o |
0 0 VU 0 00 0 o0 -U
oW o W oo o W o
viv
+Q. Ry-R. 0 Qo ~Q. Ry+R, 0
ny‘f‘ﬂa 01°Qa 0 R-v‘R' Qq"'on 0
s'1+su sv'sc 0 S‘v‘st Sq+S. 0
0 0 U,-U. 0 0 U+l
0 0 U,+U. 0 0 U-U
W,-W, Wy+W, 0 W,+W, Wy-W. 0

The following relations hold: P, = P, = 1P, Q, = Q. = 1Q, R, = R, = 1R,
sv =5, = ‘2'5. U-y =, = %U, W, =W, = gw.
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Let us now consider a domain pair {S;, §;}, where S; = g,S5;. The value of the
order parameter ¢ (and of the correspondmg 1rreducnble components) in the
domain state S; can be calculated from the value ¢ in the domain state S; according
to the following formula

o = 2 Dg (g,,)cp(') I=1,...,d, (12)

The secondary order parameter A and the corresponding irreducible constltuents
transform according to a similar formula.

In our example the 2 X 2 matrices of D¥(g) = E,(g) appearing in the transfor-
mation formula (12) can be easily constructed for the vector (P,, P,). All E,-
irreducible constituents transform in the same way, e.g. when one switches from
the domain state 1 to domain state 2 the non-zero components of the tensor [V2]V
are flipping in the same way as the non-zero component P of T ~ V (see Table
I). The advantage of expressing tensor distinction in terms of irreducible constit-
uents is obvious: to calculate the value of the tensor T® ~ [V?]V in the domain
state 2 from the value TV ~ [V?]V in domain state 1 according to usual formulae
for tensor transformations one has to construct a 18 x 18 trarisformation matrix
whereas only one 2 X 2 matrix is needed when the tensor T ~ [V?}V is expressed
in terms of the irreducible constituents.

The representation D* = B, is one-dimensional, therefore the parameter A and
corresponding irreducible component are either constant or have different sign in
two domain states. Thus, e.g. for the tensor T ~ [V?] in our example the trans-
formation from the domain state 1 to domain state 2 is expressed just by the change
of the sign of C (see Table I).

4. ROLE OF DOMAIN PAIR SYMMETRY

Distinction of domain states by order parameters or by irreducible constituents can
be further simplified by making use of the symmetry group J;; of the domain pair
{S, S,} defined in Section 2. For a transposable domain pair {S,, §;} we can associate
with the group J;; a virtual phase transition J; \» F;;. The order parameter a of this
transition, whlch we shall call the domain pair parameter, is different in S; and ;.
Since the index F; in J; equals 2, the domain pair parameter a differs just in the
sign, a¥) = —a(') The representation D* of J;;, according to which a transforms,
is a one-dimensional alternating representation of J; which subduces in F; an
identity representation A,, (D* | F;) = A,. If we restrict the representation D*
to the group J; then this subduced representation (D* | J;) can be decomposed
in the following way,

(D* | J;) = m¥D' + m¥D* + mg’D" + ...,
(D> | Fy) = A, (D? { F) + 4,, (13)

where D' is the identity representation A, of J; and DP is a representation of Jy
that does not become the identity representatlon A, in F; The multiplicities
m$’, m& and mg’ give the number of the components of ¢ that are the same, that
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have opposite sign and that equal zero in domain states S; and §;, respectively.
Besides DP other irreducible representations can appear in (13) which do not
subduce A, in F; and produce zero components similarly as DP. There is always
m¥ > 0.

Similar decomposition holds for the representation D* according to which trans-
forms the secondary order parameter A\,

(D* | J;) = m’D' + m¥D* + myD® + . .., (14)

with similar meamng of the multiplicities m}’, m)’ and mg’ as for the primary order
parameter ¢. If J; < L,, then the multiplicity m}’ = 0, i.e. A\ = A0 If, on the
other hand,

L NJ; # Jy (15)

then the multiplicity mY’ > 0, i.e. at least some of the components of A and of \-
irreducible constituent(s) have opposite sign in domain states S; and ;.
For the domain pair {1, 2} of our example the decomposition (13) reads

(Eu l 2xymfymz) = Al + Bl’ (Bl l mz) = A” (16)

where A’ is the identity representation of the group m,. From these relations it
follows that, e.g. the 2-dimensional E -irreducible constituent of the polarization
P can be decomposed into two components P, and P,, where the first one is constant
and the second one has opposite sign in domain states 1 and 2. This decomposition
has a simple geometrical meaning: P, is the projection of P into the [110] direction
and P, into the [110] direction (see Flgure 2). The polarization P expressed in this
way is given in the second row of Table I. We see that the flipping of the non-zero
component P of P is replaced by the sum P, + P, and the difference P, — P,.
The tensor [V2]V can be decomposed in the similar manner (see the last row of
matrices in Table I).

The decomposition (14) of the representation B,, according to which transforms
the secondary order parameter X\ is

(Blg l 2xymiymz) = Bl, (Bl ‘l’ mz) = A" (17)

i.e. my = 1. Consequently, the value C of the B, -irreducible constituent in the
tensor [V?] has opposite sign in domain states 1 and 2 (see Table I).
For the domain pair {1, 3} the decomposition (13) yields

(Eu l mxmymz) = BSu + BZu’ (B3u l 2xmymz) = Al,
(BZM l 2x"“y'nz) = BZ’ (18)

where A, and B, are irreducible representations of the group 2,m,m.. From this
decomposition we conclude that the value of the first component of the polarization
has opposite sign in domain states 1 and 3 and the second component is zero in
both of them. Similar conclusion holds for the values of the E, -constituents in the
tensor T ~ [V?]V (see the last column in Table I).

From the decomposition (14), which reads (B, { 2,m,m.) = A,, it follows that
the value C of the B, -irreducible constituent remains the same in domain states
1 and 3. This also follows directly from the equality L, = m,m,m, = J;.

Our example illustrates a general feature of tensor distinction in transposable
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domain pairs. Material property tensors can be decomposed into two parts: one is
the same and the other differs only in sign in the two domain states of a transposable
domain pair.
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