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The method of determining the tensor distinction of domains resuiting from
non-ferroelastic phase transitions from a high symmetry phase of symmetry G
to a low symmetry phase of symmetry Fof indexn = 2in G (V. Janovec, L.
Richterove, and D.B. Litvin, Ferroelectrics 40, 95 (1993)) is extended to the
genaral case of index n > 2. For all cases where n > 2, a tabulation is given
of important physical ‘property tensors which can distinguish between domams
This includes both physical property tensors associated with a primary order
parameter which can distinguish between afl domains, and those associated
with secondary order parameters which can distinguish between some but not
all: domalns

1. INTRODUCTION

We consider crystalline domains which arise in a phase transition from a high
symmetry phase of symmetry G to a low symmetry phase of symmetry F. We
refer to the buik structures of these domains in polydomain samples as domain
states and denote these domain states by S,, S,, ... , S, . Domains are most
often distinguished by their bulk properties, i.e. accordmg to their domain
states. Consequently, the tensor distinction of domains by physical property
tensors is equivatent to the tensor distinction of the corresponding domain
states. For the purpose of determining the tensor distinction of any two domain
states, the concept of a domain pair {S, S} was introduced (Janovec, 1974).
Domain pairs can be divided into two types: {1) A non-ferroelastic domain pair
where the domain states S, and S; have the same (zero) spontaneous
deformation, and {2) a ferroelastlc domam pair where the domain states have
different spontaneous deformations. Since the tensor of spontaneous
deformation transforms in the same manner as the optical indicatrix, the domain
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states of a ferroelastic domain pair can be easily dlstmgwshed in a polarizing
microscope. The domain states of a non-ferroelastic domain pair can not be
distinguished in this manner. Thus, we consider here.the tensor distinction of
domains in non- ferroelasuc trensntlons,rr e. -where. all domains have the same
(zero) spontaneous deformation.
The tensor distinction of domains in non-ferroelastic transitions from a
phase of symmetry G to a subgroup F of index n = 2 has been treated in detail
" (Janovec, Richterova, and Litvin (1993)), In this paper we complete the tensor
distinction analysis of non-ferroelastic domains by extending it to the cases of
n > 2. In Section 2 we briefly rgview. 'qhe case of n = 2, and in Section 3 we
extend the analysis ton > 2, Tables are also given. of the tensor distinction by
important physical property tensors in. ail cases: of non—ferroelastrc transitions
" with n > 2. As the tensor properties of domains are determined by point group
considerations, we use here only paint groups in the following group theoretical
proceedures. . .

2. NON-FERROELASTIC TRANSITIONS TOA SUBGRQUP OF INDEX n=2

In a non-ferroelastic phase transmon from G to a subgroup F of mdex 2,G =
F +-gF and there are two domain states S, and. Sy where Sz = 98, 8;.%:9S,.

S, is invariant under F,= F and S, under . F, = gF.g' = F. A domain pair
{S,,Sz} with these properties is referred to asa completely transposable domain
pair (Janovec, Litvin, Ind Fuksa £1995)). As F is a subgroup. of index 2 one
needs to consider the tensar distinction only of the domain pair. {S,,S,}. A
tensor T does not dlstlpgu;sh between ‘the domains S, and S, if the form of the
tensor Tlnvanant under F is also invariant unoer g and consaquently under G.
Only if the form of the tensor vaanant under F is.not invariant under G, does
the tensor distinguish, between the two domains. A ‘mathematical method has
been given to determine if a tensor T distinguishes or not between the domains
in this case where F is a subgroup of index 2 of G, and a tabulation of the
tensor distinction due to a set of important material property tensors has been
given for all 48 non-ferroelastic transitions from a group G to supgroups F of
index 2 (Janovec, Richterova, and Litvin (1993)).

3. NON -FERROELASTIC TRANSITIONS TO A S'UBGRdUP‘ OF INDEX n > 2

ln addition to the 48 non ferroelastu; transltlons from a group G to subgroups
F of index 2, there are 11 to subgroups of index n > 2. Ten such transitions
are to a subgroup of indexn = 4 and one toa subgroup of lndex n = 8, see
Table 1 and subgroup dlagrams, Flgures 1- -3..The coset decomposmon of G
with respect to F is wrltten as: . : , . :

‘ G =F+ .F + goF * ;@g,;F,:, h

There are n domalns S‘ g,S,, i =1,2,. ,n and n? domam patr {s.S}), l,j =
1, 2 3 Domaln pairs can be cIassrfred mto classes of domaln pairs (Janovec,
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(1972) and Litvin and Wike (1989)) where all domain pairs of a single class are
distinguished by the same set of tensors. A common property in all .non-
ferroelastic transitions is that F is an invariant subgroup of G. Consequently, the
number of classes.of domdin pairs. is exactly:n. A set of domain pair, one from
each. class, can be chosen as the set {S;;8}, i =.1,2,...,n.. We then must
determine the tensor distinction-of each of ‘the n-1 domam palr {S1,SI =g},
i =2,..0n
- Asecond common property in all nom-ferroelastlc transmons is that each F

+ gF, i = 2,...,n, constitutes a subgroup H, of G. Consequently, to each of
the n-1 domain pair {S$,,S, = gS;},i = 2,...,n ; we associate two groups,. the
groups F and'H,, where F.is a subgroup of index 2 of H;. A tensor 7 does not
distinguish betwean the domains S, and S, = g;S, if the form of thetensor T
invariant.under. F is-also invariant under g, and consequently under H,. Only if
the form of the tensor 7 invariant under F is:not invariant under H;, does the
tensor distinguish between the two.domains. Since F is a subgroup of index

= 2 of H, aone can directly use the results (see Section 2. above). of the
analysis of tensor distinction in non+ferroelastic transitions to a subgroup of
index 2 to the tensor distinction here in transitions to a.subgroup of index n >
2. ) . . . E . ) N -
For example, :consider the non-ferroelastic phase transition from G =
6/mmm to F=:3m1, a subgroup of index 4. The coset decomposmon of G with
respect to F can be- wrltten as . : « . .

G F+ng+gsF+g4F

W|th g.=6,, 9,=2,; and g,=2,. The groupsH =F + g,F i= 2 3 4areH2 =
6mm, Hy = 3m1, and H, = 6m2, the three groups in Figure 3 which contain
F = 3m1 as a subgroup of index 2. The n?> = 168 domain pairs in this case are
classified into n = -4 classes of domain pairs, and we determine .the tensor
distinction. of the n-1 = 3 domain pair {S,,S;=g;S,}-..i-= 2,3,4. The tensor
distinction of each domain pair {S;,S,} can be foundin existing tables {Janovec,
Richterova, and Litvin (1993)) under the tensor distinction of domain-pairs in
the case of the non-ferroelastic phase transition between H; and its subgroup
F of index 2. That is, for the tensor distinction analysis of domain. pairs in the
non-ferroelastic phase transition from G = 8/mmm to F = 3m?1, a subgroup of
index n = 4, we must consider the tensor distinction in the n-1 = 3 non-
ferraelastic- phase transitions from H, =. 6mm, H, = 3m1, and H, = 6m2 to F
=.3m1. The results of such an analysis.is given in Table 1.

In the first two columns of Table 1 are listed the groups G and F of the 11
non-ferroelastic transitions to a subgroup of index n > 2. For each such
transition, the following three columns list the domain pair {S,,S}, g;, and H, for

= 2,3,...,n. In the i-th row in the remaining seven columns is listed whether
or not the physical property tensor listed. at the top of the column can
distinguish between the domains of the domain pair {S,,S}. [e.g: € denotes
enantiomorphism, V- spontaneous polarization, €[V?l optical activity, V{V?]
piezoelectricity, electrooptics, eVIV?} electrogyration, [[V2]?] linear elasticity, and
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[V?]? piezooptics, electrostriction.] An "x" denotes that the physical property
tensor can dlstmgwsh between the domains, a blank entry denotes that it can
not.

Figures 1-3 show diagramatically the groups H,, i = 2,...,n used in the
tensor distinction of domains for all non-ferroelastic transitions between G and
subgroups F of index n > 2. In all non-ferroelastic transitions the groups G and
F belong to the same family of point groups. Consequently we give separately
in the three figures chains of subgroups of index 2 corresponding. to the
tetragonal, cubic, and hexagonal/trigonal families of point groups. The
holohedral point group of each family is given at the top-of the each diagram.
in each row below the holohedral point group are listed the subgroups of index
2 of the point groups of the row above, the subgroups of specific point groups
denoted by aline between the groups. For phase transitions between G and and
a subgroup F of index n > 2, the.groups H,, i = 2,...,n are those supergroups
of index 2 of F which are subgroups of G {i.e. which are connected by lines
between G and F). For example, for G = 6/m and F = 3, the groups H,, i =
2,3,4,areH, = 3,H, = 6, and H, = 6.

From Table 1, for each phase transition, one can also determine which of-
the listed physical property tensors are associated with primary order
parameters and can distinguish between all domains, are associated with
secondary. order parameters which can distinguish between some but not all
domains, or can not distinguish between any of the domains. For a phase
transition between specific groups G and F, and a specific physical property
tensor, if the column in Table 1 under the physical property tensor contains an
"x" in all rows corresponding to the listed domain pairs, then the physical
property tensor is associated with a primary order parameter. If there is an "x"
in only some but not all rows, then-the physical property tensor is associated
with a secondary order parameter. If the column is empty, then the physncal
property tensor can not distinguish between any of the domains.

For example, consider the phase transition between G = 6/mmm and F =
6 . A physical property tensor of the type V[V?] is associated with a primary
order parameter. The remaining physical property tensors listed in Table. 1,
except of the type [[V?}?], are associated with secondary order parameters. A
physical property tensor of the type [[V?]?] can not distinguish between any of
the domains resulting from this phase transition.

This. work was supported by the National Science Foundation under grant
DMR-9510335 and by the Grant Agency of the Czech Republlc under grant No.
202/96/0722.
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Table 1: Tensor Distinction in Non-Ferroelastic Transitions to a
subgroup of index n > 2,

€ €vy VIVY vi?
G F {S.8} g, H, v Vivy i)
6/mmm 6 {5,,S,} 2, 622 x T x x ¢ X
{s,8} 1 6/m x x x x
{848} m, 6mm | x x X x - x
6/mmm 3 {S..S,} &6, 6/m x x x
(5.5, 2, 3m1 ! x x x
{5,.8.} 2, 31m x x x
6/mmm 321 {S..S;} 86, 622 x x x x
{S,8,) 1 3m1 x x x
{S,.S 8, 62m x x x x x x
6/mmm 312 {S..S:) 6, 622 x x x x
{S,S;) 1 31m x x x
{S,.5,) 8§, 6m2  x x x  x x x
6/mmm 3m1 {S,,S;} 6, 6mm x x x x
{S.S,} 2, 3m1 x x
{5, 2, 8m2 x x x . x x
6/mmm 3tm {S..S;} 6, 6mm x - X x x
{5,S;} 2, 31m P x
{S.,8.) 2, 62m x x x x x
8/mmm 6 {S,.S,} 6, 6/m x
{S..8;} 2, é2m x - x x
{S..S4 2, 6m2 x x x
6/mmm 3 {s,.S;} 6, 6 x x x x
{S.S)} 2, 321 x x x x x
{S:.S.} 2, 312 x X x X x
{S,,Sg} 1 3 x x x x
{S..Se} &, 6 x x x x x x x
{S:,S;} m, 3m1 x x x x x x
{S1.Ss} m, 3tm *©  x x X x x x
4/mmm 4 ' {S\.S:} 2, 42m x x x x x
{S:.Ss} 2, 4m2 x - x x x x
{S;.8 4, 4/m x x
4/mmm 4 {5.,S,} 2, 422 x x x x x
{s.S;} 1 4/m x x x x
{$.,8 m, 4mm x x x x x x
m3m 23 {S.S)} 2, 432 x x x
{S,,S;} 1 m3 x x x :
{8, my, 43m x x x x
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Figure 1: Subgrqup chains of index'2 for the tetragonél family of point groups.

Figure 2: Subgroup chains of index 2 of cubic family of point groups
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