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A magnetic domain twin consists of two magnetic domains which meet along a planar
transition region called a domain wall. The symmetry of a magnetic domain twin consists of
those symmetry elements which 1) leave both domains invariant and also leave invariant the
normal to the domain wall or 2) interexchange the domains and invert the normal. The
magnetic domain symmetry is a magnetic layer group. It is shown how forthcoming tables of
the non-magnetic sectional layer groups of non-magnetic crystals (International Tables for
Crystallography, Volume E (Kopsky and Litvin)) can be used to determine possible magnetic
domain twin symmetry.
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1. INTRODUCTION

The use of layer groups as sectional layer groups was introduced by Holser
(1958) in the study of twin boundaries. A twin boundary is the planar
interface between two semi-infinite crystal structures which have identical
structures with one being misorientated and/or displaced relative to the
other. These structures are referred to as domain twins (Janovec (1981) and
Janovec, Schranz, Warhanek and Zikmund (1989)). The symmetry group of
such a three-dimensional structure is called a domain twin symmetry group.

To determine the domain twin symmetry one first constructs a domain pair,
i.e., a superposition of two single domain states. These are two infinite crystals
which have the same structure, misorientation and/or displacement as the two
semi-infinite crystals of the domain twin. The domain pair symmetry group is
then determined. A plane, representing the interface, is then inserted
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transecting the domain pair. The domain twin is obtained by deleting from
one side of the plane the atoms of one of the single domain states, and the
atoms of the second single domain state from the other side of the plane.

The domain twin symmetry group is that subgroup of the domain pair -
symmetry group which leaves the domain twin invariant. This is the
subgroup of all elements which satisfy one of the following two conditions
(Janovec, Schranz, Warhanek and Zikmund (1989)):

C1l) Elements which leave invariant the structures of both single domain
states and the normal to the plane.

C2) Elements which exchange the structures of the two single domain states
and invert the normal to the plane.

Sectional layer groups can be used in determining the domain twin
symmetry group when a) the domain pair symmetry group is a three-
dimensional magnetic or non-magnetic space group and b) the sectional
group of the interface plane is a magnetic or non-magnetic layer group:
Given a domain pair, its symmetry group and a plane transecting the
domain pair. The sectional layer group of that plane is determined with
respect to the domain pair symmetry group. The domain twin symmetry
group is that subgroup of the sectional layer group consisting of all elements
of which satisfy one of the two conditions listed above.

2. SECTIONAL LAYER GROUPS

If a crystal of magnetic or non-magnetic space group G is transected by a
plane, the subgroup of all elements of the space group G which leaves the
plane invariant is called the sectional group of the plane. Depending on the
orientation of the plane, the translation subgroup of a sectional group can
be two-dimensional, one-dimensional, or consist only of the identity
translation. We shall consider only those planes the sectional groups of
which have two-dimensional translation subgroups. These sectional groups
are layer groups and consequently are referred to as sectional layer groups.
The derivation of the sectional layers groups of planes transecting a crystal
with a given non-magnetic space group symmetry has been considered by
Wondratschek (unpublished), Kopsky and Litvin (1989), Kopsky (1990),
Fuksa, Kopsky and Litvin (1993), and Davies and Dirl (1993). Using the
method of Kopsky (1990) a complete tabulation of all sectional layer groups
of planes transecting a crystal with a non-magnetic space group symmetry
has been given (Kopsky and Litvin (1997)). In Table Ia, we give an example
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TABLE Ia Scanning of the group Pca2,

Orientation Conventional basis Scanning  Translation Sectional
orbit of the scanning group group orbit layer
(hkl) a* b d sd group

(001) a b c Pca2, [sd, (s+1/2)d] plal
(100) b <. a Pc2,b [0d, 1/2d] P12,1
‘ [1/4d, 3/4d] pllb
[£sd, (£s+1/2)d] pl
(010) c a b 'P2;ab 0d,1/2d p2,ab
‘ [sd, —sd] plal(b*/4)

of a part of those tables for a crystal of space group symmetry G=Pca2,, a
listing only for those orientations with so called fixed parameters.

At the top of the table is the Hermann Mauguin symbol of the type of
space group considered. The specific space group of that type considered,
including the orientation, choice of origin, and diagram is that tabulated in
The International Tables, Volume A (1983).

The first column, titled Orientation Orbit (hkl), lists the Miller mdlces of
the planes under consideration. Sets of planes have orientations which are
related by rotations and rotation-inversions of the space group. Such sets of
planes are called orientation orbits. The indices of planes in each orientation
orbit are listed together and the indices of planes in dlfferent orientation
orbits are separated by a horizontal line.

For a given space group and orientation of a transecting plane, the
scanning group is that subgroup of the space group the elements of which
leave invariant the orientation of the given plane. The scanning group is
central in the methodology used to derive the sectional layer groups
(Kopsky (1990)). In the second column, for each planar orientation given in
the first column, the conventional basis vectors a*, b* and d, of the scanning
group is given in terms of the conventional basis vectors a, b and ¢, of the
space group. The basis vectors a* and b* define the translation subgroup of
the sectional layer groups of planes of this orientation. The vector d defines
the scanning direction and is used to define the position of the plane within
the crystal.

To specify a plane transecting a crystal, one must give both its orientation
and its position within the crystal. The orientation of the plane is specified in
the first column. The position of a plane is specified in the column under
Translation Orbit sd. It is specified by the point where the plane intersects
the scanning direction, the direction of the vector d, i.e., by specifying the
value “s” of the vector sd of the point O +sd, where O is the origin of the
space group.
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The infinite set of all parallel planes of a specific orientation which
transect a crystal can be subdivided into subsets, called translation orbits. All
parallel planes obtained by applying all elements of the space group to any
one plane of a specified orientation constitute a translation orbit. The
. positions of all planes in a translation orbit are specified by the set of vectors
[sid+nd, s,d+nd,...,s,d+nd] where “g” is a finite number, 0<s; < 1,
i=1,2,...,q, and because of the periodicity of the crystal in the scanning
direction, n€ Z, the set of all integers.

In the Translation Orbit sd column the positions of the planes in each
translation orbit is given, for typographical simplicity, by the position
vectors [s,d, sad, ..., s.d] and if this set of vectors contains a single vector
[sd] by sd, i.e., without the brackets. For each orientation the corresponding
vector d found in the second column is used.

The sectional layer group of each plane is given in the fifth column on the
same line as position vector sd.’

3. SECTIONAL LAYER GROUPS OF MAGNETIC
SPACE GROUPS

The action of time reversal does not change the orientation nor position of a
plane transecting a crystal. Consequently, the sectional layer groups of
magnetic space groups in the magnetic superfamily of a space group G can
be easily derived from the sectional layer groups of the space group G. If S is
a sectional layer group of G, then the corresponding sectional layer group of
G’ is SY. The corresponding sectional layer group of magnetic space
groups of the type G[H] is S{K], where K is a subgroup of S contained in H.

In Table Ib, a continuation of Table Ia, we list the sectional layer groups
of magnetic space groups, except Pca2; which is listed in Table Ia, of the

TABLE Ib Scanning of the remaining magnetic groups of the reduced magnetic superfamily
of Pca2,

Pca211' Pc’a21' Pcd21’ Pc’a’21 Pz(,caz] szc’d21
plall’ plal pla’l pla’l pPap*lal pa*la’l

p12111’ p121’l p12|’l p1211 pz.*1211 p2.*1211

plibl’ pliv’ pllb pliv P2a*11b paa* 11V

pl’ pl pl p! P2a*l Paar]

p2;,abl’ p2/a’b p2;/at’ p2;a’t’ p21ab;11021’ab'Jr p21a’b’;pZ,'a’b“Jr

plall'(b*/4) pla'l(*/4) plal(®*/4) pla’l(d*/4) plal®*/4) pla’l(p*/4)

TFirst entry for 0d, second entry for 1/2 d.
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reduced magnetic superfamily of Pca2,. The first row lists the magnetic
space groups with the corresponding sectional layer groups listed below
each magnetic space group.

4. MAGNETIC DOMAIN TWIN SYMMETRY-

Given a domain pair symmetry, the domain twin symmetry depends on the
orientation and position of the domain twin boundary. The domain twin
symmetry also depends on the structure of the domain pair symmetry: The
domain pair symmetry J has the structure J=F+ gF where F is the
subgroup of symmetry elements which leaves both domains invariant and
gF are those elements which exchange, the two domains. For the magnetic
domain pair symmetry Pca2,1’, there are fifteen possible structures listed, in
Table II, corresponding to the fifteen maximal subgroups of index two of
the magnetic space group Pca2,1’ (Litvin, 1996). The magnetic domain twin
symmetry for these fifteen cases and for the orientations and positions listed
in Table Ia are given in Table III. The numbering in the first row refers to
the numbering of these fifteen cases given in Table IL. As an example of the
use of such tables, we consider the phase transition in manganese iodine
boracite where the change in magnetic symmetry is from Pca2,1’ to Pc’a2,’
(Crottaz et al., 1996). The two domains have magnetic domain pair sym-
metry Pca2,1’ corresponding to case #6 in Table II. The magnetic twin
groups for orientations with fixed parameters are given column 6 of Table
II1. A complete listing for all orientations is given in Table IV. For variable
parameter orientations, e.g., (mn0), the integers m and n are variable.

TABLE II Domain symmetry groups J=F+gF with J=Pca2,1’

1) Pca2, +  (1]0,0, 0f Pca2,

2) PUZY +  (my1/2,0,1/2) P12, 1

3) Plall’ +  (m]1/2,0, 1/2) Plall’

4) Pclll! + (2]0, 0, 1/2) Pc111’

5) Pda’2, + (140, 0, 0y Pc'a’2,

6) Pda2/ + (1]0, 0, 0y Pc'a2y’

7 Pca2/ + (10,0, 0Y Pca'2,’

8) chca21 + (”0, 0, 0), szca21
9) P2bca’21’ + (IIO, 0, 0)’ PZbca’Zl'
10) P21,c’a’21 + (1[0, 0, 0)’ szc’a’Zl
11) Pyc’a2)’ + (1]0,0, 0y Pyc'a2)’

12) P(a, 2b, c) ca2,1’
13) P(a, 2b, ¢) ca2;1'(b/2)
14) P(a, 2b, c) na2,l’
15) P(a, 2b, c) na2,1'(b/2)

(1/010) P (a, 2b, ¢) ca2,l’
(1]010) P (a, 2b, c) ca2,1'(b/2)
(1]010) P (a, 2b, c) na2,l’
(1/010) P (a, 2b, ¢) na2,1'(b/2)

+ 4+ ++




TABLE Il Domain twin symmetry groups for the domain pair symmetry group Pca2,1’

1 2 3 4 5
(001) plal pl’ plallt/ pl’ pla’l
(100) p12/1 pl’ p12,11 pl2,1¥ pl12/1
pllv plibl’ plibl’ pl’ plib
pl pl’ pl’ pl’ pl
(010) p2,/ab’ plibl’ p2;111’ p2;abl’ p2/a’b
plal pl’ . pl pelllt pla’l
6 7 8 9 10
plal pla’t pav lal Pav-a’l Pa-la’l
pl12,1 p12;1 P2 12,1 Paal2il Paeel2i'1
pllb pliv P2ar 11 P2a-110 P2.-11b
pl pl P2a P2a-1 P2l
p2,'at’ p2,ab p2,/at’ p2,ab p2/a’b
pla’l plal plal plal pla’l
11 12 . 13 14 15
: papela “plall’ “plall’(b*/2) “plall’(b*/2) °plall’
P2 1211 Ap12,11 (a*/2) Pp12,11 Ap12,11'(a*/2) Pp12,11
P2+ 11b Aplinl’ Ap1inl’ Ppl1ibl’ Ap11bY’
Paar 1 ﬂpl' ﬂpl’ ﬂpll ﬂpll
od plall’(b*/4) p2,abl’ plibl’ p2,111
p2a't’
124 p2iabl’ plall’(b*/4) p2,11V plibl’
pla’l plail’(b*/4) plall’(b*/4) pl’ pl

°p=p(a*, 2b"), “p=p(2a*, b")
TABLE IV Domain Twin Symmetry of Pca2,1’ =Pc’a2,’ +(1/000YPc’a2,’

Orientation Basis Translation Domain
orbit orbit twin
(hkl) ax bx d sd symmetry
(001) a b c [sd, (s +1/2)d] plat
(100) b c a [od, 1/2d] pi2,1
[1/4d, 3/4d] pl1v’
[tsd, (£s+1/2d}] pl
010) ¢ a b 0d,1/2d p2;,a’t’
[sd, —sd] pla’l(b+/4)
(mn0) c . na—mb pa+gb
- 0d,1/2d p2,11
[Sdf ~Sd] pl
(mn0) c na+mb —pa+gb
(0mn) a nb—me pb+gc :
[sd,(s+1/2)d] Ip1@ax/a)
od Spb/11(a/4)
(Omn) a nb+mc —pb+qc
(n0m) b nc—ma pctqa
[sd,(s+ 1/2)d] Ip1
sd §pb11
(nOm) b nc+ma —pe+qa

1 odd, § n even
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