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Possible piezoelectric composites based on the flexoelectric effect
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Abstract

Current piezoelectric composite materials contain two or more phases out of which at least one reveals piezoelectric
properties in itself. We show that this is in fact not a necessary condition. The mechanism of the linear stress-polarization
response averaged over a composite sample can be also based on flexoelectric properties of one or more constituents. Proper
shaping of the composite constituents is required, such that the system as a whole acquires a symmetry allowing for nonzero
piezoelectric coefficients even if none of the components is piezoelectric. Externally applied stress is transformed, due to
proper geometry of the constituents with different elastic properties, into a strongly nonhomogeneous distribution of induced
strain. Flexoelectric properties which are, by symmetry, allowed in all materials, transform the strain gradient into
polarization. The proposed piezoelectric composite falls into the category of composites with product properties since it
involves different assets of the phases (elastic, flexoelectric and dielectric) and the interaction between the phases,
determining the inhomogeneous distribution of stress, is essential. © 1999 Elsevier Science B.V. All rights reserved.
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1. Introduction three criteria. The most important aspects are the

macroscopic properties of the constituents, e.g., their

Composites are multiple-phase solids which com-
bine materials of different chemical composition and
macroscopic properties with the aim to produce sam-
ples with the desired average response. Figures of
merit of the final composite can be tuned by choos-
ing component phases with the right properties and
coupling them in an optimum manner. Newnham et
al. [1] offered a classification of composites based on
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response to electric, magnetic and elastic fields. This
determines the final assets of the composite. The
second, connectivity, indicates the way in which
each phase connects to itself. It is essential for the
magnitude and symmetry of the composite’s re-
sponse. The third is scale, which determines the
response of the composite when wavelengths of
propagating waves become comparable with the
characteristic dimensions of any of the constituents.

Many composites have been considered in con-
nection with their piezoelectric properties [1,2]. To
discuss or model the piezoelectric response of a
composite, it was generally assumed that at least one
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of the components was piezoelectric. In this paper
we reconsider this assumption.

2. Discussion

For a system to be piezoelectric, it has to fulfill
certain symmetry criteria. If it has a crystalline struc-
ture, the material must, by symmetry, belong to one
of 20 crystal classes. The remaining 12 classes do
not show piezoelectric properties; these are the 11
centrosymmetric classes and the class 432 in which
piezoelectricity is forbidden by the combined sym-
metry elements.

In Nye’s widely used overview of the equilibrium
propetties of the 32 crystal classes [3], the properties
of an isotropic medium are also included. The sym-
metry of an isotropic medium is primarily character-
ized by the presence of arbitrarily oriented symmetry
axes of infinite order. Depending on whether its
symmetry elements do or do not include arbitrarily
oriented mirror planes, the isotropic medium repre-
sents one of the Curie symmetry groups (limiting
groups), namely, ®, ©/m or ow, respectively. In

Table 1
Matrices of d;;, in Curie groups which are piezoelectric

oo

0 0 0 dy ds O
0 0 0 dg —dy, 0
d31 d31 d33 0 0 0

)
o 0 0 4, 0 0
000 0 —d, 0
000 0 0 0
oom

0 0 0- 0 ds 0
0 0 0 ds 0 0
dy dy dy O 0 0

In all groups the « axis is taken as x;; the axes x;, x, are
perpendicular to x; and to each other, otherwise their orientation
is arbitrary.
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Fig. 1. Characteristic forms representing symmetry of the Curie
groups which allow for piezoelectricity [4].

both these groups no nonzero piezoelectric coeffi-
cients are possible.

In addition to these two groups, however, we may
consider systems representing the remaining Curie
groups, namely ®, ©/m, ©2, ©om and ©/mm. Out of
these, ©/m and ®/mm do not allow for the exis-
tence of nonzero components of a third-rank polar
tensor d,; of symmetry V [VZ], ie., of the piezo-
electric tensor. In the remaining groups nonzero
components are possible, as shown in Table 1. It is
useful to illustrate symmetry properties of these point
groups by characteristic forms [4]; these are shown
in Fig. 1. We realize that systems revealing the
symmetries © or 2 can exist in two forms, left- and
right-handed.

Thus, for instance, a composite with connectivity
0-3, in which the phase ‘0’ is represented by cone-
shaped particles whose «-axes are parallel to each
other but which are randomly distributed in the
phase ‘3’, has the symmetry om. Next we can
imagine that the cones are subject to helical deforma-
tions so that spiral-shaped particles result. This low-
ers the symmetry to «. The system can exist in two
forms, right- or left-handed. The third piezoelectric
Curie-group can be visualized starting again with a
composite of connectivity 0-3 in which the phase
‘0’ is represented by cylinders; its symmetry is
nonpiezoelectric ©/mm. If now all cylinders are
subject to a helical deformation, the symmetry is
reduced to %2, which again can exist in two forms
differing in handedness. Fig. 2 shows such compos-
ites schematically. These particular models are based
on the 0-3 connectivity but similar considerations
can be made for other connectivities as well.

It thus appears easily possible to manufacture
composites whose symmetry properties allow for the
existence of piezoelectric tensor although they con-
sist of components which by themselves need not be
made of piezoelectric materials.
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Fig. 2. Simple models of 0-3 composites allowing for piezoelec-
tricity. There is an infinite number of shapes of the O-constituent
that could be tested for a maximum response of flexoelectric
polarization.

A long time ago, Shubnikov et al. introduced the
concept of piezoelectric textures; see Ref. [5] and
the first chapter of Ref. [6]. This notion denotes
systems composed of crystallites which show piezo-
electric properties, some crystal axes of which are
chaotically oriented in a given way, leading to spe-
cific averaging of properties characterizing the
piezoelectric effect. In the subsequent parts of Ref.
[6], two specific kinds of materials are discussed as
examples. Plate-like samples containing crystallites
of Rochelle salt separated by amorphous layers
(chapter 2 by Konstantinova and Sil’vestrova) could
indeed be considered a 0-3 composite. Polarized
ceramic samples of barium titanate (chapter 3 by
Zheludev), on the other hand, whose symmetry is
com, represent a piezoelectric texture by Shubnikov’s
definition but could only be included into the family
of composites if the grain boundaries had an appre-
ciable volume.

In both these cases basic components are piezo-
electric by themselves (point symmetries 2 for
Rochelle salt and 4mm for BaTiO,). On the other
hand, in the general symmetry approach this is not a
specific requirement. As shown above, the possibil-
ity of a piezoelectric response in a 0-3 composite is
assured, from the point of view of symmetry, already
by shaping the particles of zero connectivity. We
thus have to look for alternative mechanisms which
would lead to formation of an average polarization
proportional to an applied stress for a 0—3 composite
made of nonpiezoelectric materials, with properly
shaped particles.

For several decades, the effect of inducing polar-
ization by imposing spatially nonuniform strain was
repeatedly discussed in the literature. Originally dis-
covered experimentally in centrosymmetric (and
therefore nonpiezoelectric) liquid crystals, it was

termed the flexoelectric effect and described by the
equation

as,-j
P = r“"ijkl; (1)
k

from which it is obvious that the tensor w has the
general symmetry [V2] V7, ie., w;;;,= py is the
only requirement imposed by symmetry. A tensor of
this symmetry has nonzero components in all crystal
classes. The first attempt to observe the flexoelectric
effect in a solid crystal of point symmetry 4/m,
namely CaWO, was made by Zheludev et al. [7]. As
shown by Tagantsev [8], the static effect includes a
bulk and a surface contribution. The bulk part is due
to the fact that the crystal lattice which has been
nonhomogeneously deformed in accordance with the
laws of the theory of elasticity is not in equilibrium
from the point of view of displacements in the unit
cell. The displacements that are necessary to reach
true equilibrium give rise to a dipole moment of the
cell, i.e., to polarization. In addition, the deformation
of the surface of a finite sample, whose electrical
neutrality in the original state was achieved by com-
pensating free charges, leads to a surface contribu-
tion which can be expected to be of the same order
of magnitude as the bulk part of the effect. The
simplest estimates [8] for a common insulator indi-
cate that both contributions to the value of u are of
the order of the ratio of the electron charge to the
lattice constant. ,

We now have in mind a 0-3 composite made of
nonpiezoelectric constituents, in which the O-ele-
ments are shaped and oriented in such a way that the
overall symmetry is one of the Curie groups «, com
and 2. As an example, consider a plate-like sample
of composite of symmetry cm in which the orienta-
tion of the O-constituents is such that the « axis is
perpendicular to the major plane. Since the tensor
1, has nonzero components even for continuous
groups «oo and ocom [4], one can imagine that both
the O-component and 3-components are made of
isotropic materials. Their shaping is such that when a
load 033, is applied, the spatial distribution of
stress will be nonhomogeneous, leading to gradients
of strain in both constituents. To be concrete, we can
imagine that a plate-like sample of thickness d is



290 J. Fousek et al. / Materials Letters 39 (1999) 287-291

divided into a regular system of cubes of linear size
d,, each cube containing one particle of the compo-
nent with zero connectivity and only this component
is assumed to have nonzero flexoelectric properties.
The dipole moment of each O-particle within one
cube will be given by
de;,(r)

Pifiex (dg)"‘3ijk ox, dr (2)
where the strain gradient will be determined by a
factor a;; which reflects the shape of the compo-
nents 0 'of the composite and depends on elastic
compliances of both constituents:

agij(r)
0x,

= aijk(r) O33appl - (3)

The induced charge dehsity on the electrode of the
plate will be

Psfrex
3
dO

Q= 4

so that the effective polarization of the sample P; =
Q will be given by

Py =dy30., T33appl» (5)
where

i
d33nex = -d_g ];da)aijk(r) M3 pdr. (6)

A piezoelectric composite based on flexoelectricity
will be useful if a reasonably high value of dy;y,,
could be reached, e.g., 100 pC/N. It follows from
the preceding formulae that the latter can be influ-
enced by a proper tuning of several independent
factors: selecting materials with high values of those
components of u;;,, which are involved in a particu-
lar geometry of the constituents, choosing a high
density of the constituents 0, but also by achieving
large factors a;; which depend on the shape of the
O-components and on the elastic tensors of both 0
and 3 constituents.

Newnham [2] classified properties of composite
materials into three groups: sum properties (the com-
posite property coefficient depends on the corre-
sponding coefficients of its constituent phases), com-
bination properties (the composite property coeffi-
cient depends on two or more corresponding coeffi-

cients of its constituent phases) and product proper-
ties. In the latter case the composite property coeffi-
cient involves different properties of the constituent
phases with interactions between them. It appears
that piezoelectric composites based on flexoelectric-
ity fall into this last category and the effect might be
referred to as a ‘shape-controlled product property’;
indeed the combined effect involves different proper-
ties of the constituent phases (elastic, flexoelectric
and dielectric) and the interaction between the phases
is essential; here it is the nonhomogeneous distribu-
tion of stress which depends primarily on the shapes
of constituents and on their elastic tensors. The
following sequence of phenomena describes the
combined effect: homogeneous applied stress —
inhomogeneous stress in the O-constituents —
polarization in the O-constituents due to flexoelectric
effect — nonhomogeneous distribution of polariza-
tion in the sample depending also on spatial distribu-
tion of permittivity — nonhomogeneous surface
bound charge — averaged surface bound charge den-
sity defining effective polarization. Considering a
stress o,, applied perpendicularly to a plate-like
composite sample, we have the sequence

Uzz,appl - grada-ij,sample(r) - P(l‘) - q( x’y)surf

- qsurf a Pz,surf o o-zz,appl'

At this stage very few data on the tensor u;;, in
solids seem to be available. A fairly strong flexoelec-
tric response was reported for crystals of Cd,WO,
[7]. Marvan and Havrének [9] studied the flexoelec-
tric effect in elastomers of isotropic symmetry. Sam-
ples in the form of truncated pyramids were de-
formed by axial pressure along the axis 3. Then for
constant volume of the sample the only active coeffi-
cient is 435, Which was estimated to be of the order
107! to 107'® C/m. Experiments with 0-3 com-
posites in which the O-constituent or both compo-
nents of the composite would be a polymer might be
worthwhile.

We may also note that such composite samples
might be interesting to investigate in which one of
the constituents is piezoelectric; due to flexoelectric-
ity, its induced dipole moment could be considerably
enhanced by proper shaping to optimize the nonho-
mogeneous distribution of strain.
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