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If you talk about the end of one century and the beginning of the next you have two 
choices, both of them difficult. One is to survey the mathematics over the past hundred 
years; the other is to predict the mathematics of the next hundred years. I have cho- 
sen the more difficult task. Everybody can predict and we will not be around to find 
out whether we were wrong. But giving an impression of the past is something that 
everybody can disagree with. 

All I can do is give you a personal view. It is impossible to cover everything, and 
in particular I will leave out significant parts of the story, partly because I am not an 
expert, and partly because they are covered elsewhere. I will say nothing, for example, 
about the great events in the area between logic and computing associated with the 
names of people like Hilbert, G6del, and Turing. Nor will I say much about the appli- 
cations of mathematics, except in fundamental physics, because they are so numerous 
and they need such special treatment. Each would require a lecture to itself. Moreover, 
there is no point in trying to give just a list of theorems or even a list of famous mathe- 
maticians over the last hundred years. That would be rather a dull exercise. So instead 
I am going to try and pick out some themes that I think run across the board in many 
ways and underline what has happened. 

Let me first make a general remark. Centuries are crude numbers. We do not really 
believe that after a hundred years something suddenly stops and starts again. So when 
I describe the mathematics of the 20th century, I am going to be rather cavalier about 
dates. If something started in the 1890s and moved into the 1900s, I shall ignore such 
detail. I will behave like an astronomer and work in rather approximate numbers. In 
fact, many things started in the 19th century and only came to fruition in the 20th 
century. 

One of the difficulties of this exercise is that it is very hard to put oneself back in 
the position of what it was like in 1900 to be a mathematician, because so much of the 
mathematics of the last century has been absorbed by our culture, by us. It is very hard 
to imagine a time when people did not think in our terms. In fact, if you make a really 
important discovery in mathematics you will get omitted altogether! You simply get 
absorbed into the background. So going back, you have to try to imagine what it was 
like in a different era when people did not think in our way. 

1. LOCAL TO GLOBAL. I am going to start by listing some themes and talking 
around them. My first theme is broadly under what you might call the passage from 
the local to the global. In the classical period people on the whole would have studied 
things on a small scale, in local coordinates and so on. In this century, the emphasis 
has shifted to try and understand the global, large-scale behavior. And because global 
behavior is more difficult to understand, much of it is done qualitatively, and topo- 
logical ideas become very important. It was Poincare who both made the pioneering 
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steps in topology and forecast that topology would be an important ingredient in 20th- 
century mathematics. Incidentally, Hilbert, who made his famous list of problems, did 
not. Topology hardly figured in his list of problems. But for Poincare it was quite clear 
that it would be an important factor. 

Let me try to list a few of the areas and you can see what I have in mind. Consider, 
for example, complex analysis ("function theory", as it was called), which was at the 
center of mathematics in the 19th century, the work of great figures like Weierstrass. 
For them, a function was a function of one complex variable and for Weierstrass a 
function was a power series, something you could lay your hands on, write down, and 
describe explicitly; or a formula. Functions were formulas: they were explicit things. 
But then the work of Abel, Riemann, and subsequent people moved us away, so that 
functions became defined not just by explicit formulas but more by their global proper- 
ties: by where their singularities were, where their domains of definition were, where 
they took their values. These global properties were the distinguishing characteristic 
feature of the function. The local expansion was only one way of looking at it. 

A similar sort of story occurs with differential equations. Originally, to solve a dif- 
ferential equation people would have looked for an explicit local solution: something 
you could write down and lay your hands on. As things evolved, solutions became 
implicit. You could not necessarily describe them in nice formulas. The singularities 
of the solution were the things that really determined its global properties. This is very 
much similar in spirit, but different in detail, to what happened in complex analysis. 

In differential geometry, the classical work of Gauss and others would have de- 
scribed small pieces of space, small bits of curvature and the local equations that 
describe local geometry. The shift from there to the large scale is a rather natural 
one, where you want to understand the global overall picture of curved surfaces and 
the topology that goes with them. When you move from the small to the large, the 
topological features become the ones that are most significant. 

Although it does not apparently fit into the same framework, number theory shared 
a similar development. Number theorists distinguish what they call the "local theory", 
where they talk about a single prime, one prime at a time, or a finite set of primes, 
and the "global theory", where you consider all primes simultaneously. This analogy 
between primes and points, between the local and global, has had an important effect 
in the development of number theory, and the ideas that have taken place in topology 
have had their impact on number theory. 

In physics, of course, classical physics is concerned with the local story, where 
you write down the differential equation that governs the small-scale behavior; and 
then you have to study the large-scale behavior of a physical system. All physics is 
concerned really with predicting what will happen when you go from a small scale, 
where you understand what is happening, to a large scale, and follow through to the 
conclusions. 

2. INCREASE IN DIMENSIONS. My second theme is different. It is what I call the 
increase in dimensions. Again, we start with the classical theory of complex variables: 
classical complex variable theory was primarily the theory of one complex variable 
studied in detail, with great refinement. The shift to two or more variables fundamen- 
tally took place in this century, and in that area new phenomena appear. Not everything 
is just the same as in one variable. There are quite new features, and the theory of 
n variables has become more and more dominant, one of the major success stories of 
this century. 

Again, differential geometers in the past would have studied primarily curves and 
surfaces. We now study the geometry of n-dimensional manifolds, and you have to 
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think carefully to realize that this was a major shift. In the early days, curves and 
surfaces were things you could really see in space. Higher dimensions were slightly 
fictitious, things that you could imagine mathematically, but perhaps you did not take 
them seriously. The idea that you took these things seriously and studied them to an 
equal degree is really a product of the 20th century. Also, it would not have been nearly 
so obvious to our 19th-century predecessors to think of increasing the number of func- 
tions, to study not only one function but several functions, or vector-valued functions. 
So we have seen an increase in the number both of independent and dependent vari- 
ables. 

Linear algebra was always concerned with more variables, but there the increase in 
dimension was to be more drastic. It went from finite dimensions to infinite dimen- 
sions, from linear space to Hilbert space, with an infinite number of variables. There 
was, of course, analysis involved. After functions of many variables, you can have 
functions of functions, functionals. These are functions on the space of functions. They 
all have essentially infinitely many variables, and that is what we call the calculus of 
variations. A similar story was developing with general (non-linear) functions, an old 
subject, but one that really was coming into prominence in the 20th century. So that is 
my second theme. 

3. COMMUTATIVE TO NON-COMMUTATIVE. A third theme is the shift from 
commutative to non-commutative. This is perhaps one of the most characteristic fea- 
tures of mathematics, particularly algebra, in the 20th century. The non-commutative 
aspect of algebra has been extremely prominent, and, of course, its roots are in the 
19th century. It has diverse roots. Hamilton's work on quatemions was probably the 
single biggest surprise and had a major impact, motivated in fact by ideas having to do 
with physics. There was the work of Grassmann on exterior algebras-another alge- 
braic system that has now been absorbed in our theory of differential forms. Of course, 
the work of Cayley on matrices, based on linear algebra, and that of Galois, based on 
group theory, were other highlights. 

All these are different ways or strands that form the basis of the introduction of 
non-commutative multiplication into algebra, which is the bread and butter of 20th- 
century algebraic machinery. We do not think anything of it, but in the 19th century all 
these foregoing examples were, in their different ways, tremendous breakthroughs. Of 
course, the applications of these ideas came quite surprisingly in different directions. 
The applications of matrices and non-commutative multiplication in physics came with 
quantum theory. The Heisenberg commutation relations are a most important example 
of a significant application of non-commutative algebra in physics, subsequently ex- 
tended by von Neumann into his theory of algebras of operators. 

Group theory has also been a dominant feature of the 20th century and I shall return 
to this later. 

4. LINEAR TO NON-LINEAR. My next theme is the passage from the linear to 
the non-linear. Large parts of classical mathematics are either fundamentally linear 
or, if not exactly linear, approximately linear, studied by some sort of perturbation 
expansion. The really non-linear phenomena are much harder, and have only been 
seriously tackled in this century. 

The story starts off with geometry: Euclidean geometry, geometry of the plane, 
of space, of straight lines, everything linear; and then through various stages of non- 
Euclidean geometry to Riemann's more general geometry, where things are fundamen- 
tally non-linear. In differential equations, the serious study of non-linear phenomena 
has thrown up a whole range of new phenomena that you do not see in the classical 
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treatments. I might just pick out two here, solitons and chaos, two very different as- 
pects of the theory of differential equations that have become extremely prominent and 
popular in this century. They represent alternative extremes. Solitons represent unex- 
pectedly organized behavior of non-linear differential equations, and chaos represents 
unexpectedly disorganized behavior. Both of them are present in different regimes, 
and are interesting and important, but they are fundamentally non-linear phenomena. 
Again, you can trace back the early history of some of the work on solitons into the 
last part of the 19th century, but only very slightly. 

In physics, of course, Maxwell's equations, the fundamental equations of electro- 
magnetism, are linear partial differential equations. Their counterparts, the famous 
Yang-Mills equations, are non-linear equations that are supposed to govern the forces 
involved in the structure of matter. The equations are non-linear, because the Yang- 
Mills equations are essentially matrix versions of Maxwell's equations, and the fact 
that matrices do not commute is what produces the non-linear term in the equations. 
So here we see an interesting link between non-linearity and non-commutativity. Non- 
commutativity does produce non-linearity of a particular kind, and this is particularly 
interesting and important. 

5. GEOMETRY VERSUS ALGEBRA. So far I have picked out a few general 
themes. I want now to talk about a dichotomy in mathematics that has been with us 
all the time, oscillating backwards and forwards, and gives me a chance to make some 
philosophical speculations or remarks. I refer to the dichotomy between geometry and 
algebra. Geometry and algebra are the two formal pillars of mathematics, and both are 
very ancient. Geometry goes back to the Greeks and before; algebra goes back to the 
Arabs and the Indians, so they have both been fundamental to mathematics, but they 
have had an uneasy relationship. 

Let me start with the history of the subject. Euclidean geometry is the prime ex- 
ample of a mathematical theory, and it was firmly geometrical until the introduction 
by Descartes of algebraic coordinates in what we now call the Cartesian plane. That 
was an attempt to reduce geometrical thinking to algebraic manipulation. This was, of 
course, a big breakthrough or a big attack on geometry from the side of the algebraists. 
If you compare in analysis the work of Newton and Leibniz, they belong to different 
traditions: Newton was fundamentally a geometer, Leibniz was fundamentally an al- 
gebraist, and there were good, profound reasons for that. For Newton, geometry, or 
the calculus as he developed it, was the mathematical attempt to describe the laws of 
nature. He was concerned with physics in a broad sense, and physics took place in the 
world of geometry. If you wanted to understand how things worked, you thought in 
terms of the physical world, you thought in terms of geometrical pictures. When he 
developed the calculus, he wanted to develop a form of it that would be as close as 
possible to the physical context behind it. He therefore used geometrical arguments, 
because that was keeping close to the meaning. Leibniz, on the other hand, had the 
aim, the ambitious aim, of formalizing the whole of mathematics, turning it into a big 
algebraic machine. This was totally opposed to the Newtonian approach. They also 
used very different notations. As we know, in the big controversy between Newton 
and Leibniz, Leibniz's notation won out. We have followed his way of writing deriva- 
tives. Newton's spirit is still there, but it got buried for a long time. 

By the end of the 19th century, a hundred years ago, the two major figures were 
Poincare and Hilbert. I have mentioned them already, and they are, very crudely speak- 
ing, disciples of Newton and Leibniz respectively. Poincare's thought was more in the 
spirit of geometry, topology, using those ideas as a fundamental insight. Hilbert was 
more a formalist; he wanted to axiomatize, formalize, and give rigorous, formal, pre- 
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sentations. They clearly belong to different traditions, though any great mathematician 
cannot be easily categorized. 

When preparing this talk, I thought I should put down some further names from our 
present generation who represent the continuation of these traditions. It is very difficult 
to talk about living people-whom to put on the list? I then thought to myself: who 
would mind being put on either side of such a famous list? I have, therefore, chosen 
two names: Arnol'd as the inheritor of the Poincare-Newton tradition, and Bourbaki 
as, I think, the most famous disciple of David Hilbert. Arnol'd makes no bones about 
the fact that his view of mechanics, in fact, of physics, is that it is fundamentally 
geometrical, going back to Newton; everything in between, with the exception of a few 
people like Riemann, who was a bit of a digression, was a mistake. Bourbaki tried to 
carry on the formal program of Hilbert of axiomatizing and formalizing mathematics 
to a remarkable extent, with some success. Each point of view has its merits, but there 
is tension between them. 

Let me try to explain my own view of the difference between geometry and algebra. 
Geometry is, of course, about space; of that there is no question. If I look out at the 
audience in this room I can see a lot, in one single second or microsecond I can take 
in a vast amount of information and that is, of course, not an accident. Our brains have 
been constructed in such a way that they are extremely concerned with vision. Vision, 
I understand from friends who work in neurophysiology, uses up something like 80 
or 90 percent of the cortex of the brain. There are about 17 different centers in the 
brain, each of which is specialized in a different part of the process of vision: some 
parts are concerned with vertical, some parts with horizontal, some parts with colour, 
perspective, finally some parts are concerned with meaning and interpretation. Under- 
standing, and making sense of, the world that we see is a very important part of our 
evolution. Therefore spatial intuition or spatial perception is an enormously powerful 
tool, and that is why geometry is actually such a powerful part of mathematics-not 
only for things that are obviously geometrical, but even for things that are not. We 
try to put them into geometrical form because that enables us to use our intuition. 
Our intuition is our most powerful tool. That is quite clear if you try to explain a 
piece of mathematics to a student or a colleague. You have a long, difficult argument 
and finally the student understands. What does the student say? The student says, "I 
see!" Seeing is synonymous with understanding, and we use the word "perception" 
to mean both things as well. At least this is true of the English language. It would be 
interesting to compare this with other languages. I think it is very fundamental that 
the human mind has evolved with this enormous capacity to absorb a vast amount 
of information by instantaneous visual action, and mathematics takes that and per- 
fects it. 

Algebra, on the other hand (and you may not have thought about it like this), is 
concerned essentially with time. Whatever kind of algebra you are doing, a sequence 
of operations is performed one after the other, and "one after the other" means you 
have got to have time. In a static universe you cannot imagine algebra, but geometry 
is essentially static. I can just sit here and see, and nothing may change, but I can still 
see. Algebra, however, is concerned with time, because you have operations that are 
performed sequentially and, when I say "algebra", I do not just mean modern algebra. 
Any algorithm, any process for calculation, is a sequence of steps performed one after 
the other, the modem computer makes that quite clear. The modern computer takes its 
information in a stream of zeros and ones and gives the answer. 

Algebra is concerned with manipulation in time, and geometry is concerned with 
space. These are two orthogonal aspects of the world, and they represent two different 
points of view in mathematics. Thus the argument or dialogue between mathematicians 
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in the past about the relative importance of geometry and algebra represents something 
very fundamental. 

Of course, it does not pay to think of this as an argument in which one side loses 
and the other side wins. I like to think of it in the form of an analogy: "Should you just 
be an algebraist or a geometer?" is like saying "Would you rather be deaf or blind?" If 
you are blind, you do not see space, if you are deaf, you do not hear, and hearing takes 
place in time. On the whole, we prefer to have both faculties. 

In physics, there is an analogous, roughly parallel, division between the concepts 
and the experiments. Physics has two parts to it: theory-concepts, ideas, words, 
laws-and experimental apparatus. I think that concepts are in some broad sense ge- 
ometrical, since they are concerned with things taking place in the real world. An 
experiment, on the other hand, is more like an algebraic computation. You do some- 
thing in time; you measure some numbers; you insert them into formulas, but the basic 
concepts behind the experiments are a part of the geometrical tradition. 

One way to put the dichotomy in a more philosophical or literary framework is to 
say that algebra is to the geometer what you might call the "Faustian Offer". As you 
know, Faust in Goethe's story was offered whatever he wanted by the devil in return 
for selling his soul. Algebra is the offer made by the devil to the mathematician. The 
devil says: "I will give you this powerful machine, and it will answer any question you 
like. All you need to do is give me your soul: give up geometry and you will have 
this marvellous machine." [Nowadays you can think of it as a computer!] Of course 
we like to have things both ways: we would probably cheat on the devil, pretend we 
are selling our soul, and not give it away. Nevertheless the danger to our soul is there, 
because when you pass over into algebraic calculation, essentially you stop thinking; 
you stop thinking geometrically, you stop thinking about the meaning. 

I am a bit hard on the algebraists here, but fundamentally the purpose of algebra 
always was to produce a formula that one could put into a machine, turn a handle 
and get the answer. You took something that had a meaning; you converted it into a 
formula; and you got out the answer. In that process you do not need to think any more 
about what the different stages in the algebra correspond to in the geometry. You lose 
the insights and this can be important at different stages. You must not give up the 
insight altogether! You might want to come back to it later on. That is what I mean by 
the Faustian Offer. I am sure it is provocative. 

This choice between geometry and algebra has led to hybrids that confuse the two, 
and the division between algebra and geometry is not as straightforward and naive as 
I just said. For example, algebraists frequently will use diagrams. What is a diagram 
except a concession to geometrical intuition? 

6. TECHNIQUES IN COMMON. Let me go back now to talk not so much about 
themes in terms of content, but perhaps in terms of techniques and common methods 
that have been used. I want to describe a number of common methods that have been 
applied in a whole range of fields. The first is 

Homology Theory. Homology theory starts off traditionally as a branch of topology. 
It is concerned with the following situation. You have a complicated topological space 
and you want to extract from it some simple information that involves counting holes or 
something similar, some additive linear invariants you can associate to a complicated 
space. It is a construction, if you like, of linear invariants in a non-linear situation. 
Geometrically, you think of cycles that you can add and subtract and then you get what 
is called the homology group of a space. Homology is a fundamental algebraic tool that 
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was invented in the first half of the century as a way of getting some information about 
topological spaces; some algebra extracted out of the geometry. 

Homology also appears in other contexts. Another source of homology theory goes 
back to Hilbert and the study of polynomials. Polynomials are functions that are not 
linear, and you can multiply them to get higher degrees. It was Hilbert's great in- 
sight to consider "ideals", linear combinations of polynomials, with common zeros. 
He looked for generators of these ideals. Those generators might be redundant. He 
looked at the relations and then for relations between the relations. He got a hierarchy 
of such relations, which were called "Hilbert syzygies", and this theory of Hilbert was 
a very sophisticated way of trying to reduce a non-linear situation, the study of poly- 
nomials, to a linear situation. Essentially, Hilbert produced a complicated system of 
linear relations that encapsulates some of the information about non-linear objects, the 
polynomials. 

This algebraic theory is in fact very parallel to the topological theory, and they 
have now got fused together into what is called "homological algebra". In algebraic 
geometry, one of the great triumphs of the 1950s was the development of the coho- 
mology theory of sheaves and its extension to analytic geometry by the French school 
of Leray, Cartan, Serre, and Grothendieck, where you have a combination of the topo- 
logical ideas of Riemann-Poincare, the algebraic ideas of Hilbert, and some analysis 
thrown in for good measure. 

It turns out that homology theory has wider applications still, in other branches of 
algebra. You can introduce homology groups, which are always linear objects asso- 
ciated to non-linear objects. You can take groups, for example finite groups, or Lie 
algebras: both have homology groups associated to them. In number theory there are 
very important applications of homology theory, through the Galois group. So homol- 
ogy theory has turned out to be one of the powerful tools to analyze a whole range of 
situations, a typical characteristic of 20th-century mathematics. 

K-Theory. Another technique, which is in many ways very similar to homology the- 
ory, has had wide applications, and permeates many parts of mathematics, was of later 
origin. It did not emerge until the middle of the 20th century, although it is something 
that had its roots much further back as well. It is called "K-theory", and it is actually 
closely related to representation theory. Representation theory of, say, finite groups 
goes back to the last century, but its modem form, K-theory, is of more recent origin. 
K-theory can also be thought of in the following way: it is the attempt to take ma- 
trix theory, where matrices do not commute under multiplication, and try to construct 
Abelian or linear invariants of matrices. Traces and dimensions and determinants are 
Abelian invariants of matrix theory and K-theory is a systematic way of trying to deal 
with them; it is sometimes called "stable linear algebra". The idea is that if you have 
large matrices, then a matrix A and a matrix B that do not commute will commute 
if you put them in orthogonal positions in different blocks. Since in a big space you 
can move things around, then in some approximate way you might think this is going 
to be good enough to give you some information, and that is the basis of K-theory 
as a technique. It is analogous to homology theory, in that both try to extract linear 
information out of complicated non-linear situations. 

In algebraic geometry, K-theory was first introduced with remarkable success by 
Grothendieck, in close relation to the story we just discussed a moment ago involving 
sheaf theory, and in connection with his work on the Riemann-Roch theorem. 

In topology, Hirzebruch and I copied these ideas and applied them in a purely topo- 
logical context. In a sense, while Grothendieck's work is related to Hilbert's work on 
syzygies, our work was more related to the Riemann-Poincare work on homology, us- 
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ing continuous functions as opposed to polynomials. It also played a role in the index 
theory of linear elliptic partial differential equations. 

In a different direction, the algebraic side of the story, with potential application 
to number theory, was then developed by Milnor, Quillen, and others, and has led to 
many interesting questions. 

In functional analysis, the work of many people, including Kasparov, extended the 
continuous K-theory to the situation of non-commutative C*-algebras. The continu- 
ous functions on a space form a commutative algebra under multiplication, but non- 
commutative analogues of those arise in other situations, and functional analysis turns 
out to be a very natural home for these kinds of questions. 

So K-theory is another area where a whole range of different parts of mathematics 
lends itself to this rather simple formalism, although in each case there are quite diffi- 
cult technical questions specific to that area, which connect up with other parts of the 
subject. It is not a uniform tool; it is more a uniform framework, with analogies and 
similarities between one part and the other. 

Much of this work has also been extended by Alain Connes to "non-commutative 
differential geometry". 

Interestingly enough, very recently, Witten in working on string theory (the latest 
ideas in fundamental physics) has identified very interesting ways in which K-theory 
appears to provide a natural home for what are called "conserved quantities". Whereas 
in the past it was thought that homology theory was the natural framework for them, it 
now seems that K-theory provides a better answer. 

Lie Groups. Another unifying concept that is not just a technique is that of Lie 
groups. Now Lie groups, by which we mean fundamentally the orthogonal, unitary, 
and symplectic groups, together with some exceptional groups, have played a very 
important part in the history of 20th-century mathematics. Again, they date from 
the 19th century. Sophus Lie was a 19th-century Norwegian mathematician, and he, 
Felix Klein, and others pushed "the theory of continuous groups", as it was called. 
Originally, for Klein, this was a way of trying to unify the different kinds of geom- 
etry: Euclidean geometry and non-Euclidean geometry. Although this subject started 
in the 19th century, it really took off in the 20th century. The 20th century has been 
very heavily dominated by the theory of Lie groups as a sort of unifying framework in 
which to study many different questions. 

I did mention the role in geometry of the ideas of Klein. For Klein, geometries 
were spaces that were homogeneous, where you could move things around without 
distortion, and so they were determined by an associated isometry group. The Eu- 
clidean group gave you Euclidean geometry; hyperbolic geometry came from another 
Lie group. So each homogeneous geometry corresponded to a different Lie group. 
But later on, following up on Riemann's work on geometry, people were more con- 
cerned with geometries that were not homogeneous, where the curvature varied from 
place to place and there were no global symmetries of space. Nevertheless, Lie groups 
still played an important role because they come in at the infinitesimal level, since 
in the tangent space we have Euclidean coordinates. Therefore, in the tangent space, 
infinitesimally, Lie group theory reappears, but because you have to compare differ- 
ent points in different places, you have to move things around in some way to handle 
the different Lie groups. That was the theory developed by Elie Cartan, the basis of 
modern differential geometry, and it was also the framework that was essential to Ein- 
stein's theory of relativity. Einstein's theory, of course, gave a big boost to the whole 
development of differential geometry. 
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Moving on into the 20th century, the global aspect, which I mentioned before, in- 
volved Lie groups and differential geometry at the global level. A major development, 
characterized by the work of Borel and Hirzebruch, gave information about what are 
called "characteristic classes". These are topological invariants combining the three 
key parts: the Lie groups, the differential geometry and the topology, and of course, 
the algebra associated with the group itself. 

In a more analytical direction, we get what is now called non-commutative har- 
monic analysis. This is the generalization of Fourier theory, where the Fourier series 
or Fourier integrals correspond essentially to the commutative Lie groups of the circle 
and the straight line. When you replace these by more complicated Lie groups, then 
we get a very beautiful, elaborate theory that combines representation theory of Lie 
groups and analysis. This was essentially the lifework of Harish-Chandra. 

In number theory the whole "Langlands program", as it is called, which is closely 
related also to Harish-Chandra's theory, takes place within the theory of Lie groups. 
For every Lie group, you have the associated number theory and the Langlands pro- 
gram, which has been carried out to some extent. It has influenced a large part of the 
work in algebraic number theory in the second half of this century. The study of mod- 
ular forms fits into this part of the story, including Andrew Wiles' work on Fermat's 
Last Theorem. 

One might think that Lie groups are particularly significant only in geometrical 
contexts, because of the need for continuous variation, but the analogues of Lie groups 
over finite fields give finite groups, and most finite groups arise in that way. Therefore 
the techniques of some parts of Lie theory apply even in a discrete situation for finite 
fields or for local fields. There is a lot of work that is pure algebra; for example, work 
with which George Lusztig's name is associated, where representation theory of such 
finite groups is studied and where many of the techniques that I have mentioned before 
have their counterparts. 

7. FINITE GROUPS. This brings us to finite groups, and that reminds me: the clas- 
sification of finite simple groups is something where I have to make an admission. 
Some years ago I was interviewed, when the finite simple group story was just about 
finished, and I was asked what I thought about it. I was rash enough to say I did not 
think it was so important. My reason was that the classification of finite simple groups 
told us that most simple groups were the ones we knew, and there was a list of a few 
exceptions. In some sense that closed the field, it did not open things up. When things 
get closed down instead of getting opened up, I do not get so excited, but of course a 
lot of my friends who work in this area were very, very cross. I had to wear a sort of 
bulletproof vest after that! 

There is one saving grace. I did actually make the point that in the list of the so- 
called "sporadic groups", the biggest was given the name of the "Monster". I think the 
discovery of this Monster alone is the most exciting output of the classification. It turns 
out that the Monster is an extremely interesting animal and it is still being understood 
now. It has unexpected connections with large parts of other parts of mathematics, with 
elliptic modular functions, and even with theoretical physics and quantum field theory. 
This was an interesting by-product of the classification. Classifications by themselves, 
as I say, close the door; but the Monster opened up a door. 

8. IMPACT OF PHYSICS. Let me move on now to a different theme, which is the 
impact of physics. Throughout history, physics has had a long association with mathe- 
matics, and large parts of mathematics, calculus, for example, were developed in order 
to solve problems in physics. In the middle of the 20th century this perhaps had be- 
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come less evident, with most of pure mathematics progressing very well independently 
of physics, but in the last quarter of this century things have changed dramatically. Let 
me try to review briefly the interaction of physics with mathematics, and in particular 
with geometry. 

In the 19th century, Hamilton developed classical mechanics, introducing what is 
now called the Hamiltonian formalism. Classical mechanics has led to what we call 
"symplectic geometry". It is a branch of geometry that could have been studied much 
earlier, but in fact has not been studied seriously until the last two decades. It turns 
out to be a very rich part of geometry. Geometry, in the sense I am using the word 
here, has three branches: Riemannian geometry, complex geometry, and symplectic 
geometry, corresponding to the three types of Lie groups. Symplectic geometry is the 
most recent of these and in some ways possibly the most interesting, and certainly one 
with extremely close relations to physics, because of its historical origins in connec- 
tion with Hamiltonian mechanics and more recently with quantum mechanics. Now, 
Maxwell's equations, which I mentioned before, the fundamental linear equations of 
electromagnetism, were the motivation for Hodge's work on harmonic forms, and the 
application to algebraic geometry. This turned out to be an enormously fruitful theory, 
which has underpinned much of the work in geometry since the 1930s. 

I have already mentioned general relativity and Einstein's work. Quantum mechan- 
ics, of course, provided an enormous input. Not only in the commutation relations, but 
more significantly in the emphasis on Hilbert space and spectral theory. 

In a more concrete and obvious way, crystallography in its classical form was con- 
cerned with the symmetries of crystal structures. The finite symmetry groups that can 
take place around points were studied in the first instance because of their applications 
to crystallography. In this century, the deeper applications of group theory have turned 
out to have relations to physics. The elementary particles of which matter is supposed 
to be built appear to have hidden symmetries at the very smallest level, where there 
are some Lie groups lurking around that you cannot see, but the symmetries of these 
become manifest when you study the actual behavior of the particles. So you postulate 
a model in which symmetry is an essential ingredient and the different theories that 
are now prevalent have certain basic Lie groups such as SU(2) and SU(3) built into 
them as primordial symmetry groups. So these Lie groups appear as building blocks 
of matter. 

Nor are compact Lie groups the only ones that appear. Certain non-compact Lie 
groups, such as the Lorentz group, appear in physics. It was physicists who first started 
the study of the representation theory of non-compact Lie groups. These are represen- 
tations that have to take place in Hilbert space because, for compact groups, the irre- 
ducible representations are finite dimensional, but non-compact groups require infinite 
dimensions, and it was physicists who first realized this. 

In the last quarter of the 20th century, the one we have just been finishing, there 
has been a tremendous incursion of new ideas from physics into mathematics. This is 
perhaps one of the most remarkable stories of the whole century. It requires perhaps 
a whole lecture on its own but, basically, quantum field theory and string theory have 
been applied in remarkable ways to get new results, ideas, and techniques in many parts 
of mathematics. By this I mean that the physicists have been able to predict that certain 
things will be true in mathematics based on their understanding of the physical theory. 
Of course, that is not a rigorous proof, but it is backed by a very powerful amount of 
intuition, special cases, and analogies. These results predicted by the physicists have 
time and again been checked by the mathematicians and found to be fundamentally 
correct, even though it is quite hard to produce proofs and many of them have not yet 
been fully proved. 
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So there has been a tremendous input over the last 25 years in this direction. The 
results are extremely detailed. It is not just that the physicists said, "this is the sort of 
thing that should be true." They said, "here is the precise formula and here are the first 
ten cases" (involving numbers with more than 12 digits). They give you exact answers 
to complicated problems, not the kind of thing you can guess; things you need to have 
machinery to calculate. Quantum field theory has provided a remarkable tool, which is 
very difficult to understand mathematically but has had an unexpected bonus in terms 
of applications. This has really been the exciting story of the last 25 years. 

Here are some of the ingredients: Simon Donaldson's work on 4-dimensional man- 
ifolds; Vaughan Jones' work on knot invariants; mirror symmetry, quantum groups; 
and I mentioned the Monster just for good measure. 

What is this subject all about? As I mentioned before, the 20th century saw a shift 
in the number of dimensions ending up with an infinite number. Physicists have gone 
beyond that. In quantum field theory they are really trying to make a very detailed study 
of infinite-dimensional space in depth. The infinite-dimensional spaces they deal with 
are typically function spaces of various kinds. They are very complicated, not only 
because they are infinite-dimensional, but they have complicated algebra and geometry 
and topology as well, and there are large Lie groups around, infinite-dimensional Lie 
groups. So, just as large parts of 20th-century mathematics were concerned with the 
development of geometry, topology, algebra, and analysis on finite-dimensional Lie 
groups and manifolds, this part of physics is concerned with the analogous treatments 
in infinite dimensions, and of course it is a vastly different story, but it has enormous 
payoffs. 

Let me explain this in a bit more detail. Quantum field theories take place in space 
and time; and space is really meant to be three-dimensional but there are simplified 
models where you take one dimension. In one-dimensional space and one-dimensional 
time, typically the things that physicists meet are, mathematically speaking, groups 
such as the diffeomorphisms of the circle or the group of differentiable maps from the 
circle into a compact Lie group. These are two very fundamental examples of infinite- 
dimensional Lie groups that turn up in quantum field theories in these dimensions, and 
they are quite reasonable mathematical objects that have been studied by mathemati- 
cians for some time. 

In such 1 + 1 dimensional theories one can take space-time to be a Riemann surface, 
and this leads to new results. For example, the moduli space of Riemann surfaces of a 
given genus is a classical object going back to the last century. Quantum field theory 
has led to new results about the cohomology of these moduli spaces. Another, rather 
similar, moduli space is the moduli space of flat G-bundles over a Riemann surface 
of genus g. These spaces are very interesting, and quantum field theory gives precise 
results about them. In particular, there are beautiful formulas for the volumes, which 
involve values of zeta functions. 

Another application is concerned with counting curves. If you look at plane alge- 
braic curves of a given degree of a given type, and you want to know how many of 
them, for example, pass through so many points, you get into enumerative problems of 
algebraic geometry, problems that would have been classical in the last century. These 
are very hard. They have been solved by modern machinery called "quantum cohomol- 
ogy", which is all part of the story coming from quantum field theory, or you can look 
at more difficult questions about curves not in the plane, but curves lying on curved 
varieties. One gets another beautiful story with explicit results going by the name of 
mirror symmetry. All this comes from quantum field theory in 1 + 1 dimensions. 
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If we move up one dimension, where we have 2-space and 1-time, this is where 
Vaughan Jones' theory of invariants of knots comes in. This has had an elegant expla- 
nation or interpretation in quantum-field-theory terms. 

Also coming out of this is what are called "quantum groups". Now the nicest thing 
about quantum groups is their name. They are definitely not groups! If you were to 
ask me for the definition of a quantum group, I would need another half hour. They 
are complicated objects, but there is no question that they have a deep relationship 
with quantum theory. They emerged out of the physics, and they are being applied by 
hard-nosed algebraists who actually use them for definite computations. 

If we move up one step further, to fully four-dimensional theory (three-plus-one 
dimension), that is where Donaldson's theory of four-dimensional manifolds fits in 
and where quantum field theory has had a major impact. In particular, it led Seiberg 
and Witten to produce their alternative theory, which is based on physical intuition and 
gives marvellous results mathematically as well. All of these are particular examples. 
There are many more. 

Then there is string theory and this is already passe! M-theory is what we should 
talk about now, and that is a rich theory, again with a large number of mathematical 
aspects to it. Results coming out of it are still being digested and will keep mathemati- 
cians busy for a long time to come. 

9. HISTORICAL SUMMARY. Let me just try to make a quick summary. Let me 
look at the history in a nutshell: what has happened to mathematics? I will rather 
glibly just put the 18th and 19th centuries together, as the era of what you might call 
classical mathematics, the era we associate with Euler and Gauss, where all the great 
classical mathematics was worked out and developed. You might have thought that 
would almost be the end of mathematics, but the 20th century has, on the contrary, 
been very productive indeed and this is what I have been talking about. 

The 20th century can be divided roughly into two halves. I would think the first 
half has been dominated by what I call the "era of specialization", the era in which 
Hilbert's approach, of trying to formalize things and define them carefully and then 
follow through on what you can do in each field, was very influential. As I said, Bour- 
baki's name is associated with this trend, where people focused attention on what you 
could get within particular algebraic or other systems at a given time. The second half 
of the 20th century has been much more what I would call the "era of unification", 
where borders are crossed, techniques have been moved from one field into the other, 
and things have become hybridized to an enormous extent. I think this is an oversim- 
plification, but I think it does briefly summarize some of the aspects that you can see 
in 20th-century mathematics. 

What about the 21st century? I have said the 21st century might be the era of quan- 
tum mathematics or, if you like, of infinite-dimensional mathematics. What could this 
mean? Quantum mathematics could mean, if we get that far, understanding properly 
the analysis, geometry, topology, algebra of various non-linear function spaces, and 
by "understanding properly" I mean understanding it in such a way as to get quite 
rigorous proofs of all the beautiful things the physicists have been speculating about. 

One should say that, if you go at infinite dimensions in a naive way and ask naive 
questions, you usually get the wrong answers, or the answers are dull. Physical ap- 
plication, insight, and motivation have enabled physicists to ask intelligent questions 
about infinite dimensions and to do very subtle things where sensible answers do come 
out, and therefore doing infinite-dimensional analysis in this way is by no means a sim- 
ple task. You have to go about it in the right way. We have a lot of clues. The map is 
laid out: this is what should be done, but it is long way to go yet. 
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What else might happen in the 21st century? I would like to emphasize Connes' 
non-commutative differential geometry. Alain Connes has this rather magnificent uni- 
fied theory. Again it combines everything. It combines analysis, algebra, geometry, 
topology, physics, and number theory, all of which contribute to parts of it. It is a 
framework that enables us to do what differential geometers normally do, including 
its relationship with topology, in the context of non-commutative analysis. There are 
good reasons for wanting to do this, applications (potential or otherwise) in number 
theory, geometry, discrete groups, and so on, and in physics. An interesting link with 
physics is just being worked out. How far this will go, what it will achieve, remains 
to be seen. It certainly is something that I expect will be significantly developed in the 
first decade at least of the next century, and it is possible it could have a link with the 
as-yet-undeveloped (rigorous) quantum field theory. 

Moving in another direction, there is what is called "arithmetic geometry" or 
Arakelov geometry, which tries to unify as much as possible algebraic geometry and 
parts of number theory. It is a very successful theory. It has made a nice start but has a 
long way to go. Who knows? 

Of course, all of these have strands in common. I expect physics to have its impact 
spread all the way through, even to number theory: Andrew Wiles disagrees and only 
time will tell. 

These are the strands that I can see emerging over the next decade, but there is what 
I call a joker in the pack: going down to lower-dimensional geometry. Alongside all 
the infinite-dimensional fancy stuff, low-dimensional geometry is an embarrassment. 
In many ways the dimensions where we started, where our ancestors started, remain 
something of an enigma. Dimensions 2, 3, and 4 are what we call "low". For example, 
the work of Thurston in three-dimensional geometry aims at a classification of ge- 
ometries one can put on three-dimensional manifolds. This is much deeper than the 
two-dimensional theory. The Thurston program is by no means completed yet, and 
completing that program certainly should be a major challenge. 

The other remarkable story in three dimensions is the work of Vaughan Jones with 
ideas essentially coming from physics. This gives us more information about three 
dimensions, which is almost orthogonal to the information contained in the Thurston 
program. How to link those two sides of the story together remains an enormous chal- 
lenge, but there are recent hints of a possible bridge. So this whole area, still in low 
dimensions, has its links to physics, but it remains very mysterious indeed. 

Finally, I should like to mention that in physics what emerges very prominently are 
"dualities". These dualities, broadly speaking, arise when a quantum theory has two 
different realizations as a classical theory. A simple example is the duality between po- 
sition and momentum in classical mechanics. This replaces a space by its dual space, 
and in linear theories that duality is just the Fourier transform. But in non-linear theo- 
ries, how you replace a Fourier transform is one of the big challenges. Large parts of 
mathematics are concerned with how to generalize dualities in non-linear situations. 
Physicists seem to be able to do so in a remarkable way in their string theories and in 
M-theory. They produce example after example of marvellous dualities that in some 
broad sense are infinite-dimensional non-linear versions of Fourier transforms and they 
seem to work. But understanding those non-linear dualities does seem to be one of the 
big challenges of the next century as well. 

I think I will stop there. There is plenty of work, and it is very nice for an old man 
like me to talk to a lot of young people like you; to be able to say to you: there is plenty 
of work for you in the next century! 
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