Selected Publications

To download a copy, click on the authors for that publication.
[Logan Lab publications] [Logan Google Scholar[Gorski Google Scholar]


Moon, S., W. Yang, C. Gorski, and B.E. Logan. 2019. Electro forward osmosis. Environ. Sci. Technol. 53(14):8352−8361. [Supporting information]


Rahimi, M., T. Kim, C.A. Gorski, and B.E. Logan. 2018. A thermally regenerative ammonia battery with carbon-silver electrodes for converting low-grade waste heat to electricity. J. Power Sources. 373:95–102.

Rahimi, M., A.P. Straub, F. Zhang, X. Zhu, M. Elimelech, C.A. Gorski, and B.E. Logan. 2018. Emerging electrochemical and membrane-based systems to convert low-grade heat to electricity. Energy Env. Sci. 11:276–285.


Kim, T, B.E. Logan and C.A. Gorski. 2017. A pH-gradient flow cell for converting waste CO2 into electricity. Environ. Sci. Technol. Lett.4(2):49–53.

Kim, T., B.E. Logan, and C.A. Gorksi. 2017. High power energy recovery in an electrochemical process from salinity differences by combining electrode and Donnan potentials in a concentration flow cell. Energy Environ. Sci. 10(4):1003–1012.[Supporting information]

Rahimi, M., A. D’Angelo, C.A. Gorski, O Scialdone, and B.E. Logan. 2017. Electrical power production from low-grade waste heat using a thermally regenerative ethylenediamine battery. J. Power Sources. 351:45–50. [Supporting information.]

Rahimi, M., Z. Schoener, X. Zhu, C.A. Gorski, and B.E. Logan. 2017. Copper removal from wastewater using thermally regenerative battery. J. Haz. Mater. 322:551–556. [Supporting information]

Rahimi, M., L. Zhu, K.L. Kowalski, X. Zhu, C.A. Gorski, M.A. Hickner, and B.E. Logan. 2017. Improved electrical power production of thermally regenerative batteries using a poly(phenylene oxide) based anion exchange membrane. J. Power Sources. 342:956-963.[Supporting information]

Zhu, X., T. Kim, M. Rahimi, C.A. Gorski, B.E. Logan. 2017. Integrating reverse-electrodialysis stacks with flow batteries to achieve improved energy recovery from salinity gradients and energy storage. ChemSusChem. 10(4):797–803.


Feng, Y. L. Yang, J. Liu and B.E. Logan. 2016. Electrochemical technologies for wastewater treatment and resource reclamation. Env. Sci. Water Res. Technol. 2(5):800-831.

Kim, T., M. Rahimi, C.A. Gorski and B.E. Logan. Salinity-gradient flow battery for harvesting energy from salinity differences. Environ. Sci. Technol. 50(17):9791−9797.

Kim, T., M. Rahimi, B.E. Logan and C.A. Gorski. 2016. Evaluating battery-like reactions to harvest energy from salinity differences using ammonium bicarbonate salt solutions. ChemSusChem. 9(9):981-988.

Zhang, X., W. He, W. Yang, J. Liu, Q. Wang, P. Liang, X. Huang, and B.E. Logan. 2015. Diffusion layer characteristics for increasing performance of activated carbon air-cathodes in microbial fuel cells. Environ. Sci. Water Res. Technol. 2(2):235–406.

Zhang, X., W. He, R. Zhang, Q. Wang, P. Liang, X. Huang, B.E. Logan, and T.-P. Fellinger. 2016. High-performance carbon aerogel air-cathodes for microbial fuel cells. ChemSusChem. 9:2788 – 2795.

Zhu, X., M. Rahimi, C. Gorski and B.E. Logan. 2016. A thermally-regenerative ammonia-based flow battery for electrical energy recovery from waste heat. ChemSusChem. 9(8):873-879.


Zhang, F., N. LeBarge, W. Yang, J. Liu, and B.E. Logan. 2015. Enhancing the performance of low-grade thermal energy recovery in a thermally regenerative ammonia battery (TRAB) by using elevated temperatures. ChemSusChem. 8:1043-1048. [Supporting information]

Zhang, F., J. Liu, W. Yang, and B.E. Logan. 2015. A thermally regenerative ammonia-based battery for efficient harvesting of low-grade thermal energy as electrical power. Energy Env. Sci. 8(1):343-3249. [Supporting information]

Zhu, X., W. He, and B.E. Logan. 2015. Influence of solution concentration and composition on the performance of reverse electrodialsysis cells. J. Membrane Sci. 494:154–160

Zhu, X., W. He, and B.E. Logan. 2015. Reducing pumping energy by using different flow rates of high and low concentration solutions in reverse electrodialysis cells. J. Membrane Sci. 486:215-221.


Geise, G.M., H.J. Cassady, D.R. Paul, B.E. Logan, and M.A. Hickner. 2014.Specific ion effects on membrane potential and the permselectivity of ion exchange membranes. Phys. Chem. Chem. Phys. 16(39):21673-21681.

Geise, G.M., A.J. Curtis, M.C. Hatzell, M.A. Hickner, and B.E. Logan. 2014. Salt concentration differences alter membrane resistance in reverse electrodialysis stacks. Environ. Sci. Technol. Lett. 1(1):36-39. [Supporting information]

Hatzell, M.C., R.D. Cusick, and B.E. Logan. 2014. Capacitive mixing power production from salinity gradient energy enhanced through exoelectrogen-generated ionic currents. Energy Env. Sci. 7(3):1159-1165. [Supporting information]

Hatzell, M.C., K.B. Hatzell, and B.E. Logan. 2014. Using flow electrodes in multiple reactors in series for continuous energy generation from capacitive mixing. Environ. Sci. Technol. Lett. 1(12):474-478.[Supporting information]

Hatzell, M.C., I. Ivanov, R.D. Cusick, X. Zhu, and B.E. Logan. 2014.Comparison of hydrogen production and electrical power generation for energy capture in closed-loop ammonium bicarbonate reverse electrodialysis systems.Phys. Chem. Chem. Phys. 16(4):1632–1638. [Supporting information]

Hatzell, M.C., M. Raju, V.J. Watson, A.G. Stack, A.C.T. van Duin, and B.E. Logan. 2014. The effect of strong acid functional groups on electrode rise potential in capacitive mixing by double layer expansion. Environ. Sci, Technol.48(23):14041-14048. [Supportring information]

Hatzell, M.C., X. Zhu, and B.E. Logan. 2014. Simultaneous hydrogen generation and waste acid neutralization in a reverse electrodialysis system. ACS Sustain. Chem. Engin. 2(9):2211-2216. [Supporting information]

Liu, J., G. Geise, X. Liu, H. Hou, F. Zhang, W. He, Y. Feng, X. Huang, M.A. Hickner, and B.E. Logan. 2014. Patterned ion exchange membranes prepared by a casting method to improve power production in microbial reverse-electrodialysis cells. J. Power Sources. 271:437-443. [Supporting Information]

Luo, X., F. Zhang, J. Liu, X. Zhang, X. Huang, and B.E. Logan. 2014. Methane production in microbial reverse-electrodialysis methanogenesis cells (MRMC) using thermolytic solutions. Environ. Sci. Technol. 48(15):8911–8918[Supporting information.]

Nam, J.-Y., M.D. Yates, Z. Zaybak, and B.E. Logan. 2014. Factors affecting protein degradability in a continuous microbial electrolysis cell treating fermentation wastewater. Biores. Technol. 171:182-186.

Zhu, X., M.C. Hatzell, and B.E. Logan. 2014. Microbial reverse-electrodialysis electrolysis and chemical-production cell for H2 production and CO2sequestration. Environ. Sci. Technol. Lett. 1(4):231−235.

Zhu, X., W. Yang, M.C. Hatzell and B.E. Logan. 2014. Energy recovery from solutions with different salinities based on swelling and contraction of hydrogels. Environ. Sci. Technol. 48(12):7157-7163. [Supporting Information]


Cusick, R.D., M.C. Hatzell, F. Zhang and B.E. Logan. 2013. Minimal RED cell pairs markedly improve electrode kinetics and power production in microbial reverse-electrodialysis cells. Environ. Sci. Technol. 47(24): 14518-14524. [Supporting information]

Geise, G.M., M.A. Hickner, and B.E. Logan. 2013. Ammonium bicarbonate transport in anion exchange membranes for salinity gradient energy. ACS Macro Lett. 2(9):814–817. [Supporting information]

Geisse, G.M., M.A. Hickner and B.E. Logan. 2013. Ionic resistance and permselectivity tradeoffs in anion exchange membranes. ACS Appl. Mat. Inter.5(20):10294–10301.

Hatzell, M.C., and B.E. Logan. 2013. Evaluation of flow fields on bubble removal and system performance in an ammonium bicarbonate reverse electrodialysis stack.J. Mem. Sci. 446:449-455. [Supporting information]

Luo, X., J.-Y. Nam, F. Zhang, X. Zhang, Peng Liang, X. Huang, and B.E. Logan. 2013. Optimization of membrane stack configuration for efficient hydrogen production in microbial reverse-electrodialysis electrolysis cells coupled with thermolytic solutions. Biores. Technol. 140:399–405. [Supporting information]

Zhu, X., M.C. Hatzell, R.D. Cusick, and B.E. Logan. 2013. Microbial reverse-electrodialysis chemical-production cell for acid and alkali production.Electrochem. Commun. 31:52–55.


Logan, B.E. and M. Elimelech. 2012. Membrane-based processes for sustainable power generation using water and wastewater. Nature. 488:313-319.

Cusick, R.D., Y. Kim, and B.E. Logan. 2012. Energy capture from thermolytic solutions in microbial reverse-electrodialysis cells. Science. 335:1474-1477.Abstract [Supporting Information]

Nam, J.-Y., R.D. Cusick, Y. Kim, and B.E. Logan. 2012. Hydrogen generation in microbial reverse-electrodialysis electrolysis cells using a heat-regenerated salt solution. Environ. Sci. Technol. 46(9): 5240-5246.  [supporting information]


Cheng, S., J.-H. Jang, B.A. Dempsey, and B.E. Logan. 2011. Efficient recovery of nano-sized iron oxide particles from synthetic acid-mine drainage (AMD) water using fuel cell technologies. Wat. Res. 45(1):303-307.

Kim, Y. and B.E. Logan. 2011. Hydrogen production from inexhaustible supplies of fresh and salt water using microbial reverse-electrodialysis electrolysis cells.Proc. Nat. Acad. Sci. 108(39):16176-16181.

Kim, Y. and B.E. Logan. 2011. Microbial reverse electrodialysis cells for synergistically enhanced power production. Environ. Sci. Technol. 45(13):5834–5839.

La Mantia, F., M. Pasta, H.D. Deshazer, B.E. Logan, and Y. Cui. 2011. Batteries for efficient energy extraction from a salinity difference. Nanoletters, 11(4):1810–1813.

Wang, X., S. Cheng, X. Zhang, X.-Y. Li, and B.E. Logan. 2011. Impact of salinity on cathode catalyst performance in microbial fuel cells (MFCs). Int. J. Hydrogen Energy. 36(21):13900-13906.

Powered by WordPress. Designed by WooThemes

Skip to toolbar