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Abstract

Complex and not only big data exist everywhere in industry and how to
control and optimize systems based on these data types is an important as-
pect of modern Quality Engineering. One fundamental type of complexity
occurs when data lies on a lower dimensional, curved subspace or manifold.
We review a new approach for statistical process monitoring of point cloud,
mesh and voxel data based on intrinsic geometrical features of the 2-D mani-
fold (surfaces) of scanned manufactured parts. Monitoring intrinsic properties
avoids computationally expensive registration pre-processing of the data sets.
We also present a review of recent approaches for analyzing and designing
experiments where either the response or the covariates lie on manifolds.

1 Introduction: manifold data in industry

Quality Engineers working in industry must be acquainted with new ways to analyze

not only larger datasets, but frequently, more complex datasets. In this paper we

address the case the complexity of a dataset occurs because the data follow, apart

of measurement error, a lower dimensional manifold, which can be understood infor-

mally as a curved space which, when looked over a small domain around any point

in the space, it resembles euclidean space (as a typical example, consider the surface

of the Earth or a spheroid in R3). We will focus on two of the main subfields of

Industrial Statistics: Statistical Process Control (i.e., monitoring, hereafter referred

to as SPC) and Experimental Design and Analysis. We are aware that the subject
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of manifold data in industrial statistics is a wider theme than these subtopics and

we do not aim at a comprehensive review; the subfields we concentrate are admit-

tedly limited to our personal research interests. In the machine learning literature,

manifold learning is a topic that has received considerable attention, and similarly,

“shape analysis” and “statistical shape analysis” of 3D objects, whose surface is a

2-dimensional manifold, have been intensively studied in the computer vision and

statistics fields, respectively, over the last two decades. We will discuss intersections

between Industrial Statistics and these fields when appropriate. We concentrate in

manufacturing industry, where discrete parts are produced and measured.

The wider availability of 3-dimensional (3D) non-contact (range) scanners in in-

dustry has produced large datasets of surface measurements, a canonical case of

manifold data, where the manifold is the surface of a manufactured part and resides,

or is embedded in, 3D euclidean space. The manifold (object of the surface) is in-

trinsically two dimensional, since, just as on the surface of the earth, it suffices to

give two coordinates to locate a point on a surface. In its most unprocessed form,

3D scanner data have the form of Point Clouds, i.e., datasets where the (xi, yi, zi)

coordinates of hundreds of thousands of points xi on the surface of a part are easily

recorded (these could be unstructured or structured clouds, where the surface points

follow a grid pattern). The scanner is not perfect, and what one measures is the

true surface plus measurement error in all 3 coordinates. In addition to Point Cloud

data, it is frequent that 3D scanners generate mesh data, and in particular, triangu-

lations, where the measured points on the surface of a part correspond to vertices

linked to nearby neighbors, in a network of triangles that defines the surface of an

object. Most 3D scanners have built-in algorithms that directly generate a trian-

gulation of the scanned data, useful for visualization purposes. Such triangulations

are also common in Computer Aided Design (CAD) and in additive manufacturing

(AM). Also prompted by AM needs, voxel datasets (three dimensional pixel data)

are increasingly more frequent, as there is no better way to inspect internal features

of a 3-D printed part than to use x-ray tomography Colosimo et al. (2018).

In this paper, we first discuss a recent approach for Statistical Process Monitoring

of surface data based on “intrinsic” quantities of the surfaces of scanned parts, that

is, quantities which depend only on the surface coordinates but not on distances

across the 3D euclidean space where the part exists. Monitoring intrinsic properties

avoids computationally expensive registration pre-processing of the point clouds. We

propose to use properties of a 3D object that are invariant to rigid transformations,
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i.e., rotations and translations so they are not affected by location or pose. Our

review of recent work will make contact with Computer Graphics literature that

uses a particular surface invariant, the Laplacian (or Laplace-Beltrami operator) of

the surface. We next review experimental design and analysis for manifold data. We

consider two cases, when the covariates (“X” data) lie on a low dimensional manifold

embedded in a high dimensional euclidean space, and when the response data (“Y ”

data) lies on a manifold of high dimension.

2 Statistical Process Monitoring of Manifold (Sur-

face) data

Consider a manufacturing process of discrete parts and the sequence of surfaces

that are measured about which we wish to perform SPC (as mentioned below, the

approach also applies to other complex data types, including voxel data, so SPC

on internal features and not only of surface data is also possible). For surface data

we assume a non-contact sensor acquires a large (hundreds of thousands) points

per part, assuming points follow no particular pattern, with the number of points

per part not necessarily equal, and not corresponding with each other. We could

first think in applying techniques from the well established field of Statistical Shape

Analysis (SSA), whose aim is statistical inference on objects in 2 and 3-dimensional

euclidean space from data in the form of an m × d configuration matrix X, where

m is the number of points and d = 2 or 3 depending on whether the object is planar

or 3-dimensional (see Kendall (1984). For an introduction to SSA, see Dryden &

Mardia (2016) and the accompanying shapes R package, Dryden (2018). We further

discuss SSA in section 3, with reference to analysis of experiments whose response is

the shape of a manufactured object.)

A shape is classically defined as the information contained in X once we discount

or “filter out” the effects of similarity transformations (translations, rotations, and

changes in scale or dilatations, usually excluding reflections). This is a useful notion:

whichever way we define the shape of an object, it should remain unchanged, or be

invariant with respect to changes of location, orientation or changes of scale of the

object (for process monitoring of manufactured parts, invariance to rigid transforma-

tions or isometries –rotations and translations, but not changes in scale– is perhaps

more convenient. Two objects are then said to have the same shape and size if they
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are congruent). SSA methods were initially applied in archeology and especially in

paleontology and biology for classification of specimens in different species, testing

whether two specimens have the same shape or not, or for the analysis of the main

modes of variability in the shapes within a species. To perform either task, the set of

points in N ≥ 2 configuration matrices from different objects must first be superim-

posed or registered, i.e., the point clouds are put into the same location, orientation

and scale via the Generalized Procrustes Algorithm (GPA, Dryden & Mardia (2016)).

The GPA registers or superimposes all the n objects by finding scaling factors

βi ∈ R, rotation matrices Γi and d dimensional translation vectors γi, i = 1, ..., N ,

such that they minimize the sum of squared “full procrustes” distances between all

pairs of configuration matrices (dF (X i,Xj)).

It is possible in principle to use GPA and the full procrustes distances dF (X i,Xj)

for SPC purposes. GPA can be used to register N in-control parts from which an in-

control mean µ̂ can be estimated from the centroid of the m registered configuration

matrices representing the point clouds. GPA is implemented in function procGPA

and the full procrustes distances dF (X i,Xj) are computed in function procdist in

the shapes R package Dryden (2018). For Matlab code, see Del Castillo & Colosimo

(2011). Then, the full procrustes distance between the measured configuration of

each new part X i and µ̂, dF (X i, µ̂) could be used for on-line monitoring purposes.

Under the model X i = βi(µ+Ei)Γi + 1mγ
′
i, i = 1, ..., N , with vec(Ei) = N(0, σ2I)

(isotropic normal errors) with σ not large, it is known that the test statistic for

H0 : [µ1] = [µ2] vs. a two sided alternative is an F statistic (see Goodall (1991)

and Dryden & Mardia (2016)). The assumptions of normality and isotropy can be

relaxed and either permutation or bootstrapped tests can be performed (see function

testmeanshape in the R package shapes).

Although GPA and the test for mean shape differences is not particularly expen-

sive computationally, it requires:

1. one-to-one corresponding points between points in each object;

2. An equal number of points in each point point cloud

These are requisites frequently true in applications in Biology and Archeology, where

they were developed and where the points on the objects under study are usually

manually selected “landmarks” of scientific interest. However, neither of these req-

uisites are true in manufacturing data obtained from non-contact sensors: first, the
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Figure 1: Diagrammatic representation of the traditional registration (matching) problem
for two 3D point clouds of different size. Data points are either acquired by a non-contact
sensor or could be acquired across the volume where the 3D object lies via computed
tomography (CT), resulting in voxel data (see figure 2 for an example). Left: an instance
of 2 turbine blades (from GATech (2019)) with different poses and with some of their
point correspondences shown. Right: a sketch of the resulting configuration matrices with
hypothetical correspondences (given by matrix M) after applying the ICP algorithm.

number of points acquired by a scanner varies from part to part, even if parts are

almost identical and almost identically posed with respect to the scanner, and sec-

ond, the labels of each point on each configuration matrix do not correspond to the

labels in other matrices. If surface measurements are obtained by a touch probe such

as a coordinate measurement machine (CMM), then the assumptions of statistical

shape analysis can be true. For this reason we return to SSA below in the designed

experiments section (where careful measurements can be performed).

The problem of registering two 3-D objects with a large but different number of

(non-corresponding) points has been known for a long time in the computer vision

literature, where the Iterated Closest Point (ICP) algorithm (Besl & McKay, 1992;

Zhang, 1992) is a standard. Consider the configurations of two distinct unlabeled

objects Xq ∈ Rm1×d and Xp ∈ Rm2×d, not necessarily having the same pose and

assume m1 ≤ m2. Let M ∈ Rm1×m2 with Mij = 1 if xq,i ∈Xq is matched with point

xp,j ∈ Xp, and zero otherwise. The objects may be located and oriented differently

in space (see Figure 1), and hence the problem is not only to find a rigid body

transformation but also the correspondences given by M . This is a hard non-linear

(not convex) discrete optimization problem.

Commercial Computer Aided Design (CAD) and inspection software use variants

of the ICP method to align the cloud points of a scanned object and that of the CAD

design, in order to determine regions in the manufactured part that are different
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from nominal. Figure 2 shows an instance of a metal part CAD model and two

color-coded comparisons between the CAD model and the 3D-printed part. This

is actually voxel data, not point cloud point data on the surface of the object, but

the registration problem is essentially identical. The deviations from nominal can

be used for process monitoring purposes, in a similar way than traditional “DNOM”

control charts (Farnum, 1994). The deviations from nominal are vectors, and either

their norm or their individual components could be used for SPC (see Figure 2).

The main issue is that aligning two or more point clouds (or meshes) using ICP with

hundreds of thousands to millions of points in each mesh is not a task fast enough for

on-line process monitoring. If in an effort to reduce the computational time in the

ICP alignment problem one solves it only approximately returning a local optimal

solution (given the hard global optimization problem involved) this can have the

effect of inflating the variability in the data, an undesirable consequence if our goal

is to detect true sources of extraneous variability.

Figure 2: Left: CAD design 3D rendering of a metal part. Middle: CT image of the
manufactured part with color contrast indicating differences in the x dimension between
the CAD nominal dimension and the actual part x dimension. The CT software registers
the CAD design and actual part using the ICP algorithm and color codes the deviations
from nominal for visualization (VGStudio was used to create the first two figures). Right:
deviations from nominal (or “gap”, as called by the Geomagic inspection software) are in
fact vectors in 3D.

In Zhao & del Castillo (2019), rather than solving registration problems via ICP

or similar algorithms for on-line control, we propose instead to do SPC on properties

of the surface (a 2-dimensional manifold) of an object that are not only invariant

to rigid transformations (as the shape of an object is invariant) but also that are

intrinsic properties. A geometric property of a manifold is intrinsic if it is computed
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without any use of the coordinates or other information from the space it is embedded

in, and only uses coordinates (or information, in general) defined on the manifold.

For the surface of an object, surface coordinates and geodesic distances are intrinsic

properties, so is the Gaussian curvature. They are all also invariant properties.

In contrast, euclidean distances between points in an object are invariant but not

intrinsic. By only using intrinsic properties computed from each part, it is possible

to avoid the computationally expensive registration step (ICP registration could still

be used for post alarm diagnostics, helping to locate the defect on the part, but not

for on-line monitoring).

Using intrinsic properties is a central idea in computer vision and computer graph-

ics (see e.g., Biasotti et al. (2016); Boscaini et al. (2015); Kimmel (2004)). These

fields are usually interested in classifying different shapes of objects in broad classes.

In most cases, the objects are not point clouds scanned from some real object (and

subject to both manufacturing and measurement errors) but are meshes or point

clouds obtained from high resolution graphical objects for the purpose of animation

and computer graphics. Thus in these fields, the fundamental SPC issue of detecting

differences in shape in a sequence of closely similar objects from noisy scanned data

does not arise.

As we discuss in Zhao & del Castillo (2019), an intrinsic operator from Differential

Geometry which contains considerable geometrical information about a manifold

M, and that is widely used for this reason in both machine learning and computer

graphics/computer vision, is the so-called Laplace-Beltrami (LB) operator acting on

a function f defined on M:

∆Mf = −divM∇Mf

which reduces to the usual Laplace operator in caseM = Rn. Here, f is a function of

the manifold coordinates x1, x2, ..., xk. In the case of a surface (k = 2) embedded in

R3, the surface coordinates are usually denoted by (u, v) ≡ (x1, x2). The intuition is

that to measure how a function defined over a curvilinear space varies it is necessary

to consider the curvature of the space, and the LB operator evaluated at a point

x ∈ M is a measure of local curvature of M (twice the so-called mean curvature)

evaluated at x. The LB operator appears in partial differential equations modeling

difussion processes, and also in the wave equation. The heat equation, for instance,

models how the heat at a location x ∈ M varies both in space and in time. The
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“spatial” part of the solution of this equation results in the eigenvalue problem:

∆Mf = λf (1)

sometimes called the Helmholtz partial differential equation. The collection of eigen-

values {λi}∞i=0 is called the spectrum of the LB operator. The spectrum of the LB

operator is always discrete, non-negative, and contains considerable geometrical and

topological information about a manifold that can be used for shape identification.

The true spectrum of very few manifolds is known and in practice a discrete approx-

imation based on either a network or voxel partition of the manifold needs to be

used. When discretized, the infinite dimensional function f becomes a vector, and

the LB operator ∆M reduces to a matrix L. Then the Helmholtz equation becomes

a standard linear algebra eigendecomposition problem.

One instance where the true spectrum of a 2-manifold is known is the case of a

unit sphere. Using the sphere as an example, Figure 3 shows how the LB operator

spectrum is invariant to rigid transformations, and therefore, it is potentially use-

ful to detect changes in shape. The spectrum is also intrinsic, as its computation

requires only information on the 2-manifold and not in the ambient space. In ma-

chine learning, LB operator-based methods have proved useful in both unsupervised

and semi-supervised learning methods (e.g., see Belkin & Niyogi (2008)). For un-

supervised learning, the spectrum of the LB operator is used. For semi-supervised

learning, a discrete-valued function f defined on M is observed (labeled) at certain

points in the point cloud dataset. The main goal is to fit this function, and an ap-

proximation to the LB operator is needed based on such dataset. Computer graphics

and computer vision authors have also used the LB operator for shape classification

(e.g., see Kimmel (2004); Levy (2006)).

2.1 Using the estimated LB spectrum as a tool for SPC

Several discrete approximations of the LB operator of a 2-manifold M have been

developed over the past 15 years in the computer graphics literature. There are also

discrete approximations for the case the manifold is a 3D solid and the data are in

the form of voxels. In Zhao & del Castillo (2019) we use a localized mesh Laplacian

(Li et al. , 2015) to approximate the LB operator on the triangulations that result

from scanning each part. This approximation is useful for SPC purposes as it results
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Figure 3: Lower part of the spectrum of the true LB operator of a unit sphere under
similarity transformations. As can be seen, the true spectrum is invariant with respect to
rigid transformations such as rotations and translations. Scaling the object by s will make
the eigenvalues change by 1/s2 (here s = 1.2 made the eigenvalues decrease close to 30%).

in a sparse matrix L, and important consideration given that sequences of L (m×m)

matrices need to be processed for SPC thus not only computation (see below) but

also storage issues arise as soon as one handles large, realistic meshes created from

non-contact sensors. The lower part of the estimated spectrum is stable to noise

(Zhao & del Castillo, 2019) and is known to converge to the spectrum of the true

(continuous) LB operator (Li et al. , 2015).

Returning to the surface data SPC problem, suppose we have acquired meshes

from a series of parts. A simple idea is to use the corresponding sequence of Mesh

Laplacian spectra (sorted in natural order cropped up to a certain max eigenvalue)

obtained from scanned parts, consider each spectrum a profile, and apply well-

established SPC techniques for profile data. To illustrate the shape change detection

capabilities of the LB spectrum, we count how many times the eigenvalues of a new

part fall within an acceptable range. Consider Figure 4 where an acceptable and a

defective part are shown: the defective part has a small chip in a corner. We sim-

ulated 100 realizations of the acceptable mesh adding isotropic N(0, 0.052I) noise
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and computed the corresponding spectra from the approximate discrete LB oper-

ator. We also simulated one realization of the defective part with the same noise

level. The variation of the spectra of the 100 acceptable parts is quite minor, but

the defective part has a spectrum whose eigenvalues often fell outside the range of

the acceptable eigenvalues. This indicates the potential for the spectrum to be used

for SPC purposes.

The computational bottleneck is of course obtaining the eigenvalues of L, which

depending on its sparseness is an O(m) to O(m3) operation. In practice, only the

lower part of the spectrum is needed, and this, together with the use of a sparse

discrete LB operator (Li et al. , 2015) permits the on-line control of parts based on

realistic (several tens of thousands) points per mesh-part.

For a full exposition of the concept of monitoring intrinsic geometrical properties

for SPC purposes, including the LB spectrum for different data types, the discrete

approximations used and a discussion of specific control charting schemes, see Zhao

& del Castillo (2019).

3 Manifold data in experimental design and anal-

ysis

In addition to SPC problems for complex data types, Engineers need also to be

acquainted with ways to handle manifold data that relate to designed experiments.

Here we discuss recent approaches in two cases of particular importance in quality

engineering, the case when the response data lies on a manifold (the shape space of

configuration matrices) and the case when the regressors lie on a manifold.

3.1 Response data lying on a manifold

Here, the response is the shape of an object, assumed measured more accurately with

a contact sensor in a R&D setting and represented by a configuration matrixX. The

goal of the experiment is to find controllable factors that have significant effects on

the shape of a product or part, and estimate those effects. In this case the traditional

techniques from statistical shape analysis, which are based on Procrustes registration

and assume one to one correspondences, can be useful, although to our knowledge

there is no work done beyond a 2-factor factorial for analyzing shapes using SSA
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Figure 4: Spectra of 100 acceptable parts vs. spectrum of a defective part with a small
chip in one corner. Graph shows bars at 5th and 95th percentiles of the eigenvalues of all
acceptable parts vs. the spectra of a defective part. Numbers on graph are the number of
times the ith eigenvalue realization of an acceptable part was larger than the ith eigenvalue
from the defective part. Therefore, numbers closer to 0 or 100 indicate more power to
detect the defect.

techniques. The “shape space”, i.e., the space of configuration matrices X after

discounting the effect of similarity or rigid transformations excluding reflections, is

not an euclidean space but is a curved manifold (Kendall, 1984). When working with

data items located on a curvilinear space, such as configuration matrices on shape

space, if the registered matrices are considerably different and therefore far from

each other, standard statistical tools such as ANOVA and PCA, based on euclidean

concepts (e.g., Pythagoras theorem) do not apply and new tools are necessary to

analyze these complex data.

An early reference in the analysis of experiments where the responses are shapes

is Snee & Andrews (1971). Their work predated the modern developments in the

statistical analysis of shapes by Kendall and others, but had the merit of pointing

out the importance of experiments where it is necessary to characterize and optimize

the shape of an object. These authors illustrated their ideas with application in
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agriculture (characterization of the shapes of sweet potatoes as a function of planting

date and variety; Snee (1972) also studied the shape of carrots). These authors used

the type of analysis of shape data existing in the pre-SSA era: one analyzes ratios

of distances between locations of interest in the object (what today are called the

landmarks).

One way ANOVA tests for effects on the mean shape of an object were developed

by Goodall based on the full procrustes distances d(X i,Xj), see Goodall (1991) and

Dryden & Mardia (2016). The analysis is valid if the noise in the parts (as measured

by σ below) is not too big and also if the difference between the shapes is not too large.

Contrary to euclidean data, which lies in Rn, we have that in a standard ANOVA

using full procrustes distances as metric, the space of registered configuration ma-

trices (shape space) is not euclidean, and therefore SStotal ≤ SStreatment + SSerror,

with equality approaching as σ gets smaller and as the shapes of the different objects

between treatments get closer. These are not unrealistic assumptions in manufac-

tured products and an R&D environment, where the shape differences and noise will

typically be moderate.

The one-way ANOVA for shapes was extended to the two-way case, including

interaction, by Del Castillo & Colosimo (2011). Let the expected configuration X

obtained under treatment 1 level i, treatment 2 level j for the lth replication be

(following standard ANOVA notation):

E[X ijl] = µ+ τ i + βj + (τβ)ij, i = 1, ..., a; j = 1, ..., b; l = 1, ..., n (2)

Since the parts may not be initially registered, the first step of the ANOVA on

shapes is to register all abn = N shapes with the GPA algorithm. The procrustes

fits will then be given by Xp
ijl = β̂ijlX ijlΓ̂ijl + 1kγ̂

′
ijl. The estimated overall mean

shape is µ̂ = X••• = 1/N
∑

i

∑
j

∑
lX

p
ijl where we use the standard “dot” notation

in two-way ANOVA. Provided the shapes of the objects are not too far from the

mean shape, we have the approximate ANOVA partition:

SStotal ≈ SSA + SSB + SSAB + SSerror

where SStotal =
∑a

i=1

∑b
j=1

∑n
l=1 d

2
F (Xp

ijl,X•••),

SSA = bn
a∑
i=1

d2F (X i••,X•••), SSB = an
b∑

j=1

d2F (X•j•,X•••),

12



SSAB = n

a∑
i=1

b∑
j=1

d2F (X ij• − (X i•• −X•••)− (X•j• −X•••),X•••)

and SSerror =
∑a

i=1

∑b
j=1

∑n
l=1 d

2
F (Xp

ijl,X ij•). An extension of the one-way ANOVA

in Goodall (1991) for testing Ho(1) : τ i = 0, Ho(2) : βj = 0 and Ho(3) : (τβ)ij = 0

is based on the statistics: F
(1)
0 = MSA/MSerror, F

(2)
0 = MSB/MSerror, F

(3)
0 =

MSAB/MSerror. Similarly as for the one-way ANOVA case, the distributions of

these three statistics (under their null hypothesis for small σ) are a F(a−1)M,ab(n−1)M ,

a F(b−1)M,ab(n−1)M and a F(a−1)(b−1)M,ab(n−1)M , respectively, where M = (k − 1)m −
1 − m(m − 1)/2 is the dimension of the shape space for k landmarks in Rm. But

just as for the one-way ANOVA-shape case, given the restrictive assumptions in

the isotropic, normal model, permutation tests were recommended (Del Castillo &

Colosimo, 2011). As an aid for visualizing main and interaction effects on the shape

of the object the authors presented graphs based on “quiver” plots (see Figure 5).

For non-planar surfaces, contrast plots similar to those produced by CAD inspection

software (Figure 2) could be used for visualization (the ANOVA for shapes is valid

for surface and solid manifolds M ⊂ R3). MATLAB code that implements these

methods is available at PSU’s Engineering Statistics and Machine Learning Lab web

site.
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Figure 5: Shape main effects plot for the depth of cut in a cross-section of a titanium
part manufactured in a lathe (from Del Castillo & Colosimo (2011)). The circle denotes
the overall mean shape X••• = µ̂. The effects have been increased 1000 times to allow
visualization.

Power analysis of the SSA methods for the analysis of experiments presented in

Del Castillo & Colosimo (2011) were studied by Alshraideh & Del Castillo (2013).
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Comparisons with euclidean distance based methods (Lele & Richtsmeier, 1991) and

with the common use of manufacturing form errors (cylindricity, circularity) indicate

that the ANOVA tests shown above (both the normal-error ANOVA and for general

noise distributions, the permutation ANOVA test) provide highest power to detect

changes in shape among these methods for a variety of simple 2D and 3D objects.

3.2 Covariate data on a Manifold

Optimal experimental design methods for manifold covariate data have received in-

creased attention over the last decade in the area of Active Learning (AL) (Cai &

He (2012); He (2010)). The AL problem can be described as follows: given a set of

points {x1, x2, ..., xn} ∈ M ⊂ Rr, find a subset {v1, v2, ..., vm} = V ⊂ M which are

the ‘most informative’ to be labeled next. In standard machine learning terminology,

a point xj is labeled if its response value yj is observed, and learning refers to fitting

a function from data. AL aims at accelerating learning by choosing the instances

to label, essentially an experimental design problem. Figure 6 shows a diagram of a

typical AL cycle in which a human annotator acts as an “oracle” providing the labels

for instances, in a process that is repeated starting from a state where very little to no

labeled data are available. AL is useful when labeling is expensive (precisely because

it requires human intervention) and when unlabelled data are in contrast abundant

and inexpensive. There are many analogies between AL and the theory of optimal

design of experiments (ODOE), as it can be seen in Table 1. ODOE can be used to

select the next instance (point) to label, i.e., to select the most informative“query” to

the “oracle”, in an iterative process. Similar to the case of ODOE, different criteria

are used to define ‘most informative’ and result in different AL strategies. The main

issue we wish to discuss occurs when all points, labelled and unlabelled, are in a

curved manifold of much lower dimension that their ambient space.

The optimal AL strategy is frequently based on regularized least squares estima-

tion. As far as we know, the first discussion of regularized least squares estimation

in the ODOE literature is a paper by Vuchkov (1977). Classical ODOE considers

fitting a linear regression model of the form

y = f(x, θ) + ε = θ′z(x) + ε, z(x) ∈ Rp, ε ∼ N(0, σ2)

where z(x) is a vector of p known basis functions evaluated at the vector of r experi-

mental design factors x ∈ Rr, and θ ∈ Rp is a vector of unknown parameters. In the
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Active Learning Optimal Experimental Design

Active learning strategy Sequential optimal experimental design
Learning Model fitting
Labels Response values yi
Labeled data Points xi and their observed response value yi
Unlabeled data Candidate list

Table 1: Similitudes between Active learning and optimal experimental design

Training
data

Unlabeled
data

Model

“ORACLE” (human
annotator)

Instances
selected 
to query

Model
learning

Predictions
on test data

Labels

Figure 6: An Active Learning Cycle.

machine learning literature, z(x) is a nonlinear feature mapping from the ambient

space (Rr) to a higher dimensional feature space.

If “labels” (response values) {yi}ni=1 are available for a sample of n design points

{xi}ni=1, as it is well-known, under normal errors, the maximum likelihood estimator

of the parameters θ is the least squares estimator:

θ̂ = arg min
θ∈Rp

{
n∑
i=1

(yi − θ′z(xi))
2

}
= (Z ′Z)−1Z ′Y

where Z is n × p and Y is n × 1. With this, we have that the fitted function is

f̂(x) = θ̂′z(x). The sometimes called “alphabetic” design optimality criteria focuses

on the variance-covariance matrix of the parameter estimates:

Var(θ̂) = σ2(Z ′Z)−1

Optimal DOE seeks to optimize some scalar function of the matrix on the right, as

a function of the experimental design. While the theory of convex optimal design
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focuses in the case an experimental design ξ is a probability measure over the exper-

imental region (assumed a subset of Rn), in practice an “exact” or “finite” design ξn
is desired, and this is defined as:

ξn =

{
x1 x2 ... xn
p1 p2 ... pn

}
where pi = ri/n and ri is the number of observations at point xi (the notion of

replications is practically non-existing in active learning, where most of the time

ri = 1), so
∑

i ri = n. For instance, exact D-optimal designs attempt to maximize

the determinant of the information matrix M(ξn), defined as |M(ξn)| = |Z′Z
n
| =

|
∑

i piz(xi)z(xi)
′|. Because algorithms for finding D-optimal designs are frequently

iterative and based on the update formula for the determinant, they require to be

started at iteration p + 1 from a p-point non-singular design. Avoiding an initial

p-point design was the main reason Vuchkov (1977) proposed to modify the least

squares estimator with (Z ′Z + λI)−1Z ′Y , which corresponds to the ridge regularized

problem

θ̂ridge = arg min
θ

{
n∑
i=1

(θ′z(xi)− yi)2 + λ

p∑
j=1

θ2j

}
= (Z ′Z + λI)−1Z ′Y (3)

Regularization permits fitting complex models based on moderate or small data sets

Bishop (2006). The ridge solution (3) is a particular case of a more general learning

problem where model fitting is seen as a functional problem in a Hilbert space HK

endowed with a positive semi-definite kernel function K(xi, xj) : Rr × Rr → R, i.e.,

a reproducible kernel Hilbert space (RKHS, for a thorough exposition of RKHS in

smoothing splines, see Wahba (1990)).

Belkin et al. (2006) study how to use the geometry of the manifold where the

covariate data resides for a semi-supervised machine learning problem. These authors

make the following manifold assumption: the marginal distribution P (y|x) is

supported in a manifold M of intrinsic lower dimension than the “ambient space”

of x (in our case, lower than r). Furthermore, the marginal distribution is assumed

to be smooth as x varies within the data manifold.

If the manifold assumption holds for a dataset, Belkin et al. (2006) show how

the geometry of the unlabeled data carries information that can be used to fit (learn

about) a function supported in a manifold using both labeled and unlabelled data.
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Their semi-supervised framework consists in solving the double regularized problem:

f̂ = arg min
f∈HK

{
n∑
i=1

(yi − f(xi))
2 + λA||f ||2HK

+ λIf
′Lf

}
(4)

where L is the m×m combinatorial Laplacian matrix associated with the graph G

of all labeled and unlabeled data points xi, defined as L = D −W but where W

is a weight matrix with weights given by the heat kernel kt(xi, xj) (t = 1), and D

is a diagonal matrix with ith entry equal to
∑m

j=1Wij. The first regularization is

on the smoothness of f on the ambient space and uses a kernel function K(xi, xj) :

Rr × Rr → R, similar to the regularization used when fitting splines. The second

regularization term is a penalization on the smoothness of f as it varies between

adjacent points in G. Similar models than (4) have been discussed in the Statistics

literature, used for fitting regression models on 2-manifolds which only consider the

second type of regularization, see e.g., Sangalli et al. (2013). It can be shown (see

Belkin (2003)) that this second regularization term equals:

f ′Lf =
m∑
i=1

m∑
j=1

(f(xi)− f(xj))
2Wij (5)

where m equals the sum of the n points to be labeled and the m − n unlabelled

points. Belkin et al. (2006) show that the solution of problem (4) in terms of all

points, labeled and unlabeled (note the sum of squares in (4) is over the n labeled

data points only) is:

f̂ =
m∑
i=1

α̂iK(xi, x)

Substituting this expression in the risk function (4) and using calculus, the solution

to the Laplacian regularized Least Squares problem is (see Belkin et al. (2006)) :

α̂ = (JK + λAI + λILK)−1Y (6)

where K is the m ×m Gram matrix over all labeled and unlabeled points, Y is an

m × 1 vector of response values (labels) with the last m − n entries equal to zero,

and J is a diagonal matrix with n ones followed by m− n zeroes.

There are two threads in the extant literature on manifold-based AL methods.

One thread is based on the “Laplacian Regularized Least Squares” (LapRLS) formu-

lation above (4) and the “representer” (6). Methods in this first thread apply either
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D or G (determinant or minimax) DOE optimality criteria to the covariance of the

parameter estimates, and are described in section 3.2.1 below.

A second thread is based on the concept of finding a subset of points that is

explicitly representative of the manifold of points, and are based on an A-optimality

(average prediction variance) criterion. We comment in these so-called transductive

experimental design (TED) methods for AL in section 3.2.2 below.

3.2.1 Laplacian regularized AL methods

Here we study the first thread of manifold AL methods. He (2010) considers the

RKHS framework in model (4) and proposes to use the covariance matrix of the

parameter estimates for AL purposes. Assume initially a linear regression model

yi = f(xi) + ε = θ′xi + ε with var(ε) = σ2. Then the objective (4) is equal to

J(θ) = (Y −Xθ)′(Y −Xθ) + λIf(X)′Lf(X) + λA||θ||2

= (Y −Xθ)′(Y −Xθ) + λIθ
′X ′LXθ + λAθ

′θ

where Y is an n× 1 vector of labels (responses) and we used f(X) = Xθ. The goal

is to select the n × p design matrix Z from the “candidate list” of points (assumed

to lie on a manifold) X (an m× p) matrix. This is a convex function minimized at

θ̂ = (Z ′Z + λIX
′LX + λAI︸ ︷︷ ︸
H

)−1Z ′Y

which has a covariance matrix equal to cov(θ̂) = σ2H−1Z ′ZH−1. Since arg min |H−1| =
arg max |H| we can simply max |H| with respect to {z1, z2, ..., zn}. Chen et al. (2010)

proposed instead a minimax or G-optimal approach, that is:

min
Z

max
xi∈X

x′H−1k Z ′kZkH
−1
k x

A Laplacian-regularized active learning scheme then corresponds to solving these

optimization problems sequentially. Extending this to any kernel other than linear

involves using a “kernel trick” (see Bishop (2006)).

3.2.2 “Transductive” manifold AL methods

Yu et al. (2006) consider a ridge-like regularized problem. The scaled covariance

matrix of the parameter estimates is

Var(θ̂ridge)

σ2
= (Z ′Z + λI)−1.
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The prediction covariance matrix across all points in the candidate list X, Cp, is:

Cp = X(Z ′Z + λI)−1X ′

=
1

λ

[
X ′X −XZ ′(λI + Z ′Z)−1ZX ′

]
These authors then consider minimizing the average prediction variance over the

candidate listX, and idea they refer to as “transductive experimental design” (TED).

The goal is to find an n-point experimental design Z such that:

Z = arg min
Z⊂X

tr(Cp) = arg max
Z⊂X

tr(X ′Z(λI + ZZ ′)−1ZX ′)

Therefore, this is an “A”-optimal criterion. This problem is equivalent to

min
Z⊂X,A

m∑
i=1

(||xi − Z ′ai||2 + λ||ai||2) (7)

where A = [a1, a2, ..., am] ∈ Rm×n. This implies that the average prediction criterion

over the candidate points is equivalent to finding a subset of points Z from X that

best approximates (in the least squares sense) the whole candidate list X using

x̂i = Z ′ai.

Yu et al. (2008) then showed how given that the TED problem is NP hard (the

TED problem is essentially a subset selection problem), they solve instead a convex

relaxation of (7) for which a global optimum is guaranteed, and called their procedure

“convex TED”.

Finally, Cai & He (2012) and Zhang et al. (2014) propose to solve:

min a1, a2, ..., an

m∑
i=1

||φ̃(xi)− φ̃(Z)′ai||2 + λ||ai||2 (8)

where φ̃(·) is the feature vector associated with the warped kernel matrix K̃−1 =

K−1 + λI/λAL. These authors then used the convex relaxation approach in Yu

et al. (2008) to optimize (8) leading to what they referred to “Manifold Adaptive

Experimental Design” (MAED).

It should be pointed out that all the AL methods reviewed in section 3.2.1 are

based on either D or G optimality, whereas all the methods in section 3.2.2 are based

on A-optimality.
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3.2.3 Application of Manifold AL methods to a real data set

We applied the MAED and “Convex TED” AL methods (see section 3.2.2 and Cai &

He (2012) and Yu et al. (2008), respectively) to the Wisconsin breast cancer image

data set from the UCI Machine learning repository (Lichman, 2013). The dataset,

widely studied in the machine learning literature, contains 2 classes of labels for

the diagnosis (malignant or benign) associated with 10 attributes obtained from

digitalized images of a fine needle aspirate procedure of a breast mass. There are

569 points in total.

The regularization parameters of each method were tuned using cross-validation.

A Gaussian kernel was used for MAED and a linear one for Convex TED as these

prove best classification in cross-validation. We follow the experimental procedure

in Cai & He (2012) who used a different (text) dataset. We ran MAED and Convex

TED to select different numbers (k) of points to label. Then the classifier is trained

with these k points and their labels, and used to classify the rest of the dataset. To

randomize the experiments, in each run, we restricted the training examples to be

selected only among a subset of 50% of the total data and used the remaining 50%

as test data over which the classification rate were computed. Table ?? shows the

average and standard errors of the miss-classification errors for MAED, Convex-TED,

and a random sampling strategy where the k points to label are simply randomly

selected from the training data (this provides a baseline performance benchmark).

Figure 7 displays the average classification error rates as a function of k.

As it can be seen, both Convex TED and MAED provide much better classifica-

tion performance when the number of points to label k is small, but as k grows, the

performance of both methods converges to that of randomly sampling new points.

This is a desirable behavior in practice, since usually labeling is expensive or time-

consuming, and only a few points are selected for labeling. Clearly, MAED performs

better than Convex TED, especially for the first hundred iterations. Evidently, this

example shares many features with image-based sequential inspection systems in

industry.

The applications of ODOE tools for manifold covariate data did not have, un-

til recently, theoretical support like their euclidean counterparts, where the Kiefer-

Wolfowitz equivalence theorem between D and G optimality criteria for approximate

designs provides some rationale about the discrete or exact application of these ideas.

For analogous theoretical work on equivalence theorems for approximate designs on
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No. of points to classify Random Sampling Convex TED MAED

15 0.241± 0.088 0.189± 0.073 0.080± 0.022
35 0.140± 0.032 0.092± 0.024 0.064± 0.016
55 0.086± 0.028 0.079± 0.019 0.054± 0.012
75 0.086± 0.023 0.068± 0.009 0.055± 0.015
95 0.064± 0.008 0.052± 0.011 0.045± 0.011
115 0.066± 0.010 0.052± 0.011 0.044± 0.013
135 0.061± 0.010 0.052± 0.008 0.042± 0.009
155 0.060± 0.011 0.046± 0.005 0.042± 0.010
175 0.055± 0.012 0.043± 0.011 0.041± 0.010
195 0.056± 0.012 0.041± 0.008 0.040± 0.005

Table 2: Misclassification error percentages of different AL methods for the Breast Cancer
dataset. The regularization parameters in the MAED and Convex TED methods were
tuned using cross-validation. Table shows the average and standard deviation of the error
percentages.

Riemmannian manifolds, and their use in discrete (exact) designs in an AL context

for regression on manifolds, see Li & Del Castillo (2019).

4 Conclusions

We have reviewed some recent concepts related to manifold data and Quality En-

gineering, with focus on Statistical Process Control (monitoring) and Analysis and

Design of Experiments. In the case of SPC, we review a fundamentally new ap-

proach for monitoring surfaces of manufactured products via intrinsic properties of

the meshes or point clouds generated with non-contact scanners that we have pro-

posed recently (Zhao & del Castillo, 2019). We discuss how the spectrum of the

Laplace-Beltrami operator carries considerable geometry information about a closed

surface (manifold) in R3. These methods, since they are intrinsic, do not necessitate

expensive pre-processing for alignment of the part with either a CAD model or with

other parts. Furthermore, the LB operator and its spectrum can be estimated not

only from point cloud and mesh data, but also from voxel data, necessary for the

inspection of parts in AM Reuter et al. (2007).

We also reviewed recent work on manifold-based data that occurs in designed

experiments, either when the response is a surface (manifold), of great importance

for quality control and improvement, or when the regressors are concentrated in a
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Figure 7: Average misclassification error percentages of two manifold-based AL methods as
a function of k, the number of points selected for labeling, compared to a random selection
strategy, breast cancer dataset. The regularization parameters in the MAED and Convex
TED methods were tuned using cross-validation. Clearly, bigger gains are provided by the
two AL methods when these are used to select few points for labeling, which is usually the
case when labeling is expensive or time-consuming.

low-dimensional manifold within a very high dimensional ambient space. In the first

case, we review an ANOVA approach for shapes, including visualization of effects

for planar shapes. In the latter case, we reviewed work on Active Learning (AL)

methods, popular in machine learning, applied for manifold data that can be used

for quicker defective detection in a quality control or inspection environment.
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