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Abstract

Bayesian statistical methods provide a sound mathematical framework to combine
prior knowledge about variables of importance in a process, if available, with the
actual data, and has proved useful in several data analytic tasks in the process
industry. We present a review and some extensions of bayesian predictive methods
for process optimization based on experimental design data, an area that is critical in
Quality by Design activities and where the bayesian perspective has received limited
attention from the Chemometrics and process analytics communities. The goal of the
methods is to maximize the probability of conformance of the predicted responses to
their specification limits by varying the process operating conditions. Optimization of
multiple response systems and of systems where the performance is given by a curve or
“profile” are considered, as they are more challenging to model and optimize, yet are
increasingly common in practice. We discuss the particular case of Robust Parameter
Design, a technique due to G. Taguchi and popular in discrete manufacturing systems,
and its implementation within a bayesian optimization framework. The usefulness of
the models and methods is illustrated with three real-life chemical process examples.
MATLAB code that implements all methods and reproduces all examples is made
available.

Keywords: High dimensional response optimization; Quality by Design; Hierarchical Linear
Models; Robust Parameter Design.
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1 Introduction: Bayesian optimization and Robust

Parameter Design

The utility of the bayesian paradigm to model uncertainties in complex engineering systems
has long been recognized. Bayesian “predictivism” centers on forecasting future observable
variables (typically, a response of some system) in terms of the resulting predicting posterior
distributions, and avoids traditional inferences on non-observable model parameters [54].
The focus of this paper is bayesian predictive techniques that deal with experimental data,
obtained with the goal to optimize or improve a process or a product.

A specific level of system complexity that can be analyzed with a bayesian predictive
approach is when the process response is multivariate, including the high dimensional case,
common in current industrial data-rich environments. Related to the multivariate response
process case, but significantly different from it, is the case of a process whose performance
is not given by a collection of correlated scalar responses but is given instead by the shape
of a continuous curve, i.e., a “profile” response system, in which an ideal profile is assumed
to exist describing the best operation of the process [52].

The recognition of the usefulness of the bayesian paradigm has recently been pointed
out by Tabora et al. [59] in the area of pharmaceutical process development. These authors
recommend the bayesian predictive approach developed by Peterson et al. [41, 12, 42, 35]
to consider the inherent uncertainties in process development and to quantify the risk
in “Quality by Design” problems, as defined by the FDA. Even though the diffusion of
bayesian methods to systems engineering, process analytics and chemometrics is still lim-
ited, a number of important problems have been studied. For instance, Nounou et al. de-
veloped bayesian latent variable model estimation methodologies [40, 39]. Chen et al. [8]
propose to study traditional Chemometrics methods from a bayesian point of view. Mech-
anistic modeling has benefitted from bayesian formulations for the estimation of kinetic
parameters from chemical reactions [45, 27]. Applications to data rectification [2], state
estimation [9] and sensor fusion [20, 53, 3, 17, 57] have also been developed for dynamical
systems. More recently, several bayesian process monitoring methodologies have also been
developed, namely for multimode, non-linear and non-stationary processes [66, 29, 22, 31].
Particularly, the bayesian predictive approach is the basis of many contemporary machine
learning methods, but explicit models and methods for the optimization of chemical pro-
cesses are lacking.

In the optimization of a chemical process from data-based models obtained from experi-
mental tests, it is of prime importance to compute the probability that a future experiment
will reproduce the current result considering the different uncertainties involved [50]. There
are uncertainties not only due to measurement errors but also in the model itself, or re-
sulting from the type of experimental design used, that need to be considered during the
optimization stage. Additional sources of variability in the process need to be consider as
well. In the discrete-parts industry -but no so much in the process industry- a popular type
of process optimization approach was initiated in the late 80s by the Japanese engineer G.
Taguchi [60] who introduced the key concept of a noise factor. These are process or prod-
uct variables that can be manipulated in a carefully controlled experiment, but once the
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process operates regularly (or the product is in the marketplace) they cannot be controlled
by the manufacturer anymore and, on the contrary, vary randomly. This situation leads
to the Robust Parameter Design (RPD) problem (Taguchi referred to process variables as
“parameters”), in which the goal is to find the settings of the controllable process/product
variables that optimize the responses despite the uncontrolled variability introduced by the
noise factors (see Figure 1), i.e., find an optimal solution that is robust with respect to noise
factor variability. Both controllable and noise factors can be either continuous variables or
categorical variables (taking values over a discrete set of levels). For an overview of Robust
Parameter Design methods, see [1, 65, 37, 12]. As it will be shown below, all these sources
of uncertainty can be handled with a bayesian predictive optimization approach.

Process Metrology

Controllable factors

Noise factors

Input 

materials
Responses

Products

Figure 1: A schematic of a process as seen from the point of view of Taguchi’s Robust Parameter Design
(RPD). The goal in RPD is to find settings for the controllable factors (operating or design variables) that
keep the responses of the process on the desired targets or goals in the presence of uncontrolled variability
in the so-called noise factors. RPD requires process models, often obtained via experimental tests and
statistical modeling.

In this paper, we present a review and some extensions of the bayesian predictive
approach for the solution of optimization problems in the broader context of the process
industry, including the RPD case. We focus on two types of empirical models: multiple
response processes (perhaps with a very high dimensional response) and processes where the
performance is described by some continuous curve or profile. These models have not been
sufficiently covered in the literature, but are becoming increasingly relevant as more and
more applications involve these type of high-dimensional responses (rather than the more
common case of a high-dimensional predictor space as in machine learning applications).
We illustrate the methods with 3 real-life applications in the process industry.

The remainder of the paper is organized as follows. We first contrast optimization
approaches based on models fitted with classical (frequentist) statistical methods with a
bayesian predictive approach. Next, two specific types of models, multivariate regression
for multiple response processes and hierarchical mixed effects models for processes with
a profile or curve response are presented, and their corresponding bayesian modeling and
optimization is discussed, including the case of robust parameter design optimization. Here
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Figure 2: Overlaid contour plot of the four fitted responses in a tire tread experiment in the x1−−x2 plane
(keeping x3 constant at 0.0). Unshaded region appears to be a “sweet spot” where to run the process as it
seems to satisfy the response constraints. However, these are models for the mean responses, and neglect
model uncertainty. See text.

a hierarchical mixed effects model previously used by del Castillo et al. [14] is adapted to
the optimization of high dimensional responses via principal component analysis. Next, 3
examples are presented that illustrate the methods applied to industrial processes. Finally,
we compare the hierarchical mixed effects model for a profile response to the increasingly
popular probabilistic latent variable models used in Machine Learning, highlighting their
different structure. MATLAB code is made available as supplementary material that ac-
companies this paper, and it implements all methods and examples presented here.

1.1 Limitations of process optimization based on classical sta-
tistical models

A common approach for process optimization based on experimental data is to fit regression
models to responses and overlay contour plots to find a “sweet spot” where to run the
process, a task facilitated by various popular statistical software packages. For a classical
example, consider the experiment reported in [15] for the optimization of a car tire tread
compound. The controllable factors were x1, hydrated silica level, x2, silane coupling agent
level, and x3, sulfur level. The four responses to be optimized and their desired ranges were:
PICO Abrasion index, y1, 120 < y1; 200% modulus, y2, 1000 < y2; elongation at break,
y3, 400 < y3 < 600, and hardness, y4, 60 < y4 < 75. Quadratic polynomial models were
fitted to each of these responses from experimental data. Figure 2 shows overlaid contour
plots (obtained with a popular statistical software package) which seem to imply it is safe
to run the process within the “sweet spot” in the unshaded area.

However, it can be risky to follow this common practice. Suppose we fit a regression
model to a process response of the form Ŷ = g(x1, x2, .., xk) from experimental data.
Under the usual regression assumptions, the model fit is a prediction of the mean of Y ,
i.e., Ŷ = Ê[Y ]. Assume, for instance, that we wish to minimize the response by finding
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operating conditions x∗ = (x∗1, ..., x
∗
k) such that Y (x∗) = E[Y (x∗)] ≤ u where u is an

acceptable upper bound for the response. It is important to note that all that E[Y (x∗)] ≤ u
guarantees for future times we observe the process at conditions x∗ is that

P (Y (x∗) ≤ u) ≥ 0.5

under the assumption of a symmetric distribution around the mean such as the nor-
mal. Likewise, in the case of two responses, if we find operating conditions x∗ such that
E[Y1(x∗)] ≤ u1 and E[Y2(x∗)] ≤ u2, all that is guaranteed at these conditions is that

P (Y1 ≤ u1, Y2 ≤ u2) > 0.25.

In general, suppose we have q responses in a process, and we fit corresponding regression
models to E[Y1(x)], ..., E[Yq(x)]. If we then find either numerically or simply by overlapping
contour plots of the responses the process conditions x∗ such that E[Y1(x∗)] ≤ u1 and
E[Y2(x∗)] ≤ u2, ..., E[Yq(x

∗)] < uq, all that is guaranteed at x∗ is that

P (Y1(x∗) ≤ u1, Y1(x∗) ≤ u2, ..., Yq(x
∗) ≤ uq) ≥ 0.5q

a probability that can indeed be very low. In practice, this probability bound is an overes-
timate, given that fitted models Ŷj(x) = Ê[Yj(x)] are used instead. Also, if the responses
are positively correlated, then the lower bound will be higher and it may be easier to jointly
optimize the system. If the responses are negatively correlated, the opposite would happen
[42]. Peterson and Lief [43] document how in six real data industrial process optimization
studies, including those in three published papers from the literature, the posterior proba-
bility of meeting the desired specifications actually varied from as low as 0.11, highlighting
the danger of optimizing fitted functions for the mean response that neglect the uncertain-
ties involved. In summary, optimizing regression models fitted to a set of responses and
looking at overlaying contour plots:

• neglects model parameter uncertainty;

• can not provide a probability of assurance or “reliability” about whether future re-
sponses at given process settings x will satisfy process specifications;

• neglects the covariance between the responses during the optimization step, even if
models were fitted via classical multivariate regression, which does consider these
covariances during the estimation step.

1.2 Advantages of the bayesian predictive approach for process
optimization

Billheimer [4] has recently advocated the bayesian predictive approach for statistical in-
ference. A natural way to optimize any process from a quality and reliability standpoint
is to maximize the probability of conformance of the predicted responses to their specifi-
cation limits. Bayesian predictive models and their use in industrial process optimization
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were pioneered by Peterson [41] in pharmaceutical applications (see also [12] for a detailed
presentation). As Billheimer [4] indicates, “A scientist is interested in the probability that
a future experiment will reproduce the current result”. Likewise, in process optimization,
an engineer is interested in the probability that the future operation of the process will
result in the optimal performance that settings deduced from past experiments seems to
indicate.

In the pharmaceutical sector, the ICH Q8 and Q11 guidelines [18] for industry promoted
the concept of a “design space”, defined as the combination of input variables and process
parameters that have been demonstrated to provide assurance to quality”. Using the
methods presented here it is possible to find a design space for a process that with known
probability is predicted to achieve particular goals if run inside the space (see [58], and for
an instance, see example 2 below).

In summary, the advantages of the bayesian predictive optimization approach compared
to optimizing models fitted classically are:

• it provides a probability estimate that future responses at given operating conditions
x will satisfy the desired process specifications;

• it considers the uncertainty in the model parameters, not only in the measurements;

• it takes into account the correlation between the responses during the optimization
(not only during model building);

• it permits to include additional sources of variability such as “noise factors” in the
Taguchi sense;

• it can be extended to different types of responses, as reviewed below.

For further discussion of disadvantages of the classical approach for response surface
optimization and the advantages of a bayesian approach, see [12], Chapter 12.

2 Bayesian inference for multiple response and profile

response processes

2.1 Central role of the predictive density in bayesian process
optimization

Regardless of the model that is most appropriate for a response Y , the object of interest for
bayesian optimization is the posterior predictive density (or predictive density, for short)
of the response, f(Ỹ |x, data) where “data” denotes all the experimental data available,
including controllable and noise factors and the corresponding observed response values,
and the tilde on Y denotes a future response value not yet observed. The predictive density
contains all the relevant information about a response that is needed to make inferences
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about it. Given a statistical model with parameters θ, the predictive posterior density is
defined as:

f(Ỹ |x, data) =

∫
p(Y |θ, x, data)p(θ|data)dθ (1)

where p(Y |θ, x, data) is the likelihood function and p(θ|data) is the posterior distribution
of the model parameters. Depending on the model for the response Y , the integral in
equation (1) may have a closed form expression (this is the case of the multiple response
regression case, see below). In case it does not have a closed form, Markov Chain Monte
Carlo (MCMC) techniques can be used to find the posterior of the parameters and, with
it, the posterior predictive density. Either informative or non-informative priors on θ can
be used, but informative priors are usually difficult to justify and it is usually better to
work with non-informative priors, see [23, 13, 11, 12].

For a specific illustration, let us consider the posterior predictive density for a basic
linear regression model Y = β0 + β1x1+, ...,+βkxk + ε with p = k + 1 parameters. In
this case, the posterior predictive density p(Ỹ |Y,x) is given by a Student t distribution
with N − p degrees of freedom, mean x′β̂ (where β̂ is the ordinary least squares estimate
of β = (β0, ..., βk)

′ = (X′X)−1X′Y) and variance S2(1 + x′(X′X)−1x). Here, S2 is the
sample variance and X is an N × p matrix with one column per model term and one row
per experimental test. From these results, it is easy to verify that the variance of the
predictive density is a function of:

• the amount of data (N , as seen in matrix X and the sample variance S2);
• the inherent noise due to measurement error (estimated via S2);
• how well the model fits (as defined by the columns of X);
• the model parameter uncertainty, determined in good part by the experimental design
used, present in matrix X;
• the variability of the noise factors xn where x = (xc,xn) are all factors in the experiment
(controllable and noise factors, respectively);
• our ability to control the noise factor variability thanks to the presence of interaction
terms in the model between xc and xn variables. If such control×noise interactions do not
exist in the model, there is no way to solve the RPD problem [12].

2.2 Bayesian optimization of multi-response linear regression mod-
els

Let Y1, Y2, ..., YJ be J responses of interest in a process. To investigate the input-output
relations of the process, an experiment is designed and conducted by varying k controllable
factors x1, ..., xk over N different test conditions or “runs”. Assume we fit a linear regression
model to each of the J responses (same model for all responses assumed in this section)
each containing q parameters. If the experiment is “large” enough in the sense that:

J < N − q + 1 (2)

then a standard multivariate linear regression model can be fitted, written in matrix nota-
tion as:

Y = XΓ + E (3)
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where Y is a N × J matrix containing the observations of the J responses in each of the
N experimental runs (combinations of controllable and noise factors). Also, X is a N × q
design matrix, with all the controllable and noise factors expanded in model form according
to the same q-parameter model. Γ is a q × J matrix containing all the q parameters for
each response j = 1, 2, ..., J (note the same model form is assumed for all responses), and
E ≡ [εij] is a N × J matrix of random errors which are assumed to be probabilistically
described, as follows:

εi. ∼ NJ(0,Σ) ∀i = 1, . . . , N
ε.j ∼ NN(0, σ2

j IN) ∀j = 1, . . . , J.

That is, the model assumes that errors between responses from the same experiment (a
row of E) can be correlated, but it also assumes that the errors along a column of E
(errors for the same response Yj for different experimental runs i) are independent random
variables. Under this model, a J × 1 vector y, containing a single, not yet observed, vector
of responses, for given levels of the controllable and noise factors x, is assumed to follow
the model:

y = Γ′f(x) + ε (4)

where f(x) is a q × 1 vector containing the values of the controllable and noise factors
x = (xc,xn) at which the prediction is desired (expanded in model form, same form as
used in the columns of X and Γ) and ε has the same distribution as a row of E, i.e., a
N(0,Σ) distribution.

Fortunately, the posterior predictive density of model (4) is available in closed form.
Here one can utilize non-informative priors, to avoid heavily weighted priors that are hard
to justify. If condition (2) does not hold because the response is very high dimensional,
the hierarchical mixed effects model described further below, originally proposed for the
optimization of profile responses, can be used as well as we explain in example 1.

Under the classical non-informative joint prior for Γ and Σ in equation (3), it is well-
known (see, e.g., see [46], pp. 136 or [12]) that the bayesian predictive density for a new
response vector y is given by a J-dimensional t distribution with ν = N−q−J+1 degrees
of freedom:

f(ỹ|x, data) =
Γ
(
ν+J

2

)
(πν)J/2Γ

(
ν
2

)√|H|{1 +
1

ν

(
ỹ − B̂′x

)′
H
(
ỹ − B̂′x

)}− ν+J2
(5)

This is denoted Tν
J(a,b), where a is the mean vector and b is the variance matrix. That

is, ỹ|x, data ∼ Tν
J

(
Γ̂′x, ν

ν−2
H−1

)
, where Γ̂ is the ordinary least squares (OLS) estimator

of Γ, and H is given by:

H =

(
ν

N − q

)
Σ̂−1

1 + x′ (X′X)−1x

where Σ̂ is the usual Maximum Likelihood Estimator (MLE) of Σ.

Based on the bayesian multivariate regression formulation above, Peterson [41] proposed
a method to conduct multiple-response optimization that accounts for the uncertainty in
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the parameters of the model and for any correlation present between the responses. His
method assumes no noise factors, hence x = xc and consists in solving

max p (xc) = P (ỹ ∈ A|xc, data)
subject to :

xc ∈ Rc

where A is a desired specification region for the J responses and Rc is a feasible region for
the controllable factors. In its simplest form, both A and Rc are given by upper and lower
bounds.

To obtain p (xc) through equation (6), the predictive density f(ỹ|xc, data) needs to be
integrated (numerically) over the region A:

p (xc) =

∫
A

f(ỹ|xc, data) dỹ. (6)

For a multivariate regression model, this can easily be done by Monte Carlo simulation of
a multivariate t distribution, as explained in Appendix A.

If noise factors are present in the system and affect the responses (RPD case), a bayesian
approach that provides solutions which are robust both to the noise factor variability and
to the uncertainty in the model parameters was proposed by Miro et al. [35] as an extension
to Peterson’s method. It consists in solving the following optimization problem,

max p(xc)RPD =
∫
P (ỹ ∈ A|x, data)f(xn)dxn

subject to :
xc ∈ Rc.

(7)

That is, after obtaining p(x) for fixed x = (xc,xn), a second integration is performed over
the (assumed known) distribution of the noise factors, f(xn), to obtain the probability of
conformance to specifications (also called the “reliability” of the process [41]) for the RPD
problem, p(xc)RPD. Miro et al. [35] considered only normally distributed noise factors.
We extend this below to the case of Bernoulli(p) and generalized Bernoulli(p1, p2, ..., pL)
noise factors, given that in many cases categorical noise factors, with L levels each, are
uncontrolled and can not be treated as continuous random variables. The MATLAB code
provided (see supplementary materials) implements all integrations and the optimization
needed to solve problem (7).

If the optimal probability after solving (7) is high, then there is a high degree of as-
surance that the specification region A will be achieved, despite the noise factor and other
sources of variability. We would then have a robust solution to the RPD problem. The
solution will also consider the uncertainty in the model parameters and measurement error,
since it is based on the predictive density of the response. Model parameter uncertainty is
linked to the specific type of experimental design used, which determines matrix X.

2.3 Bayesian predictive optimization based on other response
models

The multivariate regression model presented earlier assumes all J responses follow the same
exact model form with p parameters each. This may constitute a limitation in practical
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applications. Therefore, this model and its use in process optimization has been extended
in [44] to the case where each response can adopt a different linear model, the so-called
“SUR” (seemingly unrelated regression) case.

The optimization depends on the models used. There are situations where more than
one model fits the data reasonable well, but their corresponding optima lie in different
regions of the controllable factor space. Rajagopal and del Castillo [47] expand the bayesian
optimization problem to the case a set of models {Mi} fit the response adequately, solving
instead the problem:

max
xc∈Rc

∑
alli

p(Ỹ |Mi, data,x)dỸ p(Mi|data)

where p(Mi|data) is the posterior density of each model i. The model-averaged solution
found is then robust with respect to variation in the true model describing the response.
This methodology was extended by Ng [38] to the multiple response case, allowing a user
to define alternative models for each response.

The bayesian models presented above assume normally distributed data. To robustify
this assumption, Rajagopal et al. [48] considered instead the noise in the model as orig-
inating from a Student t distribution. The models above also assume a “steady state”
input-output behavior of the process. It is possible to extend bayesian optimization ideas
to the dynamic case where some of the variables are lagged. Vanli and del Castillo [62]
consider bayesian RPD optimization of a process based on a linear regression model in
which the noise factors randomly vary according to a time series model, and frequent
reoptimization is necessary to adapt to the varying noise factor state.

2.4 Bayesian optimization of response profiles

In cases where the performance of a process is given by a curve or “profile”, as opposed
to a set of scalar responses, a different model is necessary, and here we review a useful
hierarchical mixed effects model for profile responses originally presented in [14]. Let us
assume the response Y (s) can be observed at several fixed values of an auxiliary variable
s which we will refer to as the “locations” s1, s2, ..., sJ . For each experimental run i (i =
1, ..., N) where controllable and noise factors xi = (xc,xn)i have been tried in a designed
experiment, a complete profile or function is observed consisting of J points along the
curve Y (s). Thus, rather than observing a continuous curve Yi(s|xi), we observe the
discrete response

Yij = g(xi; sj) + εi(sj), i = 1, ..., N, j = 1, ..., J, (8)

where g is some function to be specified/estimated and εi(sj) is a random error, which can
depend on the location sj.

The multivariate regression approach could be used again treating the different response
values at different locations sj as different responses. If the number of experiments is large
such that condition (2) holds, this would be feasible. However, while this approach provides
predictions at the predefined locations values sj, it is not possible to interpolate with this
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model, since the locations sj are not used explicitly in the model. That is, it is not possible
to make predictions at profile locations sj other than those observed during the experiment.

When the number of points per profile J is large (J ≥ N−q+1), the previous approach
cannot be applied. An alternative then is to use informative priors and optimize the
posterior predictive density, but very informative priors are difficult to justify in general.
A more general approach is needed. Del Castillo et al. [14] propose to model a profile
response using a hierarchical Bayes approach. In a first stage, the curves or profiles are
modeled as a regression function of the locations s:

Yij = g(xi; θ
(1)
i , θ

(2)
i , ..., θ

(q)
i ; s) + εi.

The parameters {θ(k)
i } are then modeled as a function of controllable and noise factors

(xc,xn) at a second stage. Thus, modifying the controllable factors affects the first stage
parameters, which in turn modify the form of the curve response.

The model in [14] is
yi = Sθi + εi, εi ∼ NJ(0,Σ), (9)

and second stage model given by

θi = Bf(xi) + wi, wi ∼ Np(0,Σw) (10)

for i = 1, .., N , where yi is a J × 1 vector containing the observations along profile i, S
is a J × p matrix of regressors for fitting the stage 1 model (here the regressors will be
functions of the locations s), θi is a p × 1 vector of stage 1 parameters, and B is a p × q
matrix of parameters –the stage 2 parameters– containing the effects of xi = (xc,xn)′i, the
experimental conditions in run i. The notation f(xi) indicates as before that xi is expanded
in model form to include all q terms in stage 2. Thus, each element of the parameter vector
θi is assumed to be modeled adequately by a model containing q parameters.

The hierarchical model (9-10) can be written as the single linear model:

yi = X iβ + Swi + εi (11)

where X i = f(xi)
′ ⊗ S is a J × qp matrix and β = vec(B) is a qp × 1 vector. This is a

model widely used in Biostatistics, in particular, in longitudinal growth curve analysis (see
[32, 19]) where it is called a linear mixed effects model, since the term Swi is stochastic
but the term X iβ is not (i.e., it has a “fixed” effect). Notice how if using this model,
we would be fitting pq parameters, compared to Jq parameters that would be needed if
the multi-response approach would be used considering each of the J locations different
responses. Thus, if J is large compared to p, this would represent a more parsimonious
model. This is also an alternative for the case J > N − q + 1, when the single stage
multi-response approach of the previous section cannot be applied. However, model (11)
requires the estimation of a J × J covariance matrix, unless simplifying assumptions are
made. Hierarchical approaches based on (9-10) explicitly utilize the information about the
locations (contained in matrix S). This is not the case in the single stage multiple response
approach presented earlier.
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As discussed by [63], model (11) is unnecessarily restricted, since the design matrices
for the fixed effects term and for the random effects term are linked. For this reason, del
Castillo et al. [14] suggested to use different matrices S and S∗ in (11), keeping the original
S matrix with the location information for the fixed effects term but selecting S∗ to match
the observed within-profile covariance. The model is therefore:

yi = X iβ + S∗wi + εi (12)

where we still have that X i = x
(m)′

i ⊗ S. Their method to select S∗, however, frequently
results in S∗ = S. A better approach, which we fully explain in example 3 below (section
3.1.1), is to select S∗ using Probabilistic Principal Components (PPCA) analysis [61].

The parameters of model (12) are β, {wi},Σw, and σ2. Bayesian inference for this
model has been studied by some authors ([33, 10, 14]) and requires Markov Chain Monte
Carlo (MCMC) sampling, since the joint posterior of these parameters is not a known
distribution in closed form. Appendix B gives the full conditional distributions of each
parameter needed in the Gibbs sampling algorithm that yields the joint posterior of the
model parameters.

The probability of conformance to a set of specifications p(xc)RPD is maximized once the
predictive density of the response along the profile, y|x, data is obtained via the MCMC
scheme in Appendix B. As described in that appendix, the Markov chain is run once
until convergence and sampled within the optimization whenever a value of y|x, data is
needed. The MCMC sampling scheme and the optimization needed are implemented in
the MATLAB code we are providing (see supplementary materials).

3 Bayesian predictive optimization in the process in-

dustry: some examples

In the examples below we fit either the bayesian multivariate regression model or the
bayesian hierarchical mixed effects model, depending on the type of response to be handled.
Each model has a variety of model diagnostics that should be consulted. For diagnostics
pertaining to the hierarchical mixed effects model, see ref. [14], where several residual plots
and normality tests are presented. These were all checked in the examples that follow, and
are omitted for brevity.

3.1 Example 1: Quantification of analytes impacting wine aroma

The following example illustrates the RPD optimization method using multivariate regres-
sion (the case when J > N − q + 1). The optimization of analytical instrumentation is a
major activity in research and industrial laboratories. It is fundamental to take the most
out of the high capital and operational costs involved including operator time. Quite of-
ten the measurement system should address multiple targets, becoming a multi-response
process. For instance, Reis et al. [49] studied the optimization of a headspace solid-phase
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microextraction (HS-SPME) method, which is a state of the art extraction methodology
for the analysis of volatile chemical compounds in liquid samples. The goal is to optimize
the quantification of analytes impacting wine aroma. They reported the results from a
7 factor experimental design study consisting of N = 18 runs, where the responses were
the chromatographic responses of 9 compounds establishing wine flavor (peak area of each
compound in the chromatogram). These 9 compounds are: isobutyric acid, butyric acid,
isovaleric acid, valeric acid, hexanoic acid, octanoic acid, nonanoic acid, decanoic acid and
dodecanoic acid.

In order to apply bayesian optimization, we initially treat the 9 chromatographic re-
sponses as a 9-dimensional response vector. The goal of the HS-SPME extraction method
is to detect the compounds, so the larger the peak areas the better. The responses were
standardized and the controllable factors coded into the (-1,1) convention. Out of the
seven factors reported by [49] (fiber coating, pre-incubation time, extraction time, ex-
traction temperature, headspace sample volume, agitation during extraction and ethanol
content) two of them, pre-incubation time and agitation seem not to have any effect on the
responses and were eliminated from the study. The final set of the factors were x1=VOL
(headspace sample volume, ranging from 5 to 10 ml.), x2=ETI (extraction time, ranging
from 15 to 20 min.), x3=ETE (extraction temperature, ranging from 40 to 55 ◦C.), x4=EC
(Ethanol content, ranging from 4.5 to 18%)and x5=F (type of fiber, a categorical factor
with labels {L1-PA,L2-DVB}.

In the following analysis, we treat x5 as a noise factor with a Bernoulli(0.5) distribution,
implying that we wish to find settings in the (x1, x2, x3, x4) controllable factors that make
the chromatographic areas large with high probability regardless of the type of fiber used.

Since the goal is to maximize the responses and they are standardized, we set the bounds
Li = 0.5 and Ui = 3 for all responses i = 1, ..., 9. We define the tolerance or specification
region for the responses A as the hyperbox defined by the intervals (Li, Ui). We then wish
to maximize the joint posterior predictive probability that the 9 chromatographic responses
are all inside their bounds. The model fit to each response was:

Y = βx1 + β2x2 + β3x3 + β4x4 + β5x5 + β12x1x2 + β15x1x5 + β34x3x4 + β44x
2
4

(note there is no intercept as the Y’s were standardized). The bayesian multivariate regres-
sion model (3) was fit and the RPD optimization problem (7) was solved. Tables 1-2 show
the maximum probabilities of satisfying the given specifications and the resulting solution
x∗c , respectively. Figure 3 shows the point prediction of the optimal responses (mean vector
of the posterior predictive density) and one-sigma standard errors. The errors are evidently
too large compared to the specifications.

p(Y(xc) ∈ A|data) p1 p2 p3 p4 p5 p6 p7 p8 p9

0.110 0.279 0.557 0.496 0.537 0.524 0.663 0.678 0.936 1.000

Table 1: Estimated predictive posterior probabilities of satisfying the joint bounds A and each interval
Ai = (Li, Ui). Here, pi = p(Li ≤ Yi ≤ Ui|data) using a multivariate regression analysis.
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VOL=x1 ET1=x2 ETE=x3 EC=x4

x∗ (coded) 0.950 0.993 -0.081 0.827
x∗ (uncoded) 9.87 39.61 47.63 16.83

Table 2: Optimal settings for Wine experiment original experiment (N = 18, ν = 1), multivariate regression
analysis.

The optimal solution (uncoded), xc = (9.87, 39.61, 47.63, 16.83) coincides closely to
what was found by [49]. Note that there is no run similar to this solution in the original
experimental design, so simply “picking the winner” from the list of experimental trials
would not have resulted in an optimal solution.

The overall probability of satisfying the 9 bounds at x∗ is quite low, only 0.110. This
indicates either problems with the amount of data available or the possibility that the
bounds (L,U) considered in the analysis were too strict. We conducted a preposterior
analysis [41] to discern if more data would have resulted in better probabilities p(Y(xc) ∈
A|data) or if the low probability is due to unrealistic bounds. We repeated the optimization
by duplicating the design and the response data (N = 36). The results are shown in Figure
4, and as it can be seen, the standard errors are much smaller. The optimal solution x∗c
changed little, and the overall probability of conformance went up but only to 0.326.
Furthermore, artificially increasing the number of runs does not increase this probability
any further, an indication that either the bounds are unrealistic or the response information
collected from the experimental design is limited.
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Figure 3: Predicted responses (blue stars) at the optimal settings with one std. deviation error bars,
using the original experimental design, wine aroma experiment, N = 18 and ν = 1 degree of freedom.
Optimization using the multivariate regression model.
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Figure 4: Preposterior analysis, predicted responses (blue stars) at the optimal settings in the wine aroma
experiment, with one std. deviation error bars assuming the original design was duplicated, N = 36 and
ν = 19 degrees of freedom (note different y-scale compared to figure 3). Optimization based on multivariate
regression model.

3.1.1 Reanalyzing the wine aroma experiment using the hierarchical mixed
effects model as a response dimensionality reduction method

The large standard errors of the predictive density, and the low predictive probability of
conformance to the specifications occur because in reality the 9 chromatographic responses
are highly correlated so that their effective dimension is much lower than 9. Therefore, we
may follow the modeling approach proposed in [49] and first conduct a principal compo-
nent analysis (PCA) analysis on the 9 responses, which identifies the first two principal
components (PC) as explaining more than 95% of the variability in the responses. We then
define the matrix S in the hierarchical model (9-10) by these two principal components
loadings:

S =



0.3304 0.3797
0.2670 0.6036
0.3486 0.2596
0.3534 −0.0873
0.3361 −0.3424
0.3331 −0.3563
0.3393 −0.3385
0.3219 −0.1733


Note that the first PC is proportional to the average of the nine responses while the
second PC is similar to a contrast between analytes with different chain lengths. We now
solve the RPD optimization problem with the same bounds (for the 9 responses) as before.
Tables 3-4 show the optimal probabilities of conforming to the same specifications presented
before and the optimal xc settings. The overall predictive probability of satisfying the
response specifications is much higher, 0.857 (see Figure 5 for a plot of the predicted optimal
responses, which shows a much more concentrated optimal predictive density around its
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mean). The original problem had responses highly correlated, effectively diffusing the
probability over a space that was too high dimensional with respect to the subspace where
the data really lied. Using a smaller number of PCs (2) captures better the underlying
probability distribution. Note that the optimal solution x∗c did not change much from
model to model. What was gained was a higher degree of assurance that the optimal
process will meet its specifications.

p(Y(xc) ∈ A|data) p1 p2 p3 p4 p5 p6 p7 p8 p9

0.857 0.998 0.991 0.997 0.992 0.970 0.935 0.935 0.951 0.986

Table 3: Estimated predictive posterior probabilities of satisfying the joint bounds A and each interval
Ai = (Li, Ui). Here, pi = p(Li ≤ Yi ≤ Ui|data) using the mixed effects model based on a preliminary PCA
of the response data.

VOL=x1 ETI=x2 ETE=x3 EC=x4

x∗ (coded) 0.571 0.995 0.091 0.9984
x∗ (uncoded) 8.92 39.93 48.18 17.98

Table 4: Optimal settings for Wine experiment original experiment (N = 18), mixed effects model based
on a preliminary PCA of the response data.

In this analysis based on the mixed effects model, as well as in the next two examples
below, the design matrix S∗ used in model (12) was estimated using Probabilistic PCA
(Appendix C) applied to the residuals ri of the model

Yi = Xiβ + ri

where ri = Ŷi −Yi, such that ri = Wz + ε where we make W in equation (13) equal to
S∗ in (12), see Appendix C.

3.2 Example 2: Optimization of the tensile stiffness orientation
profile in a paper machine

Reis and Saraiva [52] considered the prediction of a profile response in a paper manufactur-
ing facility. The response of interest is the tensile stiffness orientation (TSO) angle profile
across a paper sheet produced in a paper machine. The TSO orientation is closely related
to the fiber orientation angle that has a major effect in paper mechanical and dimensional
properties. For instance, higher angles tend to favor diagonal curl modes, which can be
very detrimental to printing processes, causing frequent jams, loss production and reduced
operational efficiency. The profile of TSO across the paper machine can be controlled by
manipulating several process variables (experimental factors), such as x1=VJ (jet velocity,
ranging from 800 to 850 m/min), x2=(A, slice opening, ranging from 40 to 80%), and
x3=(VR, manifold recirculation, ranging from 40 to 80%). The wire velocity (VW) of
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Figure 5: Optimal responses (stars) and 95% prediction interval for the responses in the wine aroma
experiment under the solution obtained using the mixed effects model based on the first 2 principal
components of the 9 chromatographic responses.

the machine was fixed at 750 m/min (this sets the production pace, which was assumed
to be kept fixed). For operational reasons, |VW-VJ| > 50 a condition that was always
maintained during experimentation, as this is a machine requirement to balance paper
properties (surface quality, dimensional and mechanical properties).

Here we model the observed TSO profiles with the hierarchical mixed effects model
(9-10) with the first stage model given by:

Yi = θ0 + θ1s+ θ2 sin

(
2π

J
s

)
+ εi, i = 1, ...., N

and second stage model equal to:

θl = β0 + β1x1 + β2x2 + β3x3 + β12x1x2 + β13x1x3 + β23x2x3 + β11x
2
1 + β22x

2
2

+ β33x
2
3 + wl, l = 1, 2, ..., N

A D-optimal, N = 20 run designed experiment was conducted, which gives adequate
degrees of freedom to fit the quadratic polynomial model in stage 2. The object of the
experimentation is to find conditions on the machine that make the TSO profiles as flat
as possible. We therefore define bounds at Uj = 3 and Lj = −3, j = 1, ..., J = 10. The
20 observed TSO profiles were obtained at 10 positions over the machine manifold and are
displayed, together with the predicted profiles (from the mean of the posterior predictive
density) in Figure 6. The optimal TSO profile is displayed in Figure 7. The optimal
solution x∗ = xc (no noise factors were considered here) that maximizes the posterior
predictive probability that the profile jointly meets its specifications is shown in Table 5
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Figure 6: Dark lines: observed TSO profiles in each of the N = 20 experimental runs. Lighter, dashed
lines: predicted TSO profiles (mean of the posterior distribution). The predictions are so close to the
actual they are hard to see.

VJ=x1 A=x2 VR=x3

x∗ (coded) 0.898 0.995 -0.732
x∗ (uncoded) 847.4 79.90 45.35

Table 5: Optimal settings for Pulp and Paper experiment.

and the corresponding probabilities are shown in Table 6. Clearly, this is a very good
solution, as TSO variation across the paper sheet is very low.

The profile main effects plot reveals how a low setting for the recirculation compensates
with the average trend the profiles have, resulting in a flatter TSO response (see Figure 8).

We can in addition find a “design space” for this process by evaluating the probability
of meeting the specifications p(Y ∈ A|data,x) at a variety of x-points [43, 58] . This is
feasible of course when the number of controllable factors is low. Figure 9 shows a contour
plot of the probability function evaluated at different lip opening (x3) and recirculation
(x4) values keeping the jet velocity fixed. A confirmation run was made at these settings.
Figure 10 shows the actual profile.

3.3 Example 3: Optimization of a drug release stability profile.

Silva et al. [56] applied Quality-by-Design techniques to find the root cause for the observed
slower drug release in orodispersible films during storage. The response is the drug release
time profile, which should follow a given reference profile within certain bounds and should
also be stable along time upon repetition of the same drug release trial. The following
conditions were analyzed as experimental design factors to manipulate: x1= RT = Room
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Figure 7: Light lines: observed TSO profiles, dark line: optimal predicted TSO profile, red lines: the 5
and 95% predicted percentiles of the optimal TSO posterior distribution, crossed dark lines: upper and
lowed specifications for the TSO profile.

p(Y(xc) ∈ A|data) p1 p2 p3 p4 p5 p6 p7 p8 p9

0.898 0.983 0.997 0.939 1.000 0.977 0.994 0.939 0.935 0.962

Table 6: Estimated predictive posterior probabilities of a TSO profile satisfying all bounds Ai = (Li, Ui)
simultaneously and at each point s. Here, pi = p(Li ≤ Y (si) ≤ Ui|data).

temperature, varying from 17 to 25 ◦C, x2 = RH = room humidity, varying from 30 to 62
%, x3 = DT = drying temperature, varying from 40 to 60 ◦C, x4=ME=mixing equipment,
a categorical factor with levels {M,D} and x5=DS addition, also categorical with levels
{S,P}. All factors were coded into the (-1,1) scale. The categorical factors were modeled
each as a Bernoulli(0.5) random variable.

The resulting Robust Parameter Design problem consists in finding RT, RH, and DT
that with high probability gives a drug release stability profile at 6 months of storage that
does not decay with respect to the reference profile regardless of the mixing equipment and
DS addition used. This is an instance of a process that generates profiles that change in
time (1 to 6 months, in this particular case). In this example, the rational is that if the
latest profile (at stability time = 6 months), corresponding to the oldest stability time of
drug, satisfies the product specifications, then it can be assured that the rest of the profiles
at earlier stability times, will also satisfy them.

The drug release vs. release time profiles are percentages, and hence, have a form
that would not follow a normal distribution, necessary in our approach. We therefore first
normalize the data by applying the Probit transformation:

Y ′ = Φ(Y )−1

19



0 2 4 6 8 10
Position across paper sheet

-15

-10

-5

0

5

10

15

TS
O 

an
gle

 (d
eg

re
es

)

Constant

0 2 4 6 8 10
Position across paper sheet-1.5

-1

-0.5

0

0.5

1

1.5

TS
O 

an
gle

 (d
eg

re
es

)

Factor 1: Velocity of the jet
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Factor 2: Lip aperture
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Factor 3: Recirculation

Figure 8: Effect of each of the 3 controllable variables on the TSO response across the paper sheet. The
difference between the two lines shows the effect on the curve or profile response that the factor has, as it
changes from a low to a high setting. Lines with ’+’ correspond to the average response when the factor
was equal to its highest experimental setting, dashed lines are the average TSO response when the factor
was equal to its lowest experimental setting.

where Φ(·) is the cumulative distribution function of a standard normal random variable.
The response Y is the drug release percentage curve at the last observed stability time (6
months). The experimental ran was a N = 25 D-optimal design which allows us to estimate
all main effects and 2-factor interactions plus quadratic terms in the non-categorical factors
(18 parameters). The observed curves at each of the 25 experimental runs are shown in
figure 11, together with the predicted profiles. The optimal settings found (assuming both
noise factors are randomly varying as Bernoulli(0.50) random variables) are shown in table
7.

RT=x1 RH=x2 DT=x3

x∗ (coded) 0.855 0.848 0.841
x∗ (uncoded) 24.42 59.57 58.48

Table 7: Optimal settings for Drug Release experiment.

The optimal profile at the x∗c settings is shown in figure 12 together with 95% prediction
intervals. The estimated maximum joint probability of having a future curve completely
inside the bounds when running the process at settings x∗c is 0.4060. The joint probability
is low because of the difficulty of maintaining the response within bounds at the highest
release times, when it is more variable. Finally, figure 13 shows the main effect plots of
factors RT, RH, DT, ME, and DS. The latter two are categorical factors. From the plots,
to keep the release curve as high as possible, especially with a high increase initially, all
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Figure 9: Contour plot of the predictive probability p(Y ∈ A|data,x) for x1 = 847.4 while varying x2 and
x3 within their feasible region (40 % to 80 %). A given contour can be used as the boundary defining the
design space for this particular process.

3 controllable factors, RT, RH, and DT should be run at their high settings. This agrees
with the optimal solution, obtained via numerical optimization, displayed in Table 7. A
confirmation run was made at these settings. Figure 14 shows the actual drug release
profiles at different stability times.

Finally, a simple type of optimization can be done over the categorical factors if de-
sired. This can be achieved by systematically varying the probabilities p1 and p2 of the
Bernoulli(pi) variables x4 and x5, and solve the associated bayesian RPD problems again.
Table 8 shows the results obtained in this analysis. A value of pi = 1 is equivalent to say
that the corresponding factor was fixed at its low (-1) setting. While the optimal settings
of the controllable factors change little when ME and RS are varied, it is clear that highest
probabilities of conformance to specifications can be obtained when these two categorical
factors have opposing settings, either (x1, x2) = (−1, 1) or (1,-1) corresponding to the (ME,
DS)=(M,P) or (D,S) settings.

4 Comparing the hierarchical model for profile re-

sponses to the probabilistic latent variable models

Profile responses are increasingly common in the process industry [52], and their dimen-
sionality, i.e., the number of observations per profile, J can be high. A frequent approach
in these high-dimensional settings is to adopt latent variable approaches, where the goal
is to find one or more lower dimensional (latent) spaces of variables that structure and
simplify the analysis of the input-output data. In this section, we compare the structure of
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Figure 10: Blue line with dots: TSO profile from confirmation run at V J = 847.4, A = 79.9 and V R =
45.35. Crossed dark lines: upper and lowed specifications for the TSO profile.

p1 p2 p(Y(xc) ∈ A|data) x∗1=RT x∗2=RH x∗3=DT x4 =ME x5 =RS
0.5 0.5 0.406 0.855 0.848 0.841
1 1 0.416 0.814 0.998 0.999 -1 -1
1 0 0.496 1.000 0.754 0.917 -1 1
0 1 0.505 0.889 0.830 0.999 1 -1
0 0 0.311 0.792 0.811 0.910 1 1

Table 8: Optimal settings for the drug release experiment when noise factors x4=ME and x5=RS are
assumed categorical with Bernoulli distributions with probabilities p1 and p2 respectively. The optimal
solutions for controllable factors x1, x2, x3 remain largely the same.

probabilistic latent variable methods with the hierarchical model used for profile responses
(9-10).

The latent variable approaches that are most commonly applied in the chemomet-
rics/process analytics communities are Principal Components Regression (PCR), Partial
Least Squares (PLS) and Canonical Correlation Analysis (CCA). They are classically pre-
sented as sample estimation procedure without reference to an explicit stochastic model
that represents the population from which the X and Y data were generated. In PCR
one estimates the principal components of X and uses them as explanatory regressors for
Y; PLS finds the latent variables common to X and Y from maximizing the covariance
between these matrices; and CCA finds the linear combinations maximizing the correla-
tion between X and Y (instead of the covariance, as in PLS) [55, 26, 28, 6, 30, 16]. Until
recently, this has been the prevailing perspective from the chemometrics/process analytics
communities.

The Machine Learning community looks at these methods from a probabilistic perspec-
tive, where a stochastic model explains how the data were generated, and based upon which
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Figure 11: Dark lines: observed 6-month drug release profiles in each of the N = 25 experimental runs
(Probit transformation applied). Lighter, dashed lines: predicted profiles (mean of the posterior distribu-
tion). The predictions are so close to the actual they are hard to see.

maximum likelihood estimators of the different latent variable can be obtained, from which
bayesian approaches can be developed. Starting with the work by Tipping and Bishop [61]
on probabilistic PCA (see Appendix C), various authors have developed probabilistic ver-
sions of PCR, PLS, and CCA. Ge [21] has recently reviewed probabilistic latent variable
models and their application in chemometrics and in general, in the process industries.
We refer to Ge’s paper and to [5] and [36] for fuller accounts, and only summarize next
these probabilistic models given our goal of contrasting their structure with the hierarchical
mixed effects model we used for profile response experiments, highlighting their different
structure.

Probabilistic Principal Components Regression. In PCR (model a) in figure 15
), it is assumed that both the response space Y and the controllable factor space X share
a common latent space Z (where X, Y , and Z are vectors spaces where the corresponding
variables lie). The model (assumed centered input and output data, so their means are all
zero) is then

y|z = Wz + ε1, ε1 ∼ N(0,Σ) (Σ diagonal)

x|z = Az + +ε2, ε2 ∼ N(0, σ2I)

where y ∈ Y,x ∈ X and the latent variables z ∈ Z are of much lower dimension than
the dim(x) or dim(y). From these assumptions, the relation of most interest for process
optimization, y|x, can be obtained [36]. Chen et al. [7] give an excellent presentation of
Markov Chain Monte Carlo methods applied to the PCR model, with practical application
in chemical processes.
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Figure 12: Light lines: observed drug release profiles after a 6 month stability period. A probit (Y ′ =
Φ(Y )−1) transformation was applied to the drug release percentage response before analysis. Actual drug
release % can be read from the right hand axis. Dark line: optimal predicted drug release profile at 6
months, red lines: the 5 and 95% predicted percentiles of the optimal drug release posterior distribution,
crossed dark lines: upper and lowed specifications for the 6-month drug release profile.

Probabilistic Partial Least Squares. In PLS, in addition of a latent space Zc that
is common to both Y and X spaces, there is a unique latent space for the input space, Zx

(see model b) in figure 15). The model (assuming centered input and output data) is:

y|z = Wzc + ε1, ε1 ∼ N(0, σ2I)

x|z = Azc + Bzx + ε2, ε2 ∼ N(0, σ2I)

Probabilistic Canonical correlation analysis. In addition to the structure in PCA,
in CCA there is also a unique latent space Zy for Y (model c) in figure 15). The model,
under centered input and output data is:

y|z = Wzc + Czy + ε1, ε1 ∼ N(0, σ2I)

x|z = Azc + Bzx + ε2, ε2 ∼ N(0, σ2I)

In both PLS and CCA, the induced distribution y|x, can also be obtained but numerical
integration is necessary [36].

In contrast with the previous probabilistic latent models, in the process optimization
setting we discuss in this paper, the X space is usually well defined and not high dimen-
sional, as it comes from an experimental design where the number of controllable factors
is usually not large. Therefore, there is no need to find a latent structure in it, as there
are no underlying unobserved variables generating the observed variability in X, on the
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Figure 13: Effect of each of the 3 controllable variables of the drug release profiles at 6 month stability
time. The difference between the two lines shows the effect on the curve or profile response that the factor
has, as it changes from a low to a high setting. Lines with ’+’ correspond to the average response when the
factor was equal to its highest experimental setting, dashed lines are the average response when the factor
was equal to its lowest experimental setting. Response (% drug release) shown after Probit transformation.

contrary, such variation is induced by the measured factors. For the same reason, all of the
latent space models above, which assume a common latent structure in the X and Y spaces
are unnecessary and do not correspond to the data structure of an industrial experiment.
Dimensionality reduction may be needed in the response space only, where a latent variable
structure may exist for which a lower dimensional space can be estimated. For instance,
the multivariate linear regression model discussed earlier is applicable when J is not too
large compared to N , because otherwise this would require weighting priors that are harder
to justify. If the number of responses J is large, a principal component analysis can be
conducted on the Y space prior to the analysis, and then a multivariate regression model
is built from the X space to the Y latent variable space. The appropriate data structure
then goes from X space to Z space to Y space (see figure 16).

The latent space structure depicted in figure 16 is made explicit in the hierarchical model
we presented for profile responses, model (9-10). Note how the two-stage hierarchical model
can be written as:

y|z = Wz + ε1, ε1 ∼ N(0,Σ) (Σ diagonal)

z|x = Bx + +ε2, ε2 ∼ N(0, σ2I)

by considering the model parameters in stage 1, θ, the latent “features” of the profile
or curve response (z). Thus, the hierarchical mixed effects model implements a feature-
based dimensionality reduction in the data. It can be used either for profile/curve response
systems (where the main curve features are preselected by the user) or for high-dimensional
Y -data via a previously conducted principal component analysis that provides the “design”
matrix W above.
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Figure 14: Light lines: observed drug release profiles at stability times 1, 2, 3, 4, 5, and 6 months from
confirmation run at RT = 24.4, A = 59.5 and V R = 58.4 (x1 = 0.855, x2 = 0.848, x3 = 0.841). Categorical
factors were randomly varied as Bernoulli(0.5) random variables, thus the solution is robust with respect
to either setting of ME and DS. Crossed dark lines: upper and lowed specifications for the TSO profile.

5 Conclusions

We have provided a review and some extensions of bayesian predictive optimization meth-
ods, with application to the process industries. The methods are based on predictors and
response data from designed experiments, where the response is in the form of either a vec-
tor of correlated responses, possibly of high dimensionality, or a profile. Bayesian predictive
methods are becoming increasingly relevant in practice not only for process optimization
but also in QbD applications where it is of interest to find a design space where the future
performance of the process is guaranteed with certain probability (as in pharmaceutical
applications, see [43, 58]). The bayesian predictive approach to process optimization pro-
vides a probability (or reliability measure) of satisfying the process goals at the optimal
settings x∗c . Such probability statements are not possible to obtain with classical statistics.
A frequentist “design space” can be obtain classically by bootstrapping, a possibility not
reviewed here. The bootstrapping approach, however, can only provide confidence regions
on the optimal operating conditions x∗c and it is not possible to provide probability state-
ments about whether the process will fall or not in the given region if in the future it is
run at operating conditions x∗c , something easily done under the bayesian framework.

Extensions to the original bayesian process optimization methodology, based on regres-
sion models in [41] were presented. These included the use of a hierarchical mixed effects
model that can be used either when the number of responses is too large for a noninforma-
tive multivariate regression analysis, in such a way that a preliminary probabilistic PCA
provides the “features” to be modeled in a second stage model as a function of controllable
factors, or to model profile responses, where a first stage model defines a parametric model
expressing the shape of the curve that has been observed, and a second stage models the re-
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Figure 15: Other alternative model structures with latent variables. a) Principal components regression.
b) Partial least squares; c) Canonical correlation analysis (adapted from a figure by [36]). In situations
where the input data (x ∈ X) comes from a designed experiment these structures are not appropriate, as
there is no latent space on the X space.
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Figure 16: The model structure needed if a high dimensionality response is considered in an experimen-
tal optimization situation. A latent structure in the Y space only may be necessary if Y is very high
dimensional and condition (2) does not hold.

lation of these parameters with the controllable factors. In either case, a complete bayesian
solution is available. The probabilistic latent variable models were shown to have a struc-
ture that does not correspond to that of data from a process optimization experiment.
We also discussed the case noise factors are present and a “Robust Parameter Design”
optimization is desired, and an extension to the case when noise factors are categorical
was discussed and illustrated. The MATLAB code provided (see supplementary materials)
can be used to replicate the analyses in the case studies covered in this paper, and it is
hoped it will facilitate the comprehension of the paper conceptual contents, as well as their
application and future adoption.

Appendix A. Calculating the probability of conformance

to specifications

The following Monte Carlo procedure can be used to compute p(xc)RPD, the quantity
maximized in problem (7) for the single stage, multiple response approach (see [35] for
more details).

1. Set c = 0.
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2. Simulate a value of the noise factors, xn, from their (assumed known) distribution.
The vector xc is given and contains the values of the controllable factors. Make
x = (xc,xn).

3. Simulate y|x, data ∼ Tν
J

(
B′x, ν

ν−2
H−1

)
4. If y ∈ A, make c← c+ 1. Go to step 2 and repeat m times.

5. Return p̂(xc)RPD = c/m.

For the hierarchical mixed model, step 3 is substituted by sampling from the simulated
Markov Chain obtained via Gibbs sampling (after the burn-in period) and substituting
these simulated parameters in the likelihood, i.e., values of y are obtained from the pre-
dictive density by composition (see Appendix B). As reported by Miro et al. [35], it is
more effective to generate the required m noise factors once and use a common random
numbers strategy in the optimization whenever p(xc)RPD needs to be evaluated within the
optimization process. Optimizing this function is a hard nonlinear problem, and Miro et
al. report how it is useful to start the optimizer from a point likely to contain enough
“area” of the predictive density.

Appendix B. Gibbs sampling for estimating the linear

mixed model

Lange et al. [33] give the full conditionals for the parameters (β, {wi}, {σ2
i },Σw) in the

linear mixed model (12) where the σ2
i ’s allow different variances among the observed profiles

(this is sometimes useful in longitudinal analysis models when it is not desired to make
inferences on profiles other than the N observed). Chib and Carlin [10] considered the
case we consider, where Σ = σ2IJ , and show how the Lange et al. procedure suffers
from slow convergence, and proposed two alternative algorithms, one (their algorithm 2)
which is a pure Gibbs sampling approach, and another one (their algorithm 3) which has
a Metropolis step (a rejection sampling step). Since the convergence properties of these
two algorithms appear to be about the same, in particular for the β parameters, we choose
Chib and Carlin’s algorithm 2 (after correcting some errors in the full conditionals in their
paper) since it does not require a Metropolis step (i.e., all full conditionals are known
distributions). We also provide the full conditionals of the other parameters since they
were not explicitly given by these authors.

The priors we use were:

β ∼ Npq(β0,B0), with β0 = 0 and B0 = 1000I (noninformative for β);
σ2 ∼ IG(λ1, λ2) (inverse-gamma distribution), with λ1 = 0.001 and λ2 = 5 (this gives
E(σ2) = 2 and

√
Var(σ2) = 63, relatively non-informative);

Σ−1
w ∼ Wishart(ν−1

0 R0, ν0) with ν0 = p (most non-informative choice) and R0 = Ip (gives
E(Σw) = Ip with as large variance as possible);

The Gibbs sampling scheme is:
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1. Sample β from β|Y, σ2,Σw:

N

( N∑
i=1

X ′iV
−1X i + B−1

0

)−1( N∑
i=1

X ′iV
−1yi + B−1

0 β0

)
,

(
N∑
i=1

X ′iV
−1X i + B−1

0

)−1


where V = S∗ΣwS∗
′
+ σ2I and X i = x

(m)′

i ⊗ S∗.
2. Sample the random effects wi, i = 1, ..., N from {wi}|Y,β, σ2,Σw:

N

((
S∗

′
S

σ2
+ Σ−1

w

)−1
S∗

′
R

(w)
i

σ2
,

(
S∗

′
S

σ2
+ Σ−1

w

)−1
)

where R
(w)
i = yi −X iβ.

3. Sample Σ−1
w from Σ−1

w |{wi}:

Wishart

( N∑
i=1

wiw
′
i + ν0R

−1
0

)−1

, N + ν0


4. Sample σ−2 from σ−2|Y,β, {wi}:

Gamma

(
λ1 +

JN

2
,

(
1

λ2

+
1

2

(
R(σ2)′R(σ2)

))−1
)

where R(σ2) = Y − Xβ − vec(S∗w1, ...,S
∗wN) (a NJ × 1 vector).

The MCMC sampling of the mixed effects model parameters needs not be conducted
within the optimization routine necessary to solve (7), otherwise this would imply a tremen-
dous computational burden. The reason for this is given by the model written as in (11).
Given realizations of the posterior of Θ = (β, {wi}Σw, σ

2), p(Θ|data), we can simulate
draws of the posterior predictive density by composition (Gelman et al., 2004):

p(y|data,x) =

∫
p(y,Θ|data,x)dΘ

=

∫
p(y|data,Θ,x)p(Θ|data)dΘ

Thus, we conduct a simulation of the Gibbs sampling chain until convergence, approxi-
mating in this way p(Θ|data) and simply sample from it. We then substitute the sampled
values into the marginal likelihood p(y|data,Θ,x) whenever a y|data,x vector is needed
in the optimization routine (this replaces step 3 in Appendix A). Hence, the MCMC com-
putations are only run once, before performing the optimization. For more information on
MCMC methods, see Gelman et al. [23] and for a more concise introduction, see Colosimo
and Del Castillo [11].
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Appendix C. Probabilistic Principal Components Anal-

ysis

In order to present the probabilistic version of PCA of Tipping and Bishop [61], we first
contrast the closely related Maximum Likelihood PCA (MLPCA) models in the Chemo-
metrics literature (e.g., as in [64]) and the Factor Analysis (FA) model in the Machine
Learning and Statistics literature (e.g., as in [5, 24])1. We then discuss probabilistic PCA,
as it was used in the estimation of matrix S∗ in the linear mixed effects model (12).

Both MLPCA and FA models are based on the description:

Y = Wz + µ+ ε

where Y is a p-dimensional observed vector and z is an unobserved (and therefore, hy-
pothesized) k dimensional vector, with k typically much smaller than p. W is called the
“loadings” matrix and the entries in the z vector are called the latent or “factor” variables.
Both MLPCA and Factor Analysis assume:

ε ∼ N(0,Σ).

If we redefine Y − µ to be observed data (i.e., if we center the data with µ̂ = Y), the
parameter µ can be neglected.

MLPCA model characteristics.- The goal of MLPCA according to [64], is to best
estimate z given the observed random vectors Y, an estimate of W and a known covari-
ance matrix Σ. In MLPCA it is assumed z is an error-free constant, so the model is a
linear regression model, and the optimal solution is given by the generalized least squares
estimator:

ẑ = (W′Σ−1W)−1W′Σ−1Y

which yields predictions of the responses Ŷ = Wẑ + µ̂. This prediction equation is used
to minimize the “reconstruction error”

SΣ =
N∑
i=1

(Ŷ −Yi)
′Σ−1(Ŷ −Yi)

with respect to W. The MLPCA literature also discusses the case where Σ varies with each
observation, so the the covariance between the same elements of different Yi’s can differ
with the observation number i. Covariances between elements in each Yi are modeled
via the entries of Σi, which is a dense (not diagonal) matrix. Note that in processes
where a very large number of variables p are measured the number of elements in Σi is
high (p(p + 1)/2 distinct entries). These covariances are assumed known via information
available for the measurement noise, although [64] mention that in practice they need to

1The Machine Learning and Statistics literature actually calls “PCA” the model where Σ = σ2I while
it calls the model a FA model when Σ is diagonal but has different entries. Thus PCA in Chemical
Engineering is closer to FA in Statistics and Machine Learning.
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be estimated2. The objective of MLPCA in Chemometrics then is to find relationships
between the measured variables.

FA model characteristics.- The FA model in the Machine Learning/Statistics liter-
ature, rather than considering the latent variables fixed constants, assumes instead they
are random:

z ∼ N(0,Σz).

This is a “random effects” model with two sources of variability affecting the observations.
The term containing the latent variables z models correlations between the elements of Y,
while the error variables ε account for measurement error in each of these elements. In
the Chemometrics field, Reis and Saraiva [51] use random latent variables (in contrast to
Wenzell [64]), calling the model an heteroscedastic latent model, and use it for Statistical
Process Control.

The goal when using the FA model is to estimate W and Σ under the additional
assumption that Σz = Ik (the k dimensional identity matrix) to best model the correlation
in the entries of the observed Y vectors. This additional assumption does not lose generality
because any correlation between the elements of Y can still be modeled given that

Cov(Y) = WW′ + Σ. (13)

A particular case: Probabilistic PCA.- If Σ = σ2I (same measurement error
variance for all elements in Y) the FA model is called a Probabilistic PCA model
(PPCA). The maximum likelihood estimates of W and σ2 were shown by [61] to be:

Ŵ = V(L− σ2I)−1/2R

where V is a p × k matrix with columns equal to the k eigenvectors associated with the
top k eigenvalues of

S =
N∑
i=1

(Ŷ −Yi)(Ŷ −Yi)
′

L is a diagonal matrix with the k largest eigenvalues, and R is an arbitrary rotation matrix,
which can be set equal to I. The MLE of σ2 is

σ̂2 =
1

p− k

p∑
i=k+1

λi (14)

(the variance associated with the discarded dimensions). The inverse mapping in PPCA,
giving the latent vector associated with a given observation Y, is the posterior distribution
of z, which is

z|Y ∼ N((W′W + σ2I)−1W′Y, σ2(W′W + σ2I)−1)

As it can be seen, the posterior mean is a linear projection that can be interpreted as
“ridge” regression [25].

2A computational consideration for very large p is that the dense p× p matrix Σ needs to be inverted
to find ẑ, which is an O(p3) operation.
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Supplementary materials

All datafiles and MATLAB code that implements the methods discussed here, includ-
ing MCMC estimation and numerical optimization are provided. Running the script
scriptExamples.m reproduces all examples in the paper by calling the appropriate func-
tions. In addition, function Find_PCA_Dim.m is provided, which implements the exact
ML solution for Probabilistic PCA. It also finds the best latent space dimension using a
bayesian algorithm developed by Minka [34].
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