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Abstract
Finding the global optimum(s) of a non-convex function is of great

importance in numerous applications in science and engineering where
the function takes the form of an expensive computer code and its
inputs are the independent variables. For this type of problem, Jones et
al. [12] proposed the idea of expected improvement (EI) and embedded
it in an algorithm called efficient global optimization, or EGO. Neither
EI nor EGO consider the uncertainty in the parameter estimates. One
way to account for these uncertainties is to use Bootstrapping. In this
paper, instead, we formulate the expected improvement method from
a fully Bayesian perspective which results in a corresponding Bayesian
EGO method. The performance of the proposed Bayesian EGO is
illustrated and compared with the standard EGO method of Jones et
al. and the bootstrapped EGO of Kleijnen et al. [13]. Furthermore, we
apply the Bayesian EGO algorithm for the optimization of a stochastic
inventory simulation model.
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1 Introduction

In numerous applications in science and engineering, the input/output rela-
tion of a system is frequently represented by a computer code with certain
inputs we wish to determine. Two such instances are finite element models
in aerospace mechanical design and systems of partial differential equations
(PDE) that model chemical reactions in a petrochemical plant. The com-
puter codes can be regarded as a function mapping from the input space
to the output (response) space. Functions of this type usually share two
properties: 1) they are computationally expensive, that is, each run of the
code takes considerable amount of time and 2) they are highly non-convex.
These two properties make the global optimization of these functions a big
challenge.

There have been many attempts at building a ”metamodel” to approxi-
mate expensive computer code using a statistical model. Polynomial regres-
sion, splines, kriging, radial basis functions, neural networks and support
vector machine (SVM) have been used as metamodels (for a review of these
techniques see [20]). Among these statistical models, kriging has probably
received the most attention. Using a suitable covariance structure, kriging
can properly approximate even a highly non-convex function; furthermore,
in the absence of random error, i.e. if the computer code is deterministic,
kriging is an exact interpolator that is, kriging predictions perfectly match
the observed data [3]. It should be noted that kriging methods are some-
times referred to as Gaussian Process (GP) model in the statistics literature
and ”Gaussian Random Function” model in the Operations Research liter-
ature. In a seminal paper, Sacks et al. [17] proposed universal kriging as a
metamodel to approximate a computer code.

To optimize the inputs of a computer code through metamodeling, there
exists a tradeoff between exploration and exploitation. By exploration, we
mean searching the experimental domain and escaping from local optimums,
and by exploitation we mean moving toward the global optimums as close as
possible. Most of the procedures which use metamodels consist of sequen-
tial iterations between parameter estimation (rebuilding the model) and
optimization of the model at the given iteration. These methods are mainly
discussed in the context of sequential design of optimization experiments
([22], [23], [18] and [4]).

Mockus et al. [15] and Jones et al. [12] proposed the Expected Improve-
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ment (EI) criterion which combines the mean and variance structures of the
kriging predictor such that the method explores the experimental domain
and at the same time exploits the potential areas where local optima occur.
Jones et al. [12] named the resulting algorithm Efficient Global Optimiza-
tion (EGO)– see also [19] and [11].

Den Hertog et al. [5] and Sjostedt de Luna and Young [21] showed that
the formula for estimating the kriging prediction variance underestimates
the true prediction variance in expectation (as we will see later in (5)). Den
Hertog et al. [5] and Sjostedt de Luna and Young [21] both proposed boot-
strapping as a means to estimate the true kriging variance. This idea was
adopted by Kleijnen et al. [13] in their bootstrapped EGO algorithm and
used it for simulation optimization.

In this paper, we propose a fully bayesian approach to evaluate the ex-
pected improvement at any given point of a sequence of computer runs
using the posterior predictive distribution. This is then embedded in an
optimization method which we call Bayesian EGO. The rest of the paper is
organized as follows. In Section 2, the classic expected improvement and its
bootstrapped counterpart are described. Section 3 contains our proposed
bayesian expected improvement approach. In Section 4, the performance
of classic EI, bootrapped EI and bayesian EI is compared through several
test functions. Section 5 contains implementation of bayesian EGO for a
stochastic simulation problem from the inventory control literature. Finally
Section 6 gives concluding remarks and directions for further work.

2 Classic and Bootstrapped Expected Improve-
ment

Assume that the response or dependent variable at a generic location x ∈
D ⊂ Rk is y(x). A spatial model has the form

y(x) = µ + z(x) + ϵ(x) (1)

where µ is the mean, z(x) is a Gaussian stochastic process z(x) ∼ N(0, σ2)
modeling the spatial dependence, and ϵ(x) is assumed to be an independent
Gaussian process ϵ(x) ∼ N(0, τ2) modeling the error between the computer
code and the real system. The z(x) process is assumed to be isotropic [1], in
other words, the covariance between any two spatial locations, e.g. x(i) and
x(j), is a function of their distance, h, that is Cov(z(x(i)), z(x(j))) = f(h; Θ)
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where Θ is the set of covariance function parameters. Therefore, the covari-
ance of the response between any two locations is Cov(y(x(i)), y(x(j))) =
Cov(z(x(i)), z(x(j))) and the response variance at any location x is V ar(y(x)) =
σ2+τ2. As originally defined by Jones et al. [12] the Expected Improvement
at point x is defined as

E[I(x)] = E[max(fmin − Y (x), 0)] (2)

where fmin is the current best (minimum) function value. Note that I(x) =
max(fmin − Y (x), 0) is the improvement at the point x which is a random
variable since it is a function of Y (x). If ŷ(x) and s2(x) are the mean and the
variance estimators of Y at point x, then assuming Y (x) ∼ N(ŷ(x), s2(x)),
the expectation in (2) can be simplified to

E[I(x)] = (fmin − ŷ(x))Φ
(

fmin − ŷ(x)
s(x)

)
+ s(x)ϕ

(
fmin − ŷ(x)

s(x)

)
(3)

where Φ and ϕ are the cdf and the pdf of the standard normal distribution,
respectively. Moreover, ŷ(x) is the Best Linear Unbiased Predictor (BLUP)
of Y (x) and s2(x) is the mean squared error of the predictor ([18]) defined
as follows:

ŷ(x) = µ̂ + r′R−1(y − µ̂1) (4)

s2(x) = σ̂2

(
1 − r′R−1r +

(1 − 1′R−1r)2

1′R−11

)
(5)

In equations (4) and (5), R is the n × n correlation matrix between the
entries in YT = [Y (1), ..., Y (n)] and r is n × 1 correlation vector between
Z(x) and [Z(1), ..., Z(n)]T .

The EGO algorithm consists of maximizing the expected improvement
criterion given the vector of observed function values Y and the matrix
of locations X and obtaining an optimal solution location (x∗). We then
evaluate the function (computer code) at x∗, find y∗ and add x∗ to the
bottom of X and y∗ to the bottom of Y. This procedure is repeated until
a stopping criterion is satisfied.

The notion of expected improvement has gained considerable attention
in recent years. Ginsbourger and Riche [8] show suboptimality of the 1-point
ahead maximization of EI at each iteration of the EGO algorithm by means
of a counterexample. They further proposed a finite time horizon dynamic

4



programming approach to maximize a multipoint expected improvement cri-
terion given a finite budget of experimentation. Huang et al. [10] proposed
an augmented expected improvement criterion for optimizing stochastic re-
sponses which accounts for the uncertainty in the current best solution.

Using the kriging variance estimate (5) in the expected improvement
formula (3), we get the classic EI formula. However, Den Hertog et al.
[5] showed how the plug-in variance estimator (5) underestimates the true
variance of the kriging model and proposed instead parametric bootstrap-
ping to estimate MSE[y(x)]. They first calculated the maximum likelihood
estimates of the parameter set of the kriging model (the mean, variance and
correlation parameters) using the original data. The resulting model with
MLE parameters is then used to sample the bootstrapped observations.

Kleijnen et al. [13] incorporated the parametric bootstrapped estimate
of kriging variance in (3) and named it bootstrapped EI. From the original
dataset (X,Y), they first find the Maximum Likelihood Estimates (MLE) of
the kriging parameters and after replacing the parameters with their ML es-
timates and assuming gaussian distribution, they sampled at the new point
where a prediction is desired xnew, namely y∗new;b. They also sampled a boot-
strapped dataset at the locations of the original data points X, namely Y∗

b .
Next, using the bootstrapped dataset, (X,Y∗

b ), they calculated the boot-
strapped ML estimates of the kriging model and used that model to predict
at the new point xnew, namely ŷ∗new;b. This procedure is repeated B time,
b = 1, ..., B (where B is the bootstrap sample size), and the bootstrapped
variance estimate of the kriging model is estimated as

s2
B(xnew) =

1
B

B∑
b=1

(ŷ∗new;b − y∗new;b)
2 (6)

The Bootstrapped EI uses s2
B(xnew) as the estimate of the kriging predic-

tion variance at any new point. Note that in principle, the whole procedure
should be followed for each candidate point xnew. However, to speed-up
the computations, they use the same bootstrapped MLE computed from
(X,Y∗

b ) for all candidates.

A major issue to tackle using either classic EI or bootstrapped EI is
finding the maximum likelihood estimate of the kriging parameters. Note
that using bootstrapped EI, in each iteration of the bootstrapped EGO
algorithm, B+1 maximization problems need to be solved compared to only
one maximization for classic EGO. Generally, the constrained maximization
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of the likelihood function even for the simplest model structure is not an
easy task and the routine may converge to a local maximum.

3 Bayesian EI

Given that the estimated kriging variance in classic EGO is biased and re-
peated optimization problems in bootstrapped EGO are difficult, we take
instead a bayesian approach to calculate the expected improvement while
considering the uncertainty of the parameters in the predictions. The poste-
rior predictive distribution of Y (x)|Y is then used to calculate the expected
improvement through its original definition given in (2).

The model in equation (1) is assumed. Furthermore, we assume that the
stochastic process Z(x) is isotropic, that is, the covariance between Z(xi)
and Z(xj) depends only upon the distance between the points d(xi, xj) and
not on the direction of the vector joining them [3]. We use an exponential
covariance function to model Cov(Z(x(i)), Z(x(j))) which is popular in the
metamodeling literature. This makes Σij = Cov(Y (x(i)), Y (x(j)) equal to

Σij =
{

σ2 exp
(
−ϕd(xi, xj)

)
if d(xi, xj) > 0

σ2 + τ2 otherwise
(7)

where d(xi, xj) is the Euclidean distance between xi and xj . Given the above
model, the kriging parameter vector is Θ = (µ, ϕ, σ2, τ2) where ϕ, σ2, τ2 > 0.
For the Gaussian Process model above, the likelihood is

L(Θ) = (2π)−n/2|Σ|−1/2 exp
(
−1
2

(Y − µ1)T Σ−1(Y − µ1)
)

(8)

where X is some given initial design and 1 is n × 1 vector of ones.

Given a set of prior distributions π(·) for the parameters of the model,
the posterior distribution p(Θ|Y) which is proportional to the likelihood
multiplied by the priors, can be derived. We then need to find the posterior
predictive distribution of Y (x)|Y. In order to do this, first note that[

Y
Y (x)

]
∼ N

(
µ1,

[
Σ γ
γT σ2 + τ2

])
where 1 is now an (n + 1)× 1 vector of ones and γ is n× 1 vector of covari-
ances between Y (x) and the elements of Y. Given a well-known property
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of the multivariate Gaussian distribution, we obtain the posterior predictive
density:

p(Y (x)|Y, Θ) = N
(
µ + γT Σ−1(Y − µ1), σ2 + τ2 − γT Σ−1γ

)
. (9)

3.1 Definition of Prior Distributions

We use a normal prior for µ to allow this parameter to have positive or
negative values and a lognormal prior for ϕ, σ2 and τ2 since these parameters
can take only positive values. These distributions are simple to interpret and
tune to make them as non-informative as one may wish.

µ ∼ N(µµ, σ2
µ)

ϕ ∼ logN(µϕ, σ2
ϕ)

σ2 ∼ logN(µσ2 , σ2
σ2)

τ2 ∼ logN(µτ2 , σ2
τ2)

These priors were set quite none-informative to allow the posterior distri-
butions to be solely influenced by the data. Hence, the variance parameter
of the normal prior for µ, σ2

µ, was set to 1040 and the variance parameters
for lognormal priors, σ2

ϕ, σ2
σ2 and σ2

τ2 , were all set to 100.
Based on the given prior distributions, the joint posterior distribution

of the parameters is derived in Appendix A. Furthermore, the full con-
ditional distributions for ϕ, σ2 and τ2 are provided in Appendix A. Since
these distributions are not known probability distributions, we need to use
the Metropolis-Hastings algorithm to sample from the posterior distribu-
tions of these three parameters [2]. However, given the normal prior for
µ, its full conditional can be written as a normal distribution (as shown in
Appendix B); therefore, Gibbs sampling is used for this parameter [2].

3.2 The Bayesian EI Algorithm

• Design the initial experiment X and evaluate the function (i.e., run
the computer code) at the design points to get Y

• While stopping criteria for Bayesian EGO algorithm not met do

1. run the MCMC and sample from the posterior distribution of
Θ|Y

2. while stopping criteria for optimization procedure not met do
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i. at any new point xnew, proposed by the optimization pro-
cedure, sample from the posterior predictive distribution of
Y (x)|Y

ii. evaluate the Bayesian EI at xnew directly using equation (2)

3. end while

4. let the final solution of optimization procedure to be x∗. Add x∗

to the bottom of X

5. run the function at x∗ to get y∗ and add it to the bottom of Y

• End while

4 Numerical Results for Some Test Functions

In this section, the performance of the bayesian EGO is studied using four
test functions which are included in [13] and the results are compared with
both the classic EGO and the bootstrapped EGO. The test functions include
a one dimensional Forrester function, two dimensional ”six-hump camel-
back” function, three dimensional ”Hartmann-3” function and the six di-
mensional ”Hartmann-6” function.

The initial design X for each of the tests is a space filling design in the
function’s domain [18]. This was the same design used for all the three algo-
rithms (classic EGO, bootstrapped EGO and bayesian EGO). The stopping
criterion is either reaching maximum number of allowable iterations (which
is different for each of the four test functions and are set equal to those used
in [13]) or attaining the expected improvement threshold which is set to e−20

(again, similar to [13]). Furthermore, to have a sense on variability, the al-
gorithm is replicated 5 times for each test function where each replication is
starting from a different pseudorandom number seed. All of the calculations
are done in MATLAB and the codes are available at http://www2.ie.psu.
edu/Castillo/research/EngineeringStatistics/software.htm.

4.1 Computational Details

In this section, we describe some implementation details of the MCMC sam-
pling routine.

• As discussed in the previous section, we use Gibbs sampling for µ
and Metropolis-Hastings for the remaining three parameters of the
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covariance function, namely ϕ, σ2 and τ2. To determine the length of
the Markov chains, visual inspection of the trend plot, a plot of the
variance and the mean of the variables and also plot of the standard
deviation of the mean were considered (see Appendix C for a sample of
these monitoring plots). The chains should be long enough so that the
trend plot shows stationarity and the other three plots are stabilized
[16].

• In addition to sample inspection, we calculate the Effective Sample
Size (ESS) to determine the number of independent samples out of the
total generated sample. The ESS mainly depends on autocorrelation
structure within the generated sample: the more autocorrelated the
samples are, the longer chains are required to achieve a given number of
independent samples. The ESS was then used to perform ”thinning” of
the chains so that the remaining samples are no longer autocorrelated
[16].

• To sample from the posterior distributions of the three parameters
ϕ, σ2 and τ2, we need to use the Metropolis-Hastings algorithm; there-
fore, a proposal distribution is required for each of them. We have used
a log-normal distribution with µproposal equal to the logarithm of the
parameter value at the previous MCMC iteration and σ2

proposal was
initially set such that there is a good balance between acceptance rate
(around 40%) and rapid tail off of the autocorrelation function [16].
The σ2

proposal are not necessarily the same across different parameters
and also the test functions. Furthermore, we incorporate an adap-
tive Metropolis-Hastings technique, proposed by Haario et al. [9], to
change σ2

proposal along the MCMC iterations.

• To calculate the MCMC variance of the parameters, batch means [16]
were used given any possible autocorrelation exists in the Markov
chains.

• The number of posterior samples was set equal to min(ESS, 1000) in
all test functions. Note that the samples from the posterior distribu-
tion of the parameters are changing at each new point xnew proposed
by the optimization routine.

• As noted later, the optimization routine is simply a search routine
over a set of points defined by a fine grid or a space filling design [18]
similar to Kleijnen et al. [13].
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• The stopping criterion is either a predefined maximum number of al-
lowable iterations or arriving at bayesian EI less than a predefined
threshold value, e−20, the same as in [13].

4.2 The Forrester Function

The first function that is evaluated is the one dimensional Forrester function:

y(x) = (6x − 2)2 sin(12x − 4) 0 ≤ x ≤ 1

This function has one local minimum at xL = 0.01 and one global min-
imum at xG = 0.7572 where y(xG) = −6.0207. The same initial design is
used as [13] that is [0,0.5,1]. The optimization routine is a search over a grid
with the step size equal to 0.01 in (0, 1). Similar to [13], maximum number
of allowable iterations is set to 8. Table 1 illustrates the results.

Table 1: Comparison of Classic EGO, Bootstrapped EGO and the proposed
Bayesian EGO methods for the 1-D Forrester Function (Bootstrapped EGO
results are included from [13])

Rep. xopt yopt nopt ntot d

Classic
EGO

1 0.76 -6.017 10 11 0.0028

Boots.
EGO

1 0.76 -6.017 9 11 0.0028

2 0.76 -6.017 10 11 0.0028
3 0.76 -6.017 9 10 0.0028
4 0.76 -6.017 10 10 0.0028
5 0.76 -6.017 8 10 0.0028

Bayes.
EGO

1 0.76 -6.017 8 11 0.0028

2 0.76 -6.017 7 11 0.0028
3 0.76 -6.017 9 11 0.0028
4 0.78 -5.7282 10 11 0.0228
5 0.76 -6.017 11 11 0.0028

Table 1 shows the coordinate of the optimal solution (xopt) at each repli-
cation, the function value at that solution (yopt), the iteration number which
result into the optimal solution (nopt), the total number of iterations until
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stopping (ntot)and finally the Euclidean distance between the optimal solu-
tion and the true global minimum (d). As we can see, the bayesian EGO
method finds the true global minimum in four replications similar to the
classic and the bootstrapped EGO. Furthermore, the bayesian EGO and
the bootstrapped EGO seems to be almost the same in the speed of finding
the optimum (based on nopt) while both of them are faster than the classic
EGO. Notice that nopt and ntot include the initial design points, as well.
Figure 1 illustrates the mean of the posterior predictive distribution, the
variance of the posterior predictive distribution and also the bayesian EGO
in (0, 1) after 8 iterations of the algorithm. Note that the variance is higher
at locations where the density of the observed data points are lower and vice
versa. If there was a ninth iteration, it would be at the point which has the
maximum bayesian EI in the plot.
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Figure 1: Top: The Forrester function (y) and the mean of the posterior
predictive distribution (ŷ). The squares are the initial design points and
the round dots are the points proposed by bayesian EGO algorithm. Mid-
dle: The variance of the posterior predictive distribution. Bottom: The
bayesian expected improvement

4.3 The Six-Hump Camel-Back Function

The six-hump camel-back function is defined as
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y(x1, x2) = 4x2
1−2.1x4

1+x6
1/3+x1x2−4x2

2+4x4
2 −2 ≤ x1 ≤ 2,−1 ≤ x2 ≤ 1

In the given domain the function has two global minima which are
x1

G = (0.089842,−0.712656) and x2
G = (−0.089842, 0.712656) with the func-

tion value equal to -1.031628. Also, the function has two local minima.

Similar to [13], the initial design is a type of space filling design called
maximin Latin Hypercube Sampling (LHS) with 21 points [18]. Further-
more, the optimization routine is a search over 200 candidate points gen-
erated from a maximin LHS design in the above domain. The maximum
number of allowable iterations is set to 40 which is the same as [13]. Table
2 shows the results of the three methods.

Table 2: Comparison of Classic EGO, Bootstrapped EGO and the pro-
posed Bayesian EGO methods for the 2-D Six-hump camel-back func-
tion(Bootstrapped EGO results are included from [13])

Rep. xopt yopt nopt ntot d

Classic
EGO

1 (-0.0302,0.7688) -0.9863 31 41 0.0819

Boots.
EGO

1 (0.0302,-0.7688) -0.9863 29 43 0.0819

2 (-0.0302,0.7688) -0.9863 29 41 0.0819
3 (-0.0302,0.7688) -0.9863 29 42 0.0819
4 (0.0302,-0.7688) -0.9863 29 42 0.0819
5 (0.0302,-0.7688) -0.9863 29 43 0.0819

Bayes.
EGO

1 (-0.0971,0.7333) -1.0280 51 61 0.0219

2 (0.0864,-0.7256) -1.0301 61 61 0.0134
3 (-0.0926,0.7065) -1.0313 46 61 0.0067
4 (0.0980,-0.7051) -1.0308 32 61 0.0111
5 (0.1086,-0.7188) -1.0301 38 61 0.0198

The bayesian EGO method unanimously achieved better solutions com-
pared to the classic EGO and the bootstrapped EGO considering that it
uses all of its 40 allowable iterations. The distance of the final solutions
from the global minima are lower for all of the replications compared to the
other two approaches. However, both the classic and the bootstrapped EGO
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were faster than the bayesian EGO in finding their final solutions except for
replication 3.

Figure 2 illustrates the contour plot of the six-hump camel-back function
and its prediction by the mean of the posterior predictive distribution. The
square black points are the 21 initial design points and the round red points
are the final solutions of the proposed algorithm at each iteration. The final
solutions of the algorithm are almost concentrated around the two global
minima which confirms the capability of the algorithm to locate both of the
global minima.

Figure 3 shows the contours of the bayesian expected improvement for
the six-hump camel-back function. Notice that the expected improvement
function is maximized around the two global minima.

4.4 The Hartmann-3 Function

The Hartmann-3 is a three dimensional function defined as

y(x1, x2, x3) = −
4∑

i=1

αi exp

− 3∑
j=1

Aij(xj − Pij)2

 0 ≤ xi ≤ 1, i = 1, 2, 3

where α = (1.0, 1.2, 3.0, 3.2) and Aij and Pij are given in Table 3. The
function has one global minimum at xG = (0.114614, 0.555649, 0.852547)
with function value equal to -3.86278 and also three local minima.

Table 3: parameters Aij and Pij for the Hartmann-3 Function

Aij Pij

3.0 10 30 0.36890 0.11700 0.26730
0.1 10 35 0.46990 0.43870 0.74700
3.0 10 30 0.10910 0.87320 0.55470
0.1 10 35 0.03815 0.57430 0.88280

The initial design is a maximin LHS design with 30 points. To perform
the optimization, the bayesian EGO is evaluated over a maximin LHS design
with 300 points and the maximum is the final solution. Furthermore, the
maximum number of iterations is set to 35 (all of the settings are similar to
[13]). Table 4 shows the results for the Hartmann-3 function.

The final solutions of all of the replications of the bayesian EGO method
are lower than those of the classic and the bootstrapped EGO. However, both
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Figure 2: (a) Contour plot of the six-hump camel-back function. The square
(black) points show the initial LHS design and the round (red) points are
the final solutions of the bayesian EGO algorithm. The number beside each
round (red) point is the iteration number of that solution (b) Contour plot
of the predicted six-hump camel-back function through the mean of the
posterior predictive distribution.
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Figure 3: Contour plot of the bayesian expected improvement for the six-
hump camel-back function. The square (black) points are the initial LHS
design.

Table 4: Comparison of the Classic EGO, the Bootstrapped EGO and the
Bayesian EGO methods for the 3-D Hartmann-3 function(The Bootstrapped
EGO results are included from [13])

Rep. xopt yopt nopt ntot d

Classic
EGO

1 (0.2088,0.5465,0.8767) -3.7956 44 65 0.0977

Boots.
EGO

1 (0.2088,0.5465,0.8767) -3.7956 34 65 0.0977

2 (0.2088,0.5465,0.8767) -3.7956 34 65 0.0977
3 (0.2088,0.5465,0.8767) -3.7956 41 65 0.0977
4 (0.2088,0.5465,0.8767) -3.7956 34 65 0.0977
5 (0.2088,0.5465,0.8767) -3.7956 44 65 0.0977

Bayes.
EGO

1 (0.0780,0.5615,0.8628) -3.8510 35 65 0.0385

2 (0.2752,0.5618,0.8643) -3.8330 60 65 0.1611
3 (0.1639,0.5637,0.8431) -3.8501 34 65 0.0509
4 (0.1388,0.5818,0.8553) -3.8381 53 65 0.0357
5 (0.0083,0.5598,0.8506) -3.8548 61 65 0.1064
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the classic and the bootstrapped EGO found their final solutions faster than
the bayesian EGO method except for one replication.

Figure 4 shows the location of the final solutions found by the bayesian
EGO algorithm (round red points) and the global minimum (star shaped
green point).
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Figure 4: Square (black) points are the initial LHS design, round (red)
points are the solutions of the bayesian EGO algorithm and the star (green)
shows the global minimum of the Hartmann-3 function.

4.5 The Hartmann-6 Function

The last test function which is evaluated is the Hartmann-6 function with
six variables. It is defined as

y(x1, ..., x6) = −
4∑

i=1

ci exp

− 6∑
j=1

αij(xj − pij)2

 0 ≤ xi ≤ 1, i = 1, ..., 6
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where c = (1.0, 1.2, 3.0, 3.2) and αij and pij are given in Table 5. This func-
tion has a global minimum at xG = (0.2017, 0.1500, 0.4768, 0.2753, 0.3116, 0.6573)
with function value equal to −3.32237 and five local minima.

Table 5: Parameters αij and pij of Hartmann-6 Function

αij 10.0 3.0 17.0 3.5 1.7 8.0
0.05 10.0 17.0 0.1 8.0 14.0
3.0 3.5 1.7 10.0 17.0 8.0
17.0 8.0 0.05 10.0 0.1 14.0

pij 0.1312 0.1696 0.5569 0.0124 0.8283 0.5886
0.2329 0.4135 0.8307 0.3736 0.1004 0.9991
0.2348 0.1451 0.3522 0.2883 0.3047 0.6650
0.4047 0.8828 0.8732 0.5743 0.1091 0.0381

The initial design is a maximin LHS with 51 points. Furthermore, the
set of candidate points in the search optimization routine is from a maximin
LHS design with 500 points in the function space. Finally, the maximum
number of allowable iterations is set to 50 (all of these settings are similar to
[13]). Table 6 compares the results of the bayesian EGO for the Hartmann-6
function versus the classic and the bootstrapped EI methods.

Note that the yopt for the bayesian EGO algorithm is lower in all of the
replications compared to the bootstrapped and the classic EGO methods.
Furthermore, the bayesian EGO is faster in two replications (replications 4
and 5) in finding its final solution compared to the bootstrapped and the
classic EGO methods.

4.6 Computation Time

In this section, we give insight on the computational time of the bayesian
EGO algorithm. Duration of each run of the bayesian EGO algorithm de-
pends mainly on the following factors: 1. Number of input variables - di-
mension (Dim) 2. Initial design size (IDS) 3. Maximum number of allowable
iterations (MNAI) 4. MCMC Chains length (CL) 5. Number of the pos-
terior samples used to evaluate the posterior predictive distribution at a
given location (NPS). Table 7 shows some statistics on computational time
of a single iteration for the four test functions on a 3.60 GHz Intel pentium
processor with 4.00 GB of RAM.

The iteration times increase as the number of rows of X and Y go up.
The iteration times are the mean iteration time within one replication of the
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Table 6: Comparison of the Classic EGO, the Bootstrapped EGO and the
Bayesian EGO methods for the 6-D Hartmann-6 function(the Bootstrapped
EGO results are included from [13])

Rep. xopt yopt nopt ntot d

Classic
EGO

1 (0.3535,0.8232,0.8324,0.4282,0.1270,0.0013) -2.3643 79 101 1.0442

Boots.
EGO

1 (0.3535,0.8232,0.8324,0.4282,0.1270,0.0013) -2.3643 92 101 1.0442

2 (0.3535,0.8232,0.8324,0.4282,0.1270,0.0013) -2.3643 89 101 1.0442
3 (0.3535,0.8232,0.8324,0.4282,0.1270,0.0013) -2.3643 78 101 1.0442
4 (0.3535,0.8232,0.8324,0.4282,0.1270,0.0013) -2.3643 86 101 1.0442
5 (0.3535,0.8232,0.8324,0.4282,0.1270,0.0013) -2.3643 92 101 1.0442

Bayes.
EGO

1 (0.1570,0.1386,0.4755,0.3421,0.2334,0.6297) -2.8681 94 101 0.1160

2 (0.2113,0.0702,0.4313,0.3100,0.2410,0.6060) -2.9112 83 101 0.1317
3 (0.0933,0.2175,0.3270,0.2391,0.3446,0.5733) -2.6851 95 101 0.2196
4 (0.1321,0.1530,0.5626,0.3280,0.2955,0.6399) -3.0836 70 101 0.1246
5 (0.2290,0.0795,0.2978,0.2877,0.2405,0.6839) -2.8464 70 101 0.2091

Table 7: Computational time of a single iteration for the four test functions
on a 3.60 GHz Intel pentium processor with 4.00 GB of RAM

Iteration Time (sec)
Function Dim IDS MNAI CL NPS Min Mean Max Std.
Forrester 1 3 8 1e4 200 57.56 58.85 61.04 1.48
Six-Hump 2 21 40 1e4 200 100.57 107.15 113.62 5.80
Hartmann-3 3 30 35 1e4 200 114.10 122.68 130.51 5.97
Hartmann-6 6 51 50 3e4 1e3 600.62 659.49 732.24 55.42
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bayesian EGO algorithm and the provided statistics are over five different
replications.

5 Application of Bayesian EGO to a Stochastic
Inventory Simulation

This section contains implementation of the proposed algorithm for a stochas-
tic function from the inventory systems literature. The example which is
discussed in Law and Kelton [14] is about finding the optimal reorder point
(s) and the maximal holding quantity (S) in an (s, S) inventory policy. The
objective function is the expected total cost per month which is the sum
of the ordering cost, the holding cost and the shortage cost. The company
reviews it’s inventory at the beginning of each month and decides how much
to order. Based on the (s, S) policy the order quantity is

Z =
{

S − I if I < s
0 if I ≥ s

where I is the inventory level and Z is the order quantity at the beginning
of each month. The time between demands are i.i.d. exponential random
variables with mean of 0.1 month. Furthermore, the size of the demands,
D, are i.i.d. random variable with the following probability mass function:

D =


1 w.p. 1

6
2 w.p. 1

3
3 w.p. 1

3
4 w.p. 1

6

Finally, the supplier’s lead time is a uniform random variable between
0.5 and 1 month. Each order has a fixed setup cost of K = $32 and a linear
incremental cost of i = $3 per item (if the order quantity is zero then the
setup cost is also zero). The holding cost is h = $1 per item per month and
the shortage cost is p = $5 per item per month.

Optimal (s, S) inventory policy has an extensive literature, especially,
through using the dynamic programming techniques both in finite and infi-
nite time horizon. Here, we want to find the optimal policy in infinite time
horizon such that the optimal reorder point (s) and the maximal holding
quantity (S) do not change over time. Given that the lead time is stochas-
tic, there does not exist any theoretical result for an optimal (s, S) inventory
policy. Actually, this is the reason why the simulation optimization proce-
dures are so much popular for the inventory models with stochastic lead
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time. The closet theoretical work that was found for this inventory prob-
lem is by Ehrhardt [7] which is based on the author’s other work with fixed
lead time [6] using power approximation. We compare our results with this
method.

The initial design that we used is a maximin LHS with 21 points and
the maximum number of iteration is set to 25 (similar to the 2-dimensional
six-hump camel-back function). A realization of the stochastic process along
with the bayesian prediction through the mean of the posterior predictive
distribution is illustrated in Figure 5.

The posterior predictive mean seems to be able to predict the stochastic
function to a reasonable extent. The optimal solutions based on the theo-
retical approximation method of Ehrhardt and our proposed bayesian EGO
method are provided in Table 8. Furthermore, the inventory simulation
model was ran 1000 times for each solution and the corresponding mean,
standard deviation and 95% confidence intervals are reported.

Table 8: The mean, the standard deviation and the 95% CI for total inven-
tory costs based on 1000 replications of the inventory simulation model at
the optimal solutions

Method (s∗, S∗) Mean Std. 95% CI
Ehrhardt (39.72,79.03) 125.99 2.35 (125.85,126.14)
Bayesian EGO (24.84,61.65) 118.91 3.40 (118.70,119.12)

Figure 6 shows the box-plots of the total inventory costs for each inven-
tory policy. The bayesian EGO method came up with a solution with lower
inventory costs compare to the Ehrhardt method.

6 Concluding Remarks

In this paper a fully bayesian implementation of the EGO method was pre-
sented. Instead of using a plug-in estimator for the kriging variance which
underestimates the true variance, or using a bootstrapped estimate of this
variance which entails repeated difficult optimizations, a bayesian expected
improvement was proposed and embedded within the EGO algorithm for
optimization of unknown and non-convex functions. The performance of
our approach was then compared with the classic and the bootstrapped
EGO methods for four different deterministic test functions from the liter-
ature. The function values at final solutions, distance of the final solutions
from the true global optimum(s) and the speed of achieving the final solu-
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Figure 5: (a) Contour plot of a realization of the stochastic cost function.
The square (black) points are the initial LHS design and the round (red)
points are the solutions of the bayesian EGO algorithm. The number beside
each red dot is the iteration number of that solution. (b) Contour plot of
the predicted simulation model through the mean of the posterior predictive
distribution
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Figure 6: Total Inventory cost box-plots based on running the inventory
simulation model at the optimal solution given by each inventory policy for
1000 replications

tions were then compared across the three different methods. In general,
bayesian EGO showed to find solutions with better function values and lo-
cations closer to the global optimum(s) especially for higher dimensional
functions. However, on average, the bayesian EGO showed to be slower in
finding the optimal solution compared to the classic and the bootstrapped
EGO methods. Speeding up bayesian EGO is therefore a matter of further
research.

Furthermore, the bayesian EGO approach was implemented for a stochas-
tic inventory cost function to find the optimal reorder point (s) and the
maximal holding quantity (S) in an (s, S) inventory policy. The perfor-
mance of the proposed approach was compared with the theoretical power
approximation method of Ehrhardt [7]. The results showed the advantage
of the bayesian EGO method in optimizing the stochastic simulation model
as compared to the theoretical power approximation method.

Appendix A. Posterior and Full Conditional Distri-
butions

The posterior distribution is
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p(µ, ϕ, σ2, τ2|Y) ∝ (2π)−n/2|Σ|−1/2 exp
(
−1
2

(Y − µ1)T Σ−1(Y − µ1)
)

× (2πσ2
µ)−1/2 exp

(
(µ − µµ)2

−2σ2
µ

)
× ϕ−1(2πσ2

ϕ)−1/2 exp

(
(lnϕ − µϕ)2

−2σ2
ϕ

)

× (σ2)−1(2πσ2
σ2)−1/2 exp

(
(lnσ2 − µσ2)2

−2σ2
σ2

)
× (τ2)−1(2πσ2

τ2)−1/2 exp
(

(ln τ2 − µτ2)2

−2σ2
τ2

)
which is basically the likelihood multiplied by the priors for µ, ϕ, σ2 and τ2.
Given the joint posterior distribution of the parameters, the full conditional
distribution of ϕ, σ2 and τ2 can be written as follows:

p(ϕ|µ, σ2, τ2,Y) = |Σ|−1/2 exp
(
−1
2

(Y − µ1)T Σ−1(Y − µ1)
)

(ϕ)−1 exp

(
(lnϕ − µϕ)2

−2σ2
ϕ

)

p(σ2|µ, ϕ, τ2,Y) = |Σ|−1/2 exp
(
−1
2

(Y − µ1)T Σ−1(Y − µ1)
)

(σ2)−1 exp
(

(ln σ2 − µσ2)2

−2σ2
σ2

)

p(τ2|µ, ϕ, σ2,Y) = |Σ|−1/2 exp
(
−1
2

(Y − µ1)T Σ−1(Y − µ1)
)

(τ2)−1 exp
(

(ln τ2 − µτ2)2

−2σ2
τ2

)
Note that covariance matrix Σ contains the covariance parameters ϕ, σ2 and τ2.

Appendix B. Gibbs Sampling

We show that the full conditional distribution of µ is a normal distribution.
By completing the square we have
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p(µ|ϕ, σ2, τ2,Y) ∝ exp
(

(Y − µ1)T Σ−1(Y − µ1)
−2

)
exp

(
(µ − µµ)2

−2σ2
µ

)
= exp

(
−1
2

(−µ1T Σ−1Y + µ21T Σ−11 − µYT Σ−11) − 1
2

(
µ2 − 2µµµ

σ2
µ

))
= exp

(
−1
2

(
(1T Σ−11 +

1
σ2

µ

)µ2 − 2(1T Σ−1Y +
µµ

σ2
µ

)µ
))

= exp


µ2 − 2

(
1T Σ−1Y+

µµ

σ2
µ

1T Σ−11+ 1

σ2
µ

)
µ

−2

(
1

1T Σ−11+ 1

σ2
µ

)


= exp


(
µ − σ2

µ1T Σ−1Y+µµ

σ2
µ1T Σ−11+1

)2

−2
(

σ2
µ1T Σ−11+1

σ2
µ

)−1


which is a normal distribution N

(
σ2

µ1T Σ−1Y+µµ

σ2
µ1T Σ−11+1

,

((
σ2

µ1T Σ−11+1

σ2
µ

)−1/2
)2
)

.

Appendix C. Checking the Convergence of the MCMC
Chains

Figure 7 shows the monitoring plots for µ and ϕ parameters selected at ran-
dom which are mainly used for determining the MCMC chains length. The
plot in the first row is the empirical density function. The second plot is the
trend plot which is usually used as a means to check for the convergence to
the stationarity distribution. The third plot illustrates the autocorrelation
function. As you may see autocorrelation is insignificant for µ; however, the
samples of ϕ seems to be autocorrelated. This autocorrelation structure is
also verified by looking at the trend plot. High autocorrelation between the
samples causes the Effective Sample Size (ESS) to decrease. Note that the
”thinning” process eliminates any remaining autocorrelation. The fourth
plot shows the variance of the sampled parameters which will become sta-
ble (converge to a constant) after reaching the stationarity. The fifth plot
demonstrated the mean of the parameter as a function of the sample index.
Finally, the last plot shows the standard error of the mean of the parameter
which will converge to 0 as the number of samples goes to infinity.
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Figure 7: Monitoring plots used to check for convergence of MCMC chains
to their stationary distributions - µ (left) and ϕ(right)
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