
A Bayesian Approach for Multiple Response Surface Optimization

in the Presence of Noise Variables

Guillermo Miró-Quesada, Enrique Del Castillo, and John J. Peterson ∗

October 1, 2002

Abstract

An approach for the multiple response robust parameter design problem based on a
methodology by Peterson (2000) is presented. The approach is Bayesian, and consists of
maximizing the posterior predictive probability that the process satisfies a set of constraints
on the responses. In order to find a solution robust to variation in the noise variables, the
predictive density is integrated not only with respect to the response variables but also with
respect to the assumed distribution of the noise variables. The maximization problem involves
repeated Monte Carlo integrations, and two different methods to solve it are evaluated. A
Matlab code was written that rapidly finds an optimal (robust) solution in case it exists. Two
examples taken from the literature are used to illustrate the proposed method.

1 Introduction

Robust Parameter Design (RPD) is a set of techniques that consists in determining the levels of
some set of controllable factors that reduce the sensitivity of the process to variations in another
set of uncontrollable factors, the noise factors, thus increasing the robustness of the process. The
implicit assumption is that noise factors can be controlled only in an R&D environment but
not during manufacturing or during actual use of the product. This paper presents a Bayesian
approach to the RPD problem when there are multiple responses of interest, possibly correlated.

A general approximation to the RPD problem based on response surface methods was first
proposed by Box and Jones (1990) and later elaborated by Myers (1992). It consists in explic-
itly modelling the noise and controllable factors as part of a response surface model based on a
carefully controlled experiment. The noise factors are not controllable in general, and assuming

∗Guillermo Miró Quesada is a Ph.D. candidate in the Department of Industrial & Manufacturing Engineering,

Penn State University, University Park, PA 16802. Enrique Del Castillo is an Associate Professor, Department

of Industrial & Manufacturing Engineering, Penn State University, University Park, PA 16802. John J. Peter-

son is a Director of Statistics, Statistical Sciences Department, UW281A, GlaxoSmithKline Pharmaceuticals, 709

Swedeland Road, King of Prussia, PA 19406.

1

they will vary over some known distribution, variance and expectation models can be obtained
from the fitted response to provide dual responses which then can be optimized to solve Taguchi’s
RPD problem. Constraints can be added on the controllable factors to avoid extrapolation of the
models. This approach is known in the response surface literature as the dual response approach
(Vining and Myers, 1990, Del Castillo and Montgomery, 1993, Lucas, 1994, Myers, 1997, Vining,
1990). These approaches have been developed, thus far, for single response processes. Further-
more, Peterson (2000) mentions how these approaches do not take into account the uncertainty
in the parameter estimates in a formal probabilistic sense.

When there are multiple responses of interest, several techniques have been proposed in the last
few years but these do not address the RPD problem. These techniques can be classified in general
terms as a) those that do not consider the correlation between the responses or the uncertainty in
the parameter estimates (e..g, Desirability methods, see Harrington, 1965, Derringer and Suich,
1980, Del Castillo et al., 1996); b) consider such correlation but do not consider the uncertainty
in the parameter estimates (e.g., Khuri and Conlon, 1981, Pignatiello, 1993); or c) consider the
uncertainty in the estimates but not the correlation between the responses (Del Castillo, 1996). In
contrast, the Bayesian reliability approach by Peterson (2000) considers the correlations between
the responses and the uncertainty in the parameter estimates in a formal way.

The purpose of this paper is to extend the approach proposed by Peterson (2000) for multiple
response optimization to the Robust Parameter Design case. For this purpose, two modifications
in his approach are studied herein: 1) noise variables are included in the integration of the
predictive density; 2) use of non-linear programming algorithms for performing the numerical
maximizations are studied.

The remainder of this paper is organized as follows. Section 2 gives a description of the
methodology proposed by Peterson (2000). Section 3 discusses the use of NLP algorithms and
proposes a method to provide good starting solutions. Section 4 presents the methodology for
including the noise variables, and section 5 illustrates the approach with two examples taken from
the literature.

2 Bayesian Predictive Approach

Peterson (2000) describes a methodology to perform the simultaneous optimization of multiple
response surfaces using a Bayesian predictive density function. The following model is employed
under the typical assumptions of multivariate regression:

Y = XB + U (1)

where Y is a N × q matrix containing the observations of the q responses, X is a N × p design
matrix, B is a p× q matrix of parameters and U is a N × q matrix such that:

2

ui. ∼ Nq(0,Σ) ∀i = 1, . . . , N

u.j ∼ NN (0, σ2
j IN) ∀j = 1, . . . , q

that is, the rows of U are allowed to be correlated but each column must contain independent
random variables. Under the model in equation (1), any new q× 1 vector of observations y for a
given level of controllable factors x follows the model:

y = B′x + ε (2)

where x is a p×1 vector containing the regressors which are functions of the k controllable factors
{xi}k

i=1 at which the prediction is desired and ε is a q × 1 vector that has the same distribution
as u′i..

Now, the problem of multi-response optimization consists of choosing the values of the k

controllable factors xi such that y has certain desired properties. It is often the case that these
desired properties are for the vector of responses y to meet some set of specifications. . Let A

denote the region of the response space defined by these specifications. The region A can have an
arbitrary form. Then the multi-response optimization can be summarized into a single objective
consisting of maximizing the probability of having the vector of responses inside the specification
region A, i.e., maximizing the following probability of conformance:

max p (x) = P (y ∈ A|x, data)
subject to :

x ∈ R

(3)

where y is assumed to follow model (2) and R is the region where the model is valid, which is
usually taken as the experimental region defined by the design matrix X.

By using the classical non-informative joint prior for B, and Σ for the model in equation (1),
the Bayesian predictive density for y can be obtained in closed form and is given by a multivariate
t distribution with ν degrees of freedom (see Press, 1989, pp. 136). This is given by:

f(y|x, data) =
Γ

(
ν+q
2

)

(πν)q/2Γ
(

ν
2

)
√
|H|

{
1 +

1
ν

(
y − B̂′x

)′
H

(
y − B̂′x

)}− ν+q
2

(4)

where B̂ is the Ordinary Least Squares (OLS) estimator of B, Γ(·) denotes the gamma function
and H is given by:

H =
(

ν

N − p

)
Σ̂−1

1 + x′ (X′X)−1x

3

where Σ̂ is the usual estimator of Σ calculated from the residuals of the multivariate regression
fit (Press, 1982):

Σ̂ =
1

N − p

(
Y −XB̂

)′ (
Y −XB̂

)

Since the predictive density is parameter free, it is useful for making inferences about future
observations without having to substitute any parameter by its estimate as proposed by Chiao
and Hamada (2001). Hence, the predictive density considers the uncertainty in the parameter
estimates. Notice that the H matrix considers the scaled prediction variance, 1 + x′ (X′X)−1x.
This is a highly desirable property since solving (3) will avoid points where the fitted model has
poor prediction properties and will introduce the uncertainty in the model parameters in the
value of the computed probability obtained with (4).

The expected vector of y|(x, data) is clearly:

E(y|x, data) = B̂′x

The covariance matrix of y|(x, data) exists if ν > 2 and is given by:

V ar(y|x, data) = ν
ν−2H

−1

= ν
ν−2

(
ν

N−p
Σ̂−1

1+x′(X′X)−1x

)−1

= N−p
N−p−q−1

(
1 + x′ (X′X)−1x

)
Σ̂

Therefore, we have that:

y|x, data ∼ Tν
q

(
B̂′x,

ν

ν − 2
H−1

)

To obtain p (x) we need to integrate (4) over the region A:

p (x) =
∫

A
f(y|x, data) dy (5)

The integration in (5) must be performed numerically. One way of performing this integration
is by Monte Carlo simulation from a multivariate t distribution. Given that y|x, data is distributed
as a multivariate t, we can simulate values of y using the following equation (see Johnson, 1987,
chapter 6):

y = H−1/2z
√

ν/s + B̂′x

=
(

νV−1

1+x′(X′X)−1x)

)−1/2
z
√

ν/s + B̂′x

=
√

1+x′(X′X)−1x
s V1/2z + B̂′x

(6)

4

where z is sampled from a Nq(0, Iq) distribution, s is sampled from a chi-square with ν degrees of

freedom and V =
(
Y −XB̂

)′ (
Y −XB̂

)
. Currently available software is able to simulate both

of these variates.

3 Optimization

If we use Monte Carlo simulation, we can only obtain an estimate of p(x), p̂(x), for a given value
of x. Our goal is to find x such that p(x) is maximized according to (3). We suggest three
different methods for performing this optimization. The first two were originally suggested by
Peterson (2000).

If the number of controllable factors is small, say less than three, then the first method consists
in placing a fine grid over the experimental region R and computing the values of p̂(x) for every
x on the grid. The maximum p̂(x∗) is selected from these values. The main advantage of this
approach is that it will not be affected by local optima problems, since in general p̂(x) will not
be a convex function.

When the number of controllable factors is larger than three, using a fine grid may become
computationally burdensome. For these cases, a moderate sized grid could be used and a logistic
regression model (or meta-model) can be fitted to the values of p̂(x). The fitted model will then
be optimized in closed form using derivatives or by numerical methods, mainly depending on the
order of the logistic model fitted.

The third method consists in performing a direct search using the p̂(x) values. However, since
the computed values of the integrals are not deterministic given that a Monte Carlo integration
method is used, the search procedure should be robust against this uncertainty. One such pro-
cedure is the Nelder-Mead simplex technique (Nelder, 1964) which can handle the constraints
x ∈ R by using penalty functions (Bazaraa et al., 1993). The application of this method is eased
by the fact that the objective function, being a probability measure, is bounded between 0 and
1. The following penalty function was used in the examples solved in latter sections:

B(x) =
(
h+(x)′(x− 1) + h−(x)′(x + 1)

)2
(7)

where:

h+(x) and h−(x) are <k ⇒ <k functions defined as:

h+
i (xi) =

{
1 if xi > 1
0 if xi < 1

∀i = 1, .., k

h−i (xi) =

{
1 if xi < −1
0 if xi > −1

∀i = 1, .., k

5

and 1 is a k × 1 vector of ones.

The standard error of p̂(x), the function evaluations input into the optimization algorithm, is
estimated by:

σ̂p̂(x) =
√

1
N

p̂(x)(1− p̂(x)) (8)

where N is the number of Monte Carlo simulations used to evaluate p̂(x). Since this standard
error decreases with the squared root of N , improving the estimate by increasing the number of
simulations can become excessively computationally intensive.

Fixing the seed of the random number generator is a common variance reduction technique
used in Monte Carlo integration, specially when the interest relies on comparing two different
values of p(x), as it is during the search procedures of most NLP algorithms (Rubinstein, 1981,
pp. 125). Although this completely eliminates the variability in the values of p̂(x), it makes
all of them dependent on the same stream of random numbers. This introduces a bias in the
final solution. The magnitude of this bias, however, can be assessed by repeating the complete
optimization step with different seeds.

If the seed of the random number generator is fixed, then the optimization problem becomes
deterministic and we can use other type of optimization algorithms that, although highly sensitive
to noisy observations, are more efficient than the Nelder-Mead. One technique suitable when the
gradient cannot be obtained in closed form is Sequential Quadratic Programming (SQP) (Bazaraa
et al., 1993).

In order to start the search at a good location, we propose to use the solution to the following
mathematical program as a starting point:

min x′ (X′X)−1x
subject to :

B̂′x ∈ A

x ∈ R

(9)

The optimization in (9) finds the values of x ∈ R for which the expected responses are inside
the desirable region A and the scaled predicted variance is minimized. In equation (4) we can see
that, for such an x, |H| will be maximized, giving a high value of the predictive density function,
yielding a relative large integrand. Thus we would be starting the optimization of (3) where the
probability of conformance is large.

We point out that if (9) is infeasible then there does not exist a value of x ∈ R such that the
mean response meets the specifications. For this case p(x) will always be less than 0.5 and any
solution will be poor.

6

4 Extension to Noise Variables

Noise variables can be controlled during experimentation but cannot be controlled during a man-
ufacturing process or the actual use of the product. These variables are modelled as random
variables with known distributions. Finding the levels of the controllable factors that minimize
the variance while attaining some pre-specified expected value for the responses is the principle
behind Taguchi’s Robust Parameter Design Problem (see Taguchi (1986, 1987) and Taguchi and
Wu (1985).

The methodology presented in the previous sections can be easily extended to handle noise
variables by treating the noise variables as nuisance variables and averaging over them. Let us
separate the k factors affecting the response in kc controllable factors xc

i and kn noise factors xn
i

where kn + kc = k. We group these factors into two vectors, a kc × 1 vector xc containing the
controllable factors and a kn×1 vector xn containing the noise variables. Notice that x is written
in model form, but xc and xn are not, so we could write x = φ(xc,xn) and p(x) = p(φ(xc,xn))
where the function φ(·) varies according to the model form. Likewise, if we integrate over the
noise factors, we will get p(g(xc)) where g(·) also depends on the model form. With this notation,
we propose to solve the following optimization problem:

max P (y ∈ A|xc, data) = p(g(xc))
subject to :

xc ∈ Rc

(10)

where :
p(g(xc)) =

∫
p(x)dxn =

∫
p(φ(xc,xn))dxn =

∫
P (y ∈ A|x, data)dxn

and Rc is the projection of the feasible region R into the space of controllable factors only. That
is, after obtaining p(x) we integrate over the components of x that we cannot control completely,
then we use the resulting density to calculate the probability of being inside the specification
region.

If the problem in equation (10) is solved and the value of p(g(xc)) at optimality is high, then
we have achieved a robust process. Such a process will result in products that are highly likely
to meet the specifications defined by the region A regardless of the variability introduced by the
noise factors xn. Since the proposed methodology considers implicitly the variance and mean
of the responses, there is no need to make any explicit trade-off between mean and variance,
as it is commonly done in the Dual Response Problem (Khatree 1996,Lucas 1994, Myers 1992,
Myers 1997, Neff and Myers 1999, Vining 1990). Furthermore, the proposed approach allows for
correlation between the responses, and it considers the uncertainty of the parameter estimates.

Following, we present a methodology to evaluate the function p(g(xc)). Problem (10) can
then be solved using this evaluation method and then applying any of the optimization methods
discussed in section 3.

7

1. After performing a suitable experimental design, fit the multivariate model in (1), Y = XB̂.

2. Set the counter c = 0.

3. Assuming the distribution of the noise variables is known, simulate a value of xn. The
vector xc is given and contains the values of the controllable factors at which we want to
evaluate the probability of conformance given the uncertainty in the noise factors, p(g(xc)).
Substitute the simulated value of xn and the given value xc in the model and form the
vector of regressors x = φ(xc,xn).

3. Since:

y|x, data ∼ Tν
q

(
B′x,

ν

ν − 2
H−1

)

where Tq denotes a q-variate t distribution with ν degrees of freedom, simulate a value of
y using equation (6).

4. If y ∈ A, make c ← c + 1. Go to step 2 and repeat N times.

6. Return p̂(g(xc)) = c/N as an estimate of p(g(xc)).

5 HPLC Example

The following example was taken from Peterson (2000). It involves the optimization of a high
performance liquid chromatography (HPLC) system to detect mixtures of impurities. The per-
formance of the assay was based upon four quantitative response variables, the critical resolution
(Rs), total run time, signal-to-noise ratio of the last peak and the tailing factor of the major
peak. Three controllable factors affecting the HPLC assay were included: %IPA, temperature
and pH. A Box-Behnken design with three center points was used. The data are presented in
Table 1. Complete second order response surface models were fitted to all three responses using
coded versions of the controllable factors. The coding convention used is the orthogonal coding
described in (Myers and Montgomery, 1995, pp. 22). The resulting R2 statistics were higher than
99.7% for all the four models. This indicates that the models fitted the data very well.

The controllable factor %IPA was assumed to be the noise variable, which was further assumed
to be normally distributed with mean zero and standard deviation of 0.1.

5.1 Grid-based Method and Meta-Model Approaches

A 112 design was carried out in the two remaining regressors, where the levels of the regressors
were chosen from:

{−1.0, −0.8, −0.6, −0.4, −0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0}

8

Table 1: Factor and Response Data for the HPLC Example

Controllable Factors Responses

%IPA Temp. pH Rs Run Time S/N ratio Tailing

65 30 0.175 2.14 22 172 0.76
65 50 0.175 1.73 12 311 0.88
65 40 0.050 1.93 16 251 0.80
65 40 0.300 1.95 16 241 0.80
70 40 0.175 2.17 14 278 0.79
70 50 0.050 1.97 11 371 0.86
70 30 0.300 2.38 19 194 0.74
70 50 0.300 1.98 11 360 0.86
70 30 0.050 2.37 18 204 0.74
70 40 0.175 2.20 14 280 0.78
75 40 0.300 2.42 13 314 0.78
75 30 0.175 2.61 17 223 0.73
75 50 0.175 2.14 10 410 0.85
75 40 0.050 2.42 12 324 0.78
70 40 0.175 2.20 14 281 0.79

which required 121 function evaluation. The A region was specified as:

A =
{
y = [yRs yTime y

S/N
y

Tail
] : yRs ≥ 1.8, yTime ≤ 15, y

S/N
≥ 300, 0.75 ≤ y

Tail
≤ 0.85

}

which is the same region used in Peterson (2000). Five thousand (i.e. N=5000) samples were
generated to obtain each value of p̂(g(xc)), which took 0.06 seconds of cpu computing time on
MATLAB running on a 800 MHz PC, so the 121 evaluations required 8.5 seconds (this includes
some extra time for storage). The highest probability obtained was 0.9660 for x1 = 0.4 and
x2 = −0.4 (in the remainder the temperature will be denoted by x1 and the pH by x2).

A fourth degree polynomial logistic regression model was fitted to the simulated p̂(g(xc)) re-
sults using Minitab’s Binary Logistic Regression command. Although the Goodness-of-fit statis-
tics rejected the hypothesis of a good fit (all were 0.000), there were 97.7% concordant pairs,
2.0% discordant and 0.3% ties. The “Goodman-Kruskal Gamma” and Somer’s D were 0.96 both,
while the Kendall’s τ was only 0.38.

The fitted model is given by the following equation:

logit(p̃(g(xc))) = −20.5 + 133.7x1 − 8.82x2 + 38.7x1x2 − 265.2x2
1 + 3.38x2

2 − 53.9x2
1x2

−8.80x1x
2
2 + 6.12x2

1x
2
2 + 218.8x3

1 + 0.112x3
2 + 24.1x3

1x2 − 0.145x1x
3
2

−69.14x4
1 − 0.271x4

2

(11)

9

Table 2: Optimal Solutions (x∗c) using the Meta-Model Approach

x∗c p̃(g(x∗c)) p̄(g(x∗c)) σ̂p̄(g(x∗c))

[0.4822, 1]′ 0.9684 0.9622 2.70E-04
[0.3752,−1]′ 0.9769 0.9681 2.49E-04

Table 3: Probabilities of out-of-bounds for the four responses (Meta-Model Approach)

x∗c P (yRs ≤ 1.8) P (yT ime ≥ 15) P (y
S/N

≤ 300) P (y
T ail.

≤ 0.75) P (y
T ail.

≥ 0.85)

[0.4822, 1]′ 0.0021 0.0166 0.0023 0.0024 0.0228
[0.3752,−1]′ 0.0019 0.0166 0.0029 0.0031 0.0120

A trust region algorithm was used to maximize the preceding quartic logistic regression. The
algorithm was started at 50 different locations chosen randomly inside the experimental region
defined by the experimental design used in Table 1. In coded factors this region is Rc = {[x1 x2] :
−1 ≤ x1 ≤ 1,−1 ≤ x2 ≤ 1}.

In all of the 50 optimizations, the algorithm converged only to two different points. These
points, denoted by x∗c together with the values of p̃(g(x∗c)) predicted for them by the meta-
model in (11) are reported in Table 2. This table also contains estimates of p(g(x∗c)) obtained
from 500,000 Monte Carlo samples (denoted by p̄(g(xc))). Standard errors for p̄(g(x∗c)) were
calculated using equation (8).

As it can be seen, both solutions given by the meta-model approach are similarly good in terms
of the probability value and the final user could choose any of them based on other considerations.
However, it is also seen that the meta-model tends to slightly over-estimate the probabilities. Since
there are only two controllable factors it is easy to plot the estimates p̂(g(xc)) obtained from the
Monte Carlo simulations. The plots, presented in Figure 1, show a ridge-type form, indicating
that only x1 (temperature) has an effect on p̂(g(xc)). This is due to the fact that the pH does not
interact with the %IPA and, therefore, is not useful for controlling the variance of the response.

Another, possibly more important reason is that the pH does not have any significant effect on
the Time and Tailing responses and, as it can be seen in Table 3, these responses did not fall out
of the desired region with high frequency during the Monte Carlo simulations. This is equivalent
to say that the desired ranges for the responses affected by the pH are easily met and therefore
there is almost complete freedom in the value of pH chosen for carrying the HPLC assays.

Finally, it may be seen that choosing the maximum from the grid of points and using the
meta-model approach yielded very similar optimal values for x1 but different for x2. Clearly this
is due to the non-significant effect of this last controllable factor.

10

-0.3 -0.1 0.1 0.3 0.5 0.7 0.9

Temperature (x1)

-1.0

-0.5

0.0

0.5

1.0
pH

 (
x2

)

 0.20

 0
.2

0 0
.4

0

 0
.4

0

 0
.6

0 0
.6

0

 0
.7

0

 0
.7

0

 0
.7

5

 0
.7

5

 0
.8

0

 0
.8

0

 0
.8

5

 0
.8

5

 0.90

 0
.9

0

 0.95

 0
.9

5

 0.97

Figure 1: Plots of p̂(g(xc))

11

5.2 Direct Search Method-Nelder Mead

Matlab’s fminsearch routine, which is an implementation of a standard Nelder-Mead algorithm,
was used for this optimization. The preliminary optimization to find a good starting point was
performed using Matlab’s fmincon routine which uses a trust region algorithm. The starting
point obtained from solving (9) was xo

c = [0.47 0.47], for which p̄(g(xo
c)) (from 500,000 Monte

Carlo samples) was 0.9642. To reduce the variability in the function evaluations feeded into the
algorithm, each value of p̂(g(xc)) consisted of 20,000 Monte Carlo samples. However, doing this
only took ≈ 0.3 seconds.

The main optimization problem in (10) was solved 20 times both by fixing and without fixing
the seed of the random number generator. For the fixed-seed cases a different seed was used for
each of the 20 trials, but it was maintained constant throughout each complete optimization, that
is, until convergence of the Nelder-Mead algorithm was obtained. For the case without fixing the
seed, a different stream of random numbers was used for each evaluation of p̂(g(xc)).

The convergence points of the algorithm for both of the aforementioned cases are presented
in Figure 2. Tables 5 and 4 contain these convergence points together with the corresponding
estimated probabilities, p̂(g(xc)), and the cpu time required for each complete optimization.
Comparing these results with Figure 1 we can see that the algorithm stopped in points were the
probability is high, and that the difference in the optimal values of p̂(g(xc)) is small. It is also
observed that for the varying seed case the algorithm moved very little from the starting point.
However, for the fixed seed case, the algorithm significantly changed x2 from the original value of
0.47 to somewhere in the (−0.56, −0.8) range, regardless of the seed. Notice that this resulted
in slightly higher probabilities.

Clearly, the initial solution is very good, specially since its sets the highly critical x1 to a value
close to 0.4. This leaves very little room for the Nelder-Mead to improve. Therefore, to test the
efficacy of the Nelder-Mead algorithm in case the initial point is not so good, the optimization
was started at randomly selected points inside the Rc region (for which the seed was fixed). These
results are presented in Table 6 and it can be observed that either the algorithm converged to a
very good solution or it was exactly zero. The problem is that the function being optimized is
too flat in the vicinities of a solution for which p̂(g(xc)) = 0 and therefore the algorithm is unable
to find an improving direction.

Regarding the time requirements of both methods, it is clear that the time spent in obtaining
the data for building the meta-model was less than the direct search approach. However, the
time required to find a model with good fit cannot be assessed quantitatively. In addition, we
notice that for the direct search with fixed seeds the number of function evaluations was cut by
half in most cases, while the resulting probabilities were similar.

12

Table 4: Optimal solutions for example 1 using the Nelder-Mead Algorithm with a different seed
for the random number generator in each trial. In each trial, all p̂(g(xc)) estimates were obtained
with the same stream of random numbers. The initial point for the Nelder-Mead algorithm was
the solution of problem (9).

Optimal Solution cpu time

Trial x1 x2 p̂(g(x∗c)) (sec.) Evaluations

1 0.4355 -0.5607 0.9712 15.5 51
2 0.4382 -0.8063 0.9711 18.5 61
3 0.4311 -0.5953 0.9706 15.5 51
4 0.4109 -0.7000 0.9713 18.0 59
5 0.4201 -0.5126 0.9689 14.2 47
6 0.4302 -0.7563 0.9702 19.1 63
7 0.4083 -0.7917 0.9697 18.5 61
8 0.4298 -0.5774 0.9702 16.2 54
9 0.4270 -0.7128 0.9691 20.3 67

10 0.4123 -0.5464 0.9707 13.9 46
11 0.4090 -0.7589 0.9721 19.3 64
12 0.4389 -0.5477 0.9709 16.3 54
13 0.4204 -0.7787 0.9702 18.7 62
14 0.4473 -0.5343 0.9694 16.1 53
15 0.4019 -0.7938 0.9694 20.4 67
16 0.4348 -0.5347 0.9694 13.4 44
17 0.4285 -0.5760 0.9702 16.6 55
18 0.4201 -0.5273 0.9698 13.6 45
19 0.4296 -0.7032 0.9702 19.0 63
20 0.4189 -0.5729 0.9691 15.8 52

13

Table 5: Optimal solutions for example 1 using the Nelder-Mead Algorithm without fixing the
seed for the random number generator in each trial. In all the trials, the initial point for the
Nelder-Mead algorithm was the solution of problem (9).

Optimal Solution cpu time

Trial x1 x2 p̂(g(x∗c)) (sec.) Evaluations

1 0.4700 0.4966 0.9678 15.7 52
2 0.4913 0.4708 0.9666 12.2 40
3 0.4637 0.4840 0.9662 8.1 27
4 0.4647 0.4905 0.9677 25.6 85
5 0.4694 0.4934 0.9677 15.5 51
6 0.4583 0.4818 0.9675 108.7 362
7 0.4677 0.4682 0.9674 21.6 71
8 0.4796 0.4598 0.9666 9.4 31
9 0.4710 0.4950 0.9673 39.7 132

10 0.4705 0.4715 0.9674 21.3 71
11 0.4733 0.4848 0.9681 21.5 71
12 0.4882 0.4829 0.9681 109.2 363
13 0.4752 0.4873 0.9680 64.4 214
14 0.4704 0.4614 0.9676 29.1 96
15 0.4775 0.4821 0.9673 11.1 37
16 0.4884 0.4811 0.9659 7.9 26
17 0.4740 0.4912 0.9680 81.2 270
18 0.4824 0.4838 0.9681 109.7 365
19 0.4917 0.4957 0.9671 109.1 363
20 0.4876 0.4953 0.9679 108.5 361

14

Table 6: Optimal solutions for example 1 using the Nelder-Mead Algorithm with a different seed
for the random number generator in each trial. In each trial, all p̂(g(xc)) estimates were obtained
with the same stream of random numbers. The initial point for the Nelder-Mead algorithm was
randomly selected within the region Rc.

Optimal Solution cpu time

Trial x1 x2 p̂(g(x∗c)) (sec.)

1 -0.1369 -0.4789 0 14.7
2 0.4760 0.4439 0.9654 51.0
3 -0.3366 -0.9845 0 13.6
4 0.4856 0.3597 0.9627 18.9
5 -0.9473 -0.2891 0 13.4
6 -0.4027 -0.6376 0 12.6
7 0.4669 0.3056 0.964 17.7
8 -0.1918 -0.3961 0 10.3
9 -0.3817 -0.9935 0 10.9

10 0.4709 0.3858 0.9656 15.7
11 -0.6747 0.1041 0 11.5
12 0.4482 -0.1723 0.9674 18.8
13 0.4125 -0.7858 0.9691 23.5
14 0.4775 0.5173 0.9617 28.8
15 0.4765 0.6786 0.9649 19.7
16 -0.6467 0.2335 0 12.9
17 -0.2710 0.5466 0 12.9
18 -0.3632 0.1920 0 11.0
19 -0.9328 0.7140 0 11.5
20 0.4764 0.5058 0.9650 26.1

15

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
Convergence Points of the Nelder Mead Algorithm

Temperature (x1)

pH
 (

x2
)

x − Fixed Seed
o − Varying Seed

Figure 2: Convergence points of the Nelder-Mead Algorithm. Example 1.

6 Chemical Process Example

This example was taken from Wold et al. (1989) and consists of an experiment to reduce the
amount of by-products from a chemical process. There are 5 controllable factors, 5 responses and
the experimental design used is a 25−1 fractional factorial with two center points. The data are
given in Table 7.

First order models with two-factor interactions were fitted to all the responses. It was found
that x3 was not significant in any of the responses and was dropped from all the models. This has
the advantage of producing a full 24 factorial design in the remaining factors. In addition, the
model for y1 had a poor fit (R2 = 64.6%) and therefore was also dropped from the analysis. The
R2 statistics for the remaining responses were: 87.0% for y2, 96.3% for y3, 93.3% for y4 and 85.7%
for y5. Notice that the models for this example present a poorer fit than for the first example.
The remaining data set consists of four controllable factors and four responses.

To perform the proposed methodology, x1 was assumed to be a noise variable and to be
normally distributed with mean zero and standard deviation equal to 0.1. In addition, the region
of acceptance, A, was defined by

A = {y = [y2 y3 y4 y5] : y2 ≥ 91.0, y3 ≤ 11.5, y4 ≤ 6.5,≤ y5 ≤ 5.5}

16

Table 7: Experimental Results for the Chemical Process

x1 x2 x3 x4 x5 y1 y2 y3 y4 y5

-1 1 -1 -1 -1 80.0 93.7 5.1 1.2 2.6
-1 1 -1 1 1 80.0 88.7 10.9 0.4 4.0
1 -1 -1 1 1 91.0 90.8 9.0 0.2 1.9
1 -1 -1 -1 -1 86.0 94.3 3.5 2.2 1.2
0 0 0 0 0 75.0 92.7 7.1 0.2 2.5
1 1 1 -1 -1 89.0 95.0 4.4 0.6 1.4

-1 1 1 1 -1 84.0 91.7 8.3 0.0 2.4
-1 -1 1 -1 -1 80.0 82.8 2.3 14.9 0.6
-1 -1 1 1 1 83.0 90.0 4.1 5.9 0.7
-1 1 1 -1 1 84.0 94.6 5.4 0.0 1.5
1 -1 1 -1 1 89.0 96.2 3.8 0.0 1.6
1 -1 1 1 -1 92.0 94.5 5.5 0.0 1.5
0 0 0 0 0 96.0 94.1 5.9 0.0 2.8
1 1 1 1 1 88.0 86.9 13.9 0.0 7.9

-1 -1 -1 1 -1 89.0 81.2 4.8 14.0 2.6
-1 -1 -1 -1 1 81.0 87.4 4.1 8.5 0.5
1 1 -1 -1 1 100.0 92.1 7.9 0.0 5.1
1 1 -1 1 -1 90.0 89.3 10.7 0.0 9.2

17

The region X, where the models are assumed valid, was taken as −1.0 ≤ xi ≤ 1.0, ∀i = 2, 4, 5.

6.1 Grid Approach

A 113 design was carried out in the three remaining regressors, the levels of the regressors were
chosen from:

{−1.0, −0.8, −0.6, −0.4, −0.2, 0.0, 0.2, 0.4, 0.6, 0.8, 1.0}

This requires 1331 evaluations. Since no meta-model was fit, 20000 simulations were used to
obtain each of the p̂(g(xc)) estimates. The argument is that whenever a meta-model is used it
serves as a smoothing surface and therefore more uncertainty could be allowed in the individual
determinations. The total cpu time for obtaining the data was ≈ 451 seconds.

The current problem has three controllable factors, and therefore, it is not easy to present a
graphical representation of the p̂(g(xc)) values. The plot in Figure 3 is a 3-D scatter plot where
the diameter of the circles and the intensity in the gray scale is proportional to p̂(g(xc)) (darker
color implies higher value). After a careful inspection, it may be noticed that the probabilities
are high around xc = [1 − 1 − 1] and around xc = [−1 1 − 1], where the value of x2 seems to
be the less relevant. It is also observed that the probabilities are low around xc = [1 1 1] and
xc = [−1 − 1 − 1]. In addition the function is clearly not convex.

The highest probability obtained from the grid values is p̂(g(x∗c)) = 0.8133 for x∗c = [1 −1 −1].
Performing the Monte Carlo with 500,000 simulations at this location we get p(g(xc)) = 0.8087.

6.2 Direct Search Method (Nelder-Mead) and Sequential Quadratic Program-

ming

The initial solution, obtained by solving problem (9), was xo
c = [0.0324 0.0157 − 0.0266], with

p̄(g(xo
c)) = 0.4517 (from 500,000 Monte Carlo samples). It can be seen that in this case there is

considerable room for improvement over the initial solution. However, the initial solution obtained
is much better than the worst solution observed from the grid approach, p̂(g(xc)) = 0.0480 for
xc = [1 1 1].

As in example 1, the optimization was performed 20 times and 20,000 Monte Carlo samples
were generated to obtain each value of p̂(g(xc)). However, in this example the seed of the
random number generator was always fixed for each trial, but as before, a different seed was
used in different trials. The convergence points obtained are reported in Table 8. It can be seen
that in the majority of the cases the probability obtained at optimality is slightly lower to the
one obtained using the grid. The problem may be related to the fact that more than one of the
bounds is active at the optimal point and the penalty functions induce an early termination of
the algorithm (Bazaraa et al., 1993, p.369). This is worsened by the fact that the effect of x2 is
very small, as pointed out earlier.

18

−1

−0.5

0

0.5

1

−1

−0.5

0

0.5

1
−1

−0.5

0

0.5

1

x1

x2

x3

Figure 3: 3-D Scatter plot for the Grid Approach

To avoid the use of penalty functions, Matlab’s fmincon routine was used which is designed
for constrained optimization. This routine uses a SQP algorithm in the absence of gradient
information. The results, included in Table 9, indicate that this algorithm converged to the
optimal solution in all of the 20 trials. Furthermore, compared to the grid approach, it only
required an average of 31.55 function evaluations, 42 times lower than the grid approach and it
required on average 44 times less time. Finally, all the optimal solutions were equal because all
of the controllable factors are at one of their bounds and the bias introduced by holding the seed
constant is small enough not to impact the quality of the estimates. The range of the p̂(g(x∗c))
is just 0.0102 or 1%.

19

Table 8: Optimal solutions for example 2 using the Nelder-Mead Algorithm with a different seed
for the random number generator in each trial. In each trial, all p̂(g(xc)) estimates were obtained
with the same stream of random numbers. The initial point for the Nelder-Mead algorithm was
the solution of problem (9).

Optimal Solution cpu time

Trial x2 x4 x5 p̂(g(x∗c)) (sec.) Evaluations

1 0.9999 -0.2881 -0.9999 0.7793 34.6 115
2 0.9976 -0.2876 -0.9999 0.7823 40.7 130
3 0.9994 -0.2310 -0.9998 0.7777 45.0 145
4 0.9999 -0.2871 -0.9999 0.7846 32.2 107
5 0.9997 -0.3276 -0.9985 0.7844 55.5 171
6 1.0000 -0.4930 -0.6857 0.7626 36.8 108
7 1.0000 -0.4942 -0.4060 0.7446 30.3 89
8 0.9999 -0.8030 -0.9989 0.8056 74.9 219
9 0.9840 -0.5858 -0.9998 0.7940 55.0 162

10 0.9982 -0.6078 -0.7053 0.7818 38.1 111
11 1.0000 -0.4088 -0.9878 0.7870 33.7 99
12 0.4542 -0.2396 -0.9999 0.6902 34.3 101
13 0.7336 -0.2067 -1.0000 0.7416 38.4 112
14 1.0000 -0.4852 -0.7220 0.7712 41.1 121
15 0.9998 -0.2871 -1.0000 0.7785 41.2 120
16 1.0000 -0.0802 -0.4483 0.6896 39.2 115
17 1.0000 -0.5892 -0.6726 0.7705 37.4 109
18 0.9999 -0.7299 -0.9995 0.7997 39.5 116
19 0.8947 -0.6364 -0.9993 0.7805 67.9 199
20 0.9999 -0.1622 -0.4913 0.7030 35.8 105

20

Table 9: Optimal solutions for example 2 using the SQP Algorithm with a different seed for the
random number generator in each trial. In each trial, all p̂(g(xc)) estimates were obtained with
the same stream of random numbers. The initial point for the SQP algorithm was the solution
of problem (9).

Optimal Solution cpu time

Trial x2 x4 x5 p̂(g(x∗c)) (sec.) Evaluations

1 1.0000 -1.0000 -1.0000 0.8046 9.2 29
2 1.0000 -1.0000 -1.0000 0.8086 6.8 21
3 1.0000 -1.0000 -1.0000 0.8045 10.7 33
4 1.0000 -1.0000 -1.0000 0.8122 10.7 33
5 1.0000 -1.0000 -1.0000 0.8085 9.4 29
6 1.0000 -1.0000 -1.0000 0.8082 12.2 37
7 1.0000 -1.0000 -1.0000 0.8070 9.4 29
8 1.0000 -1.0000 -1.0000 0.8076 12.0 37
9 1.0000 -1.0000 -1.0000 0.8087 9.4 29

10 1.0000 -1.0000 -1.0000 0.8118 8.1 25
11 1.0000 -1.0000 -1.0000 0.8124 9.4 29
12 1.0000 -1.0000 -1.0000 0.8134 12.0 37
13 1.0000 -1.0000 -1.0000 0.8077 12.0 37
14 1.0000 -1.0000 -1.0000 0.8068 10.9 33
15 1.0000 -1.0000 -1.0000 0.8056 14.2 44
16 1.0000 -1.0000 -1.0000 0.8091 8.2 25
17 1.0000 -1.0000 -1.0000 0.8076 12.0 37
18 1.0000 -1.0000 -1.0000 0.8147 10.7 33
19 1.0000 -1.0000 -1.0000 0.8100 10.7 33
20 1.0000 -1.0000 -1.0000 0.8101 6.9 21

21

7 Conclusions

A procedure proposed by Peterson (2001) for multiple response optimization using a predictive
density approach was extended to include noise variables. The extra integration over the prob-
ability distribution of the noise variables is done by Monte Carlo simulation together with the
simulation of the response vectors. A computer code written with currently available software
(Matlab 6.1) is able to perform 50,000 of such simulations in ≈ 0.7 seconds on a Pentium III at
800 MHz.

An optimization scheme was also proposed that finds an initial solution by minimizing the
scaled prediction variance of the model subject to the expected response being inside the desirable
region. This initial solution provided a location where the response functions have slopes steep
enough to ease the subsequent optimization problem.

Two optimization algorithms were used. A standard Nelder-Mead algorithm and a Sequential
Quadratic Programming (SQP) algorithm. Constraints where handled using penalty functions in
the Nelder-Mead implementation. The Nelder-Mead method was used both by fixing and with-
out fixing the seed for the random number generator. Fixing the seed eliminates the variability
between the Monte Carlo simulations, which substantially enhances the performance of the op-
timization algorithms but produces results that depend on the seed used. It was observed that
fixing the seed produced better results and that the large number of replications that the fast
computation allowed produced an insignificant bias.

The SQP algorithm was used only with a fixed seed and converged to the optimal solution in
all the cases observed. SQP significantly outperformed Nelder-Mead in the case when the optimal
solution was constrained.

22

8 References

Bazaraa, M.S., Sherali, H.D. and Shetty, C.M. (1993). Nonlinear Programming, Theory and
Algorithms. 2nd Ed. Wiley. New York, NY.

Box, G.E.P. and Jones, S. (1990). “Designing Products That Are Robust To The Environment.
Report Series in Quality and Productivity. CPQI, University of Wisconsin, Number 56.

Chiao, C. and Hamada, M. (2001). “Analyzing Experiments with Correlated Multiple Re-
sponses”. Journal of Quality Technology, 33, pp. 451-465.

Derringer, G. and Suich, R. (1980). “Simultaneous Optimization of Several Response Variables”.
Journal of Quality Technology, 12, pp. 214-219.

Harrington, E.C. (1965). “The Desirability Function”. Industrial Quality Control, 21, pp. 494-
498.

Johnson, M.E. (1987). Multivariate Statisitcal Simulation. Wiley. New York, NY.

Khatree, R. (1996). “Robust Parameter Design: A Response Surface Approach”. Journal of
Quality Technology, 28, pp. 187-198.

Lucas, J.M. (1994). “How to Achieve a Robust Process Using Response Surface Methodology”.
Journal of Quality Technology, 26, pp. 248-260.

Myers, R.H., Khuri, A.I. and Vining G. (1992). “Response Surface Alternatives to the Taguchi
Robust Parameter Design”. The American Statistician, 46, pp. 131-139.

Myers, R.H. and Montgomery, D.C. (1995). Response Surface Methodology: Process and Product
Optimization using Designed Experiments. John Wiley and Sons, New York, NY.

Myers, R.H., Kim, Y. and Griffiths, K.L. (1997). “Response Surface Methods and the use of
Noise Variables”. Journal of Quality Technology, 29, pp. 429-440.

Neff, A.R. and Myers, R.H.(1999). ”Recent Developments in Response Surface Mthodology and
its Applications in Industry”. In: Statistical Process Monitoring and Optimization, Sung H. Park
and G.G. Vining, Eds., New York: Marcel Dekker, pp. 457-481.

Nelder J.A. and Mead, R. (1964). “A Simplex Method for Function Minimization”, Computer
Journal, 7, pp. 308-313.

Peterson, J.J. (2000). “A Probability-based Desirability Function for Multiresponse Optimiza-
tion”. Proceedings of the Section on Quality and Productivity, Annual Meeting of the American

23

Statistical Association, Indianapolis, IN.

Press, S.J. (1982). Applied Multivariate Analysis: Using Bayesian and Frequentist Methods of
Analysis. R. E. Krieger Pub. Co. Malabar, FL.

Press, S.J. (1989). Bayesian Statistics: Principles, Models and Applications. Wiley. New York,
NY.

Rubinstein, R.V. (1981). Simulation and the Monte Carlo Method. Wiley. New York, NY.

Taguchi, G. (1986). Introduction to Quality Engineering. Quality Resources, White Plains, NJ.

Taguchi, G. (1987). System of Experimental Design: Engineering Methods to Optimize Quality
and Minimize Cost. Quality Resources, White Plains, NJ.

Taguchi, G. and Wu, Y. (1985). Introduction to Off-Line Quality Control. Central Japan Quality
Control Association (available from American Supplier Institute, Dearborn, MI).

Vining, G.G. and Myers, R.H. (1990). “Combining Taguchi and response Surface philosophies:
A dual response aproach”.Journal of Quality Technology, 22, pp. 38-45.

Wold, S., Carlson, R. and Skagerberg, B (1989). “Statistical Optimization as a Means to Reduce
Risks in Industrial Processes” The Environmental Professional, 11, pp. 127-131.

Wu, C.F.F and Hamada, M. (2000). Experiments, Planning, Analysis and Parameter Design
Optimization. John Wiley and Sons, New York, NY.

24

