
Statistical Change-point Methods for

Closed-loop Delay Estimation

O. Arda Vanli

Enrique Del Castillo

Department of Industrial and Manufacturing Engineering,

The Pennsylvania State University,

University Park, PA 16802, USA

Bianca M. Colosimo

Dipartimento di Meccanica - Politecnico di Milano

Piazza Leonardo da Vinci 32, 20133 Milano, Italy

August 6, 2007

Abstract

The input-output delay of a process is an important parameter for control design and
closed-loop identification. This paper proposes new methods for estimating the delay
of a transfer function model in closed-loop based on statistical change-point detection
methods. A Bayesian change-point approach, a sequential probability ratio test (SPRT),
and a cumulative sum (CUSUM) approach are proposed and compared against a recently
proposed Laguerre polynomial-based method. The first two methods assume that the
correct orders of the closed-loop ARMA model description are known, while the last one
(the CUSUM approach) does not make such assumption. Two simulation examples and
a sensitivity analysis are presented for comparison purposes. It is shown that the SPRT
method performs best overall and is easy to tune depending on the dynamical response
of the process. It is also shown that a CUSUM applied to the observed measurements,
which does not require a parametric model of the closed-loop process, performs better
than existing methods.

Keywords: Change-point detection, Bayesian analysis, Closed-loop identification.

1 Introduction

In control design it is often required to identify a suitable transfer function model of the process

from operating data collected while the process is adjusted by a feedback controller. This may
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be necessary when open-loop identification of the process is not feasible because the process is

open-loop unstable [18] or when the process changes with time thus model parameters must

be re-estimated and the controller must be re-tuned periodically [2]. In this paper we propose

new methods for closed-loop identification of the time-delay in a discrete-time transfer function

model. The methods are based on statistical change-point detection techniques.

Knowledge of the input-output process delay is important in control design. Many optimal

control design methods, such as minimum variance control [2], are sensitive to the knowledge of

the process delay and the closed-loop process under a designed controller may become unstable

if the model delay does not coincide with the process delay. Knowing the delay is also essential

for the control performance indices that are used to compare the performance of a control loop

to its best achievable performance and to decide whether it is warranted to re-tune a controller.

In the controller performance indices proposed by Harris et. al. [14] and by Horch and Isaksson

[16], the delay is the only process information that is required to be known.

Delay information is also crucial in closed-loop process identification. In closed-loop experi-

ments the input is frequently a linear function of the output hence it does not persistently excite

the process. As a consequence of this, the parameter estimates tend to be less precise and some-

times even a unique solution is not obtainable [18]. However, prior knowledge about the process

model, such as knowing the delay, is often useful in improving the precision of the estimates of

the remaining parameters. Vanli and Del Castillo [21] show how among some of the commonly

available forms of prior process knowledge, the delay provides the greatest improvement in the

quality of the models identified in closed-loop. For the design of minimum variance controllers,

Bohlin [6] has shown that the parameters of such controllers can be uniquely estimated from

closed-loop data as long as the process delay is known.

In this paper, it will be assumed that a proportional-integral (PI) controller is in opera-

tion while the delay estimation experiments take place. The controller will be assumed to at

least be able to stabilize the process around a given target, but if delay information becomes

available it could be re-tuned and perform better. A step response test is used to induce a

change in the output by a change in the process target and a change-point detection method

is applied to estimate the time of the output change. Unlike traditional system identification

experiments, step response tests do not require frequent changes in the input. Change-point

methods have been used frequently in the Time Series and Statistical Process Control (SPC)

literature, however, their usefulness for input-output delay estimation has not been recognized.

System identification from step response data is commonly applied for tuning PI controllers,

particularly in conjunction with the Ziegler-Nichols tuning methods [3]. However, these methods

are usually tailored for low noise and open-loop systems. In the proposed approach we consider

closed-loop identification for systems with significant noise that can be modeled with Box-

Jenkins or autoregressive-moving average-exogenous (ARMAX) transfer function models.

In this paper, we propose new closed-loop delay estimation methods that are based on

Bayesian, Sequential Probability Ratio Test (SPRT) and Cumulative Sum (CUSUM) change-
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point detection techniques. We note that, even though the procedures are presented for closed-

loop estimation, the results can be applied in a straightforward way to an open-loop process

where the output change is induced by a change in the controllable factor. The remainder of

the paper is organized as follows. In Section 2 the process assumptions are introduced. The

Bayesian, SPRT, and CUSUM delay estimation approaches are described in Sections 3, 4 and 5,

respectively. In Sections 6 and 7, a simulation example is presented to illustrate the approaches.

In Section 8 the approaches are compared against the Laguerre method of Isaksson et. al. [17].

In Section 9 the sensitivity of the SPRT and the Laguerre methods is studied with respect to

the choice of their tuning parameters.

2 Process Assumptions

Consider a process that can be described by the discrete-time transfer function model:

yt = G(z−1)ut−k + vt (1)

where yt is the process output, ut is the control input, G(z−1) is a ng order linear polynomial

in the back shift operator z−1 (i.e., z−1yt = yt−1) and vt is a disturbance process. The process

delay, denoted by k, is the number of whole time periods that elapses between a change is made

in the control input and its effect is observed at the process output. By definition k ≥ 1.

It will be assumed that the disturbance can be represented by an integrated moving average

(IMA) Time Series model vt = (1 − z−1)−αH(z−1)εt where H(z−1) is an nh order polynomial,

α is the degree of integration and {εt} is a white noise process with variance σ2. The process

is assumed to be adjusted by the PI controller

ut =
D(z−1)

F (z−1)
(yt − dt) (2)

where dt is the set-point, or target, of the process at time t. The controller polynomials are

F (z−1) = 1− z−1 and D(z−1) = c1 + c2z
−1, where c1 and c2 are the controller parameters. As

mentioned before it is assumed that the process output yt is on target under the actions of this

controller.

The delay will be estimated during the closed-loop operation of the process. The closed-loop

equation of the process can be obtained by substituting controller (2) in the process model (1).

This results in the following autoregressive-moving average ARMA(p, q) time series model:

(
F (z−1)− z−kG(z−1)D(z−1)

)
yt = −G(z−1)D(z−1)dt−k + F (z−1)H(z−1)(1− z−1)−αεt

or

φ(z−1)yt = ξt + θ(z−1)εt

(3)

where ξt is the intercept, φ(z−1) = 1− φ1z
−1 − ...− φpz

−p is the AR polynomial and θ(z−1) =

1−θ1z
−1− ...−θqz

−q is the MA polynomial. Correct determination of the orders of the AR and
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MA polynomials can be obtained by standard time series methods applied to the closed-loop

data yt (see [8], pp. 197-202). As noted earlier, for the purpose of estimating the delay, the

set-point is changed in a step fashion, namely:

dt =

{
0 t = 1, 2, ..., s

δ t = s + 1, s + 2, ..., n
(4)

where it is assumed, without loss of generality, that the initial set-point is zero. Here, δ is

the new set-point, s is the time instant at which the set-point is changed and n is the number

of observations. We will refer to the act of varying dt over n periods as the delay estimation

experiment.

The set-point change δ is specified according to desired step shift size at the output. In a

process controlled by a PI controller the output is able to track a constant set-point change

exactly. Thus, letting µ1 and µ2 denote the initial and the final means of the process, respec-

tively, we have that µ2−µ1 = δ. The step shift size can also be defined as µ2−µ1 = aσy where

σy is the process standard deviation and a is the signal-to-noise ratio.

There is no additional delay in the process dynamics polynomial G(z−1) or in the controller

polynomial D(z−1) because G(0) 6= 0 and D(0) 6= 0. It is clear, therefore, from (3) that the

effect of the change made in the set-point dt at time s is first observed in the output yt at time

r = s + k. Therefore, if the output change-point r can be detected (by using a change-point

method), then the delay can be simply estimated from

k = r − s. (5)

The delay estimation problem has been extensively studied in the control systems litera-

ture. Björklund and Ljung [5] give a comparison study of some of the recent open-loop delay

estimation approaches. Isaksson, Horch and Dumont [17] proposed a closed-loop delay estima-

tion method that uses a Laguerre transfer function model and step response tests. Laguerre

functions, through their orthonormality properties, have the advantage of more accurately ap-

proximating transient process behavior and hence are suitable in estimating the delay in a step

response test [22]. The next 3 sections present new delay estimation methods which will be

contrasted with the Laguerre polynomial model of [17] in Sections 8 and 9.

3 Bayesian approaches

In Bayesian approaches, inferences about the parameters are based on the posterior distribution

of the parameters, found by applying the well-known Bayes’ rule:

π(β|y) ∝ p(y|β)π(β) (6)

where β is the vector of parameters, p(y|β) is the likelihood function, y = (y1, y2, ..., yn) is the

observed output data and π(β) is the prior distribution which reflects the knowledge the user has
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about the parameters before observing the data. The likelihood function of an autocorrelated

sequence that obeys an ARMA model can be written as

p(y|β) = p(y1|β)p(y2|y1,β) . . . p(yn|y1, ..., yn−1,β), (7)

that is, as the product of the conditional distributions of the observations given the past data

and the parameters [19].

The change-point detection problem has been studied from a Bayesian viewpoint by many

authors. Carlin, Gelfand and Smith [10] proposed a hierarchical Bayesian model for indepen-

dent sequence of observations where inference about the change point was made by simulating

the joint posterior of all model parameters using Gibbs sampling. Change-point detection in

ARMA processes was discussed in Booth and Smith [7] where the autocorrelated sequence was

transformed to an independent sequence to conduct the analysis. Bayesian analysis of time

series models has been studied, among others, by Marriott et. al. [19] who used Markov chain

Monte Carlo (MCMC) methods to simulate the posterior distribution of the ARMA parameters.

We will utilize the results of [10] and [19] for estimating the input-output delay.

In processes that exhibit dynamic behavior the effect of the change made in the set-point

is fully realized at the output after several subsequent time periods. This is in sharp contrast

to the usual assumption made in change-point methods that the output change is fully realized

in one time period. In order to account for the dynamic behavior of the process the mean

step-response of the process can be approximated by the following exponential rise model:

µt = E(yt) =

{
µ1 t = 1, ..., r

µ1 + (µ2 − µ1)
(
1− e−

t−r
γ

)
t = r + 1, ..., n

(8)

where γ is the time constant of the process which is the time required for the process to rise to

63% of its steady-state value. By definition γ ≥ 0. It can be shown that expression (8) is the

step response of a first order transfer function model ([8], p. 376).

First order models are commonly used to approximate the dynamic process behavior in

automatic process control [3]. A second order transfer function may also behave close to a first

order process when it has a non-oscillatory step response. Then, the model given in equation

(8) can be used to approximate its behavior. Delay estimation under a second order process is

discussed further in Section 7.

In order to derive the likelihood function we represent the ARMA model of equation (3) in

the following mean centered form:

φ(z−1)(yt − µt) = θ(z−1)εt

or

yt − µt − τt = εt (9)

where µt is the mean of the process at time t represented by the exponential rise model (8) and
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τt is

τt =

p∑
i=1

φi (yt−i − µt−i)−
q∑

j=1

θjεt−j, t = 2, 3, ..., n (10)

and τ1 = 0. This can be evaluated recursively by replacing the unobservable errors εt with the

residuals of the model (9) as:

τt =

p∑
i=1

φi (yt−i − µt−i)−
q∑

j=1

θj(yt−j − µt−j − τt−j). (11)

Therefore, by using (9) and assuming that εt
iid∼ N(0, σ2) we get

p(y1|β) = N(µ1, σ
2), (12)

p(yt|y1, ..., yt−1, β) = N(µt + τt, σ
2), t = 2, 3, ..., n. (13)

We also note that the vector of all the parameters in this model is

β = (µ1, µ2, φ,θ, σ2, r, γ)

where φ = (φ1, . . . , φp) and θ = (θ1, . . . , θq). The multiplication of (12) and (13) gives the

likelihood function as

p(y|β) =
n∏

t=1

1√
2πσ

exp

(
− 1

2σ2
(yt − µt − τt)

2

)

= (2πσ2)−
n
2 exp

(
− 1

2σ2
A

)
(14)

where A(φ,θ, µ1, µ2, γ, r) =
∑n

t=1 (yt − µt − τt)
2. The standard ARMA model assumptions of

stationarity and invertibility need to be enforced in the likelihood. Let Sφ denote the set of φ

values that satisfy the stationarity condition (i.e., all roots of φ(z−1) must lie outside the unit

circle) and let Sθ denote the set of θ values that satisfy the invertibility condition (i.e., all roots

of θ(z−1) must lie outside the unit circle); we therefore assume the likelihood (14) to be valid

only for φ ∈ Sφ and θ ∈ Sθ.

3.1 Prior specification of the parameters

Let β̃ = (µ1, µ2, φ,θ, σ2) denote the vector of ARMA model parameters, thus β = (β̃, r, γ). As-

suming that the parameters are independent a priori, the joint prior of all the model parameters

is

π(β) = π(β̃)π(r)π(γ). (15)

It will be assumed that no prior knowledge about the ARMA model parameters exists. The

usual noninformative priors for these parameters are ([12] pp. 61-62):

π(µ1, µ2,φ,θ) ∝ constant,

π(σ2) ∝ 1

σ2
.
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Therefore,

π(β̃) ∝ 1

σ2
. (16)

Prior knowledge about the delay k and the time constant γ may be available from prior

experience with the process. In most industrial processes the delay values are typically less

than a few time intervals and even when precise knowledge is not available one can usually set

a sensible upper bound on the possible values of k. For example, if k0 is a prior estimate of the

upper bound of the delay then by using (5) an upper bound on the change point r is s + k0.

Thus, a prior on r for this case is a Discrete Uniform distribution:

π(r) = DU(s + 1, s + k0), r = s + 1, s + 2, ..., s + k0

Here, only the values r ≥ s + 1 are possible because by definition the delay is greater than 1.

More precise prior knowledge about k can be represented by choosing a Binomial distribution

as a more informative prior:

π(r) = Bin(k0, p0, s) =

(
k0 − 1

r − s− 1

)
pr−s−1

0 (1− p0)
k0−(r−s), r = s + 1, s + 2, ..., s + k0

where, similarly to the uniform prior, k0 is an upper bound on k. The probability of success p0

can be selected so that the mode of the prior coincides with a prior estimate of r.

Prior knowledge about the time constant can be obtained from observing the process during

a step response test. A common informative prior for non-negative continuous parameters is a

Log-Normal distribution:

π(γ) = LN(µγ, σ
2
γ), γ ≥ 0.

By definition of a log-normal, γ∗ = log γ is distributed as N(µγ, σ
2
γ). Therefore, the location

parameter µγ can be set equal to a prior estimate of γ∗ and the scale parameter σ2
γ can be

adjusted to control the confidence on the prior. When no prior knowledge about the time

constant exists, a non-informative prior is assumed on γ:

π(γ) ∝ 1

γ
, γ ≥ 0.

3.2 Posterior distribution of the parameters

From (6) we obtain the posterior distribution of the parameters:

π(β|y) ∝ (σ2)−
n
2
−1 exp

(
− 1

2σ2
A

)
π(r)π(γ) (17)

which is defined for φ ∈ Sφ and θ ∈ Sθ (from the stationarity and the invertibility conditions

of the likelihood), and γ ≥ 0 (from the prior specification). In particular, we are interested in

the marginal posterior of the change-point r. The change-point is estimated as the mode of

this distribution, and the delay k is estimated by using (5).
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The unnormalized posterior density of β given in (17) does not correspond to any standard

multivariate density function hence a closed-form expression of it is not available. The pos-

terior of r will be obtained numerically by considering the following two cases: (i) All model

parameters are assumed unknown hence the joint posterior (17) needs to be obtained. This will

be referred to as the full Bayesian approach; (ii) The ARMA model parameters β̃ are assumed

known hence only the posterior of (r, γ) needs to be obtained. This will be referred to as the

reduced Bayesian approach.

3.3 Full Bayesian Approach

The joint posterior (17) was simulated by using Markov Chain Monte Carlo (MCMC) methods

[13]. In sampling with MCMC methods it is recommended to find a suitable variable transfor-

mation to obtain an unconstrained density in order to improve the speed of convergence. For

the variables γ, φ and θ that have constrained supports in the joint posterior density (17) we

employed variable transformations [19].

The time constant γ was transformed as γ∗ = log γ so that γ∗ ∈ R is unconstrained. The

Jacobian of the transformation is J(γ → γ∗) = eγ∗ . The AR and MA parameters φ and θ were

transformed to φ∗ ∈ Rp and θ∗ ∈ Rq by applying the transformations recommended in [19]. We

refer to this paper for the required transformations, the corresponding Jacobians J(φ → φ∗)

and J(θ → θ∗) and the inverse transformations.

Let β∗ = (µ1, µ2, φ
∗, θ∗, σ2, r, γ∗) denote the vector of transformed parameters. The joint

posterior of β∗ is obtained as:

π(β∗|y) ∝ (σ2)−
n
2
−1 exp

(
− 1

2σ2
A

)
π(r)π(γ∗)eγ∗J(φ → φ∗)J(θ → θ∗). (18)

To simulate the posterior we divided β∗ into the sub-blocks µ1, µ2, φ
∗, θ∗, σ2, r, γ∗ and sam-

pled each sub-block from its conditional posterior distribution given all the other sub-blocks.

The blocks are sampled in the given order and an iteration is completed when all sub-blocks

are sampled. The sub-blocks are sampled using the Metropolis-Hastings algorithm. At the end

of each iteration, the sampled β∗ value is converted to β by applying inverse transformations.

A single Markov chain was simulated to generate the posterior distribution. The chain was

started from a randomly selected starting point β(0) and was run for I = 25000 iterations out

of which the initial I0 = 4999 burn-in iterations were discarded to eliminate the biasing effect of

the starting point. The Raftery and Lewis convergence diagnostic tool ([13], pp. 115-130) was

used to verify that the adopted burn-in length was adequate and the chain has converged to its

stationary distribution within the adopted chain length. The generated samples β(i), i = I0, ..., I

were used as the posterior distribution. See [20] for the implementation of the MCMC algorithm

and the convergence diagnostic tool.
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3.4 Reduced Bayesian Approach

The Bayesian formulation can be simplified considerably by assuming that the ARMA model

parameters β̃ are known. The ARMA model parameters can often be estimated independently

of the change point (see Appendix A.2).

Since β̃ is assumed known, the only unknown parameters in this case are r and γ. The joint

posterior of (r, γ) conditional on the observed data and on β̃ can be obtained from (6) as:

π(r, γ|y, β̃) ∝ p(y|r, γ, β̃)π(r, γ|β̃) (19)

and, by assuming prior independence, we have that π(r, γ|β̃) = π(r)π(γ). By substituting the

likelihood (14) in (19) and applying the transformation γ∗ = log γ, the posterior of (r, γ∗) is:

π(r, γ∗|y, β̃) ∝ exp

(
− 1

2σ2
A(r, γ∗)

)
π(r)π(γ∗)eγ∗ (20)

= h(r, γ∗|y, β̃)

where h(r, γ∗|y,β) is the unnormalized posterior and A is defined in the same way as in Section

3. The marginal posterior of r is obtained by integrating (20) with respect to γ∗:

π(r|y, β̃) ∝
∫ ∞

−∞
h(r, γ∗|y, β̃)dγ∗ (21)

= h(r|y, β̃), r = s + 1, s + 2, ..., s + k0 (22)

where h(r|y, β̃) is the unnormalized marginal posterior of r and can be computed from (21) by

using Monte Carlo integration. It has the same mode as π(r|y, β̃) thus can be directly used for

delay estimation. We also note that in this case, unlike the full Bayesian analysis, an MCMC

simulation is not required to compute the posterior probabilities of r.

4 A sequential probability ratio test approach

The problem of change-point detection commonly arises in industrial process monitoring. Se-

quential probability ratio tests (SPRT) are commonly employed for change-point detection in

correlated data [4]. In SPRT the change point is estimated by conducting a series of hypoth-

esis tests where the null hypothesis H0 : µ = µ1 is tested against the alternative hypothesis

H1 : µ = µ1 + R. Here, R is a reference value selected as the magnitude of the shift (step)

to be detected. In this study the reference value is specified as a multiple of the process stan-

dard deviation by setting R = bσy where b < a and b is the reference value in the standard

deviation units. Recall from Section 2 that a is the actual shift size in the standard deviation

units (signal-to-noise ratio). Appendix A.1 describes how b can be selected according to the

dynamics of the process.

A log-likelihood ratio statistic, Sm, computed at each time instant m by assuming an ARMA

model is fit to the closed-loop process, is used as the decision rule of the hypothesis test. The
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typical behavior of the log-likelihood ratio as a function of time shows a negative slope before

the change and a positive slope after the change. Therefore, the point at which this statistic

reaches a minimum is used as an estimate of the change point ([4], p. 41).

To estimate the output change-point that is caused by the set-point change at a time instant

s, it is sufficient to search for the minimum only among the time periods m = s + 1, s + 2, ..., n

since by definition the delay is greater than 1. Therefore, it is sufficient to compute the likelihood

of the sequences {yt}m
t=s+1 for the time periods m = s + 1, s + 2, ..., n.

Let µ(0) = µ1 and µ(1) = µ1+R denote the mean of the process under the null and alternative

hypotheses, respectively. The log-likelihood ratio criterion for testing the hypothesis is therefore

defined as:

Sm = ln
p(ys+1, ..., ym|µ(1))

p(ys+1, ..., ym|µ(0))
. (23)

The likelihood under each hypothesis can be obtained by applying (7):

p(ys+1, ..., ym|µ(l)) = p(ys+1|µ(l)) . . . p(ym|ys+1, ..., ym−1, µ
(l)) (24)

where l = 0 and l = 1 denote the null and the alternative hypotheses, respectively. Here, by

using (13), the conditional distributions of the observations are

p(yt|ys+1, ..., yt−1, µ
(l)) = N(µ(l) + τ

(l)
t , σ2), t = s + 1, s + 2, ...,m (25)

where, by applying (11), τ
(l)
t is

τ
(l)
t =

p∑
i=1

φi(yt−i − µ(l))−
q∑

j=1

θj(yt−j − µ(l) − τ
(l)
t−j)

As it can be noticed, there are several similarities between the likelihood definitions of the

Bayesian and the SPRT approaches. One important difference, however, is that while the (full

and reduced) Bayesian approaches assume the exponential function (8) as the mean, the SPRT

approach assumes a constant mean µ(l).

Substituting (25) in (24), the likelihood function under a given hypothesis is:

p(ys+1, ..., ym|µ(l)) =
m∏

t=s+1

1√
2πσ

exp

(
− 1

2σ2

(
yt − ψ

(l)
t

)2
)

where ψ
(l)
t = µ(l) + τ

(l)
t . The log-likelihood ratio (23) can therefore be written as the cumulative

sum

Sm =
m∑

t=s+1

Vt

where the increments of the sum are

Vt =
1

σ2

(
ψ

(1)
t − ψ

(0)
t

) (
yt − ψ

(1)
t + ψ

(0)
t

2

)
.

The point m at which Sm is minimum is the estimate of change point, and hence, of the delay

using (5). In SPRT the parameters µ1, µ2, σ
2, φ, θ need to be known (see Appendix A.2 for

estimation details).
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5 A cumulative sum approach

Cumulative sum (CUSUM) control charts are also commonly used in industrial process moni-

toring [15]. In this section two versions of the CUSUM scheme are presented: a CUSUM on the

original process data (i.e., no ARMA modelling is necessary) and a CUSUM on the residuals

of an ARMA time series model fitted to the original data. We refer also to Appendix A.2 for

details regarding the estimation of the required parameters for this approach.

CUSUM on the original data

If considerable uncertainty about the orders of the ARMA model that describes the closed-loop

operation of the process exists, the following CUSUM delay estimation method is suggested.

The application of the CUSUM statistic can be regarded as a series of hypothesis tests where

the null hypothesis H0 : µ = µ1 is tested against the alternative hypothesis H1 : µ = µ1 + K.

Here, K is a reference value that is usually set at one-half magnitude of the shift that we want

to detect ([15], pp. 32). A CUSUM statistic Cm computed at time m is used as the decision

rule of the hypothesis test.

A process monitored with a CUSUM control chart is considered to have gone out of control

when the Cm statistic exceeds an upper control limit H (i.e. when Cm > H). Here, a rec-

ommended value for H is 4 times the process standard deviation σy (see e.g., [15]). Once an

out-of-control signal is issued (say, at point m′) our approach estimates the change-point as the

first point, prior to this signal, at which the test statistic began raising above zero (i.e. when

Cm > 0 where m ≤ m′). Similarly to the SPRT approach, for delay estimation Cm needs to be

monitored only for the time periods m = s + 1, s + 2, ..., n.

We utilize a one-sided CUSUM procedure where it is desired to detect a change in a given

direction given by the new set-point. We will assume here, without loss of generality, that there

is an increase in the output level and hence a one-sided upper CUSUM can be used to detect

the change-point. An upper CUSUM can be computed as:

Cm =

{
0 m = s + 1

max (0, ym − (µ1 + K) + Cm−1) m = s + 2, ..., n.
(26)

Similarly to the SPRT approach, the reference value K is specified as a multiple of the process

standard deviation by setting K = b
2
σy (one-half of R) where b is selected according to the

dynamics of the process (see Appendix A.1).

CUSUM on the residuals

In processes with strong autocorrelation, monitoring the original data may lead to frequent

false alarms. To avoid this problem, an alternative CUSUM approach widely studied in the

SPC literature is to use a CUSUM to monitor the residuals of an ARMA time series model

fitted to the data [1].
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According to the ARMA(p, q) model (3), the fitted output value ŷt calculated at time t− 1

using the past data (y1, ..., yt−1) and the parameters (φ,θ, µ1) is

ŷt = φ1yt−1 + . . . + φpyt−p + ξ − θ1et−1 − . . .− θqet−q (27)

where et = yt− ŷt is the model residual and ξ = µ1(1−φ1− ...−φp) is the intercept. Note that

according to this model, the predictions are computed with respect to the initial mean µ1 of

the process and the mean change to µ2 is ignored. This decreases the degree of filtering in the

step shift (as opposed to being filtered out) which in turn makes detection easier. The CUSUM

statistic (26) for the residuals is calculated by replacing ym, µ1, µ2 and σy with em, µ1e, µ2e and

σe, respectively. The reference value of the detection rule is set as Ke = b
2
σe.

6 Example 1: Illustration of the proposed methods

To illustrate the three proposed methods first consider a simple pure gain transfer function

with additive IMA(1,1) noise, commonly employed in the control of discrete-part manufacturing

processes [9]:

yt = gut−k +
1− θz−1

1− z−1
εt. (28)

where the delay is k = 3, the parameters are g = 2 and θ = 0.3 and the white noise process

{εt} follows a normal distribution with 0 mean and variance 1. The true values of the model

parameters are unknown.

Suppose the process is controlled with a PI controller ut = c1+c2z−1

1−z−1 (yt− dt) where (c1, c2) =

(−0.25, 0.15). By using (3) the closed-loop model of this process under the actions of the PI

controller is:

(1− z−1 − gc1z
−3 − gc2z

−4)yt = −g(c1 + c2z
−1)dt−3 + (1− θz−1)εt (29)

which is an ARMA(4,1) process with parameters φ = (1, 0,−0.5, 0.3) and θ = 0.3.

The delay estimation approaches were applied on the simulated delay estimation experiments

during which the process was adjusted with the PI controller and the set-point was increased by

δ = 3σy and δ = 6σy units. Two shift (step) sizes were used in order to evaluate the performance

under a small and a large shift. The standard deviation of this process is σy = 1.45. The length

of the experiment and the set-point change time were n = 200 and s = 100, respectively. Since

the input-output delay is 3 periods, the true change-point is r = 103. The simulation was

repeated 100 times. This was limited due to the long computing time of the full Bayesian

approach; see below for the CPU times. For more extensive simulations of all other approaches

see Section 8. Figure 1 shows a simulation of the process and the corresponding residuals

obtained by fitting an ARMA(4,1) model to this realization.

Both the full and the reduced Bayesian approaches were applied. In both approaches a

non-informative prior and an informative prior were assumed for the change point r and only
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Figure 1: The simulated delay estimation experiment of the process in Example 1 with a 6σy step
shift. Left panel: the process output (only observations 95 to 120 are shown). Right panel: the
residuals of the ARMA model fitted to the output data. In the left panel the first arrow indicates the
instant at which the change is made in the set-point (s = 100) and the second arrow indicates the
change-point of the output (r = 103). For comparison the mean step-response of the process (solid
line) is also shown.

a non-informative prior was assumed for the remaining parameters. A discrete uniform dis-

tribution DU(101, 110) was used as a non-informative prior on r and a binomial distribution

Bin(10, 2/9, 100) was chosen as a more informative prior. In both priors an upper bound

k0 = 10 was employed. In the binomial prior the probability of success is set at p0 = 2/9 so

that its mode is equal to the true change point 103.

The SPRT and the CUSUM detection rules were tuned to detect a shift that is one-third

magnitude of the actual shift by setting the reference value b = 1 for the small shift and b = 2

for the large shift. In the Bayesian, the SPRT and the CUSUM (on residuals) approaches the

correct closed-loop model ARMA(4,1) was assumed.

Figure 2a shows the simulated marginal posterior of r obtained with the full Bayesian

approach and by assuming non-informative priors on all parameters. From the mode of this

distribution the change-point was estimated as r̂ = 103. Figure 2b shows the SPRT and

CUSUM statistics Sm and Cm. We see that Sm reaches its minimum at time instant 103, thus

the SPRT estimate of the change point is r̂ = 103. Likewise, Cm (both on original data and on

residuals) raises above zero at time instant 103 thus the CUSUM estimate of the change-point

is r̂ = 103. Since the set-point was changed at time 100 the delay estimate from all methods is

k̂ = 3. All results were obtained from the realization given in Figure 1.

The performance of the methods were compared on the basis of the root mean squared error
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Figure 2: The results of the delay estimation analyses (Example 1, a 6σy step shift). (a) The histogram
of the simulated posterior of the change point r using the full Bayesian analysis. (b) The Sm and Cm

statistics of the SPRT and the CUSUM approaches. The arrow indicates the time instant at which
the change is detected.

(RMSE) of the computed delay estimates. This is defined as:

RMSE =

√√√√ 1

M

M∑
i=1

(
k̂i − k

)2

(30)

where k̂i is the delay estimate obtained from the ith realization, k is the true delay and M = 100

is the number of simulations.

Table 1 reports the mean, the variance and the RMSE of the delay estimates computed

with the three methods. The average CPU time to compute one delay estimate with the

SPRT, CUSUM, and the full and the reduced Bayesian approaches were 0.098, 0.093, 138.6 and

0.245 seconds, respectively (the computations were done on a 3.60GHz PC). The full Bayesian

approach requires a significantly longer CPU time than the reduced Bayesian approach because

it involves running a Markov Chain simulation to compute each delay estimate.

The SPRT and the CUSUM on residuals approaches provided similar RMSE performance.

This is in agreement with the observation that SPRT is a generalization of CUSUM ([4], pg.

43). Also, since the process is autocorrelated, a CUSUM on the residuals provides a better

performance than a CUSUM on the original data. The full Bayesian approach with an infor-

mative prior on r outperformed the alternatives under both shift sizes. By contrast, when no

prior process knowledge exists the best delay estimates were obtained with the SPRT approach

regardless of the shift size. It can also be seen that the reduced Bayesian approach provided

comparable RMSE performance to the full Bayesian approach.
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Shift Size SPRT CUSUM Full Bayes Reduced Bayes
On data On residuals Non-inf Inf Non-inf Inf

3σy Mean 2.67 3.07 2.75 4.26 3.31 4.56 3.37
Var 1.86 2.53 2.07 4.86 1.10 4.71 1.10

RMSE 1.40 1.58 1.45 2.53 1.09 2.66 1.11

6σy Mean 2.72 3.34 2.69 3.23 3.11 3.15 3.15
Var 0.81 1.12 0.80 0.87 0.46 0.88 0.51

RMSE 0.94 1.10 0.94 0.95 0.69 0.94 0.73

Table 1: Mean, variance and RMSE of the delay estimates obtained with the SPRT, CUSUM and
full and reduced Bayesian methods from 100 simulations (Example 1). The true delay is 3. “Non-inf”
refers to the case where noninformative priors were used on all parameters and “Inf” refers to the case
where an informative prior was used only on r and noninformative priors were used on the remaining
parameters.

7 Performance of the proposed approaches under a sec-

ond order process

In this section we illustrate delay estimation under a process that has an oscillatory step re-

sponse. Consider again the process model given in equation (28). In this process an oscil-

latory closed-loop step-response was obtained by changing the PI controller parameters to

(c1, c2) = (−0.4, 0.2) from the original controller settings of (c1, c2) = (−0.25, 0.15). Note that

this is equivalent to an open-loop process with a second order transfer function. We will refer

to the process considered in Section 6 under the original controller settings as the first order

process, and the process considered in this section as the second order process.

Figure 3 gives a comparison of the step responses under the two controller settings. Only

the SPRT approach (with b = 1) and the shift size δ = 3σy were considered. Table 2 gives

the mean, variance and the RMSE of the delay estimates obtained from M = 1000 simulations

under a second and a first order process.

First Order Second Order

Mean 2.78 2.53

Var 2.28 0.82

RMSE 1.53 1.02

Table 2: The mean, variance and the root mean square error (RMSE) of the delay estimates of the
first order and second order processes obtained with SPRT. True delay is k = 3. Results are from
1000 simulations.

We observe that the delay estimates have better RMSE in a second order process than in

a first order process. This is due to the fact that in an oscillatory second order process the
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Figure 3: Comparison of the step responses of the process under the two PI controller settings.

The experiment length is n = 200 and the step change in the set-point was introduced at time

s = 100.

response first overshoots the set-point and hence has a shorter rise time (Figure 3) which makes

change-point detection easier. Therefore, in general, a change-point detection method gives

better delay estimates for a process with a second-order (oscillatory) step response then for a

process with a first-order (exponential rise) step response.

8 Example 2: Comparison with the Laguerre method

In this section we compare the performance of the proposed delay estimation approaches to

the Laguerre delay estimation method of Isaksson et. al. [17] by using two examples from [17].

The Laguerre delay estimation method is reviewed and illustrated by using these examples in

Appendix A.3.

In the first process the delay is k = 10 and the dynamics and disturbance models are given

by

G(z−1) =
0.0178 + 0.0123z−1

1− 1.273z−1 + 0.333z−2
and vt =

0.71
1− 0.7z−1

εt, (31)

respectively, where εt
iid∼ N(0, 0.052). The process is controlled with the PI controller ut =

−0.612−0.6z−1

1−z−1 (yt − dt). By inserting this controller in (1) the closed-loop equation follows an

ARMA(13,3) process. As pointed out by the authors [17], for this process estimating the delay

is hard due to the slow dynamics despite the low noise.

In the second process the delay is also k = 10. The dynamics and the disturbance models

are

G(z−1) =
0.296 + 0.0204z−1

1− 0.368z−1 + 1.671× 10−5z−2
and vt =

0.92
1− 0.368z−1 + 1.671× 10−5z−2

εt, (32)

respectively, where εt
iid∼ N(0, 0.12). The process is controlled with the PI controller ut =

−0.3−0.25z−1

1−z−1 (yt− dt). The closed-loop equation in this case is an ARMA(12,1) process. For this
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process delay estimation is easier given the faster dynamics. In the proposed approaches that

require an ARMA model of the closed-loop process, the correct model orders were assumed

for the two processes. As pointed out earlier, this is not a strong assumption since the correct

orders of the closed-loop ARMA model can be identified using standard time-series techniques

applied to yt.

In the simulations the PI controllers were adjusting the process, the length of the experiment

was n = 2000 and the set-point was increased by δ = 2 units at time s = 1000 (note that this

is the same experimental condition employed in [17]). For both processes the delay is k = 10,

thus the true change-point is r = 1010. The simulation was repeated 1000 times.

Dividing the step size δ by the process standard deviation we find the signal-to-noise ratio

used in the experiment as a = 40 and a = 20 for the first and the second processes, respectively.

It can be seen that compared to the signal-to-noise ratios (a = 3 and a = 6) employed in

Example 1, these values are considerably large.

One simulated realization of each process is shown in Figure 4. Notice that the first process

has a larger time constant (slower dynamics) than the second process. From the rise times the

time constant can be approximated as γ ≈ 140 for the first process and as γ ≈ 30 for the second

process. The corresponding γ∗ = log γ values are 4.9 and 3.4 for the first and second processes.

Process 1 Process 2
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Figure 4: Simulated delay estimation experiments of the two processes in Example 2. For

comparison the mean responses of the processes are also shown (thick line).

As a relatively large number of simulations were considered in this example, the full Bayesian

approach is not practical due to its increased computational cost. Therefore, only the reduced

Bayesian approach was applied. In the SPRT and the CUSUM detection rules, the reference

value was set as b = 3 for both processes.

In the Bayesian approach, the benefit of having prior knowledge about the change-point r

and the time constant γ was investigated. In the prior of r the upper bound on the delay was

chosen as k0 = 20 for both processes. A binomial prior was chosen as the informative prior on

r for which the probability of success was set at p0 = 9/19 so that its mode is equal to the true
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Figure 5: Histograms of the delay estimates of the first process (top panels) and second process (bot-
tom panels) in Example 2 obtained using the SPRT, CUSUM on residuals and the reduced Bayesian
(informative prior on γ) approaches. The true delay is k = 10 for both processes. Results are based
on 1000 simulations.

change point 1010. A log-normal density was chosen as the informative prior on γ for which

the location parameter µγ was set at the true γ∗ values of the two processes. Table 3 gives the

informative and noninformative prior scenarios considered.

Scenario Process 1 Process 2

Non-informative π(r) = DU(1001, 1020) π(r) = DU(1001, 1020)
on r and on γ π(γ) ∝ 1/γ π(γ) ∝ 1/γ

Informative on r π(r) = Bin(20, 9/19, 1000) π(r) = Bin(20, 9/19, 1000)
(Non-inf on γ)

Informative on γ π(γ) = LN(4.9, 0.052) π(γ) = LN(3.4, 0.32)
(Non-inf on r)

Table 3: Scenarios for prior distributions in the reduced Bayesian approach.

Figure 5 shows the histograms of the delay estimates obtained by using the SPRT, CUSUM

(on residuals) and the reduced Bayesian (with an informative prior on γ) approaches and Table

4 summarizes the performance statistics of all approaches. This table also gives the performance

statistics of the Laguerre approach of Isaksson et al. [17] that we describe in Appendix A.3 (see

Figure 8 for the histograms of the delay estimates obtained using the Laguerre approach). As

noted in Appendix A.3, the RMSE values we found for the Laguerre method are lower (better)
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Method Process 1 Process 2
Mean Var RMSE Mean Var RMSE

SPRT 10.24 3.30 1.832 11.01 1.03 1.429
CUSUM (On data) 11.51 2.79 2.252 11.28 1.19 1.680

CUSUM (On residuals) 11.84 1.55 2.218 11.38 0.76 1.632
Reduced Bayes (Noninform on r and on γ) 16.74 10.37 7.472 14.49 5.17 5.031

Reduced Bayes (Inform on r) 10.17 0.79 0.907 10.99 0.92 1.382
Reduced Bayes (Inform on γ) 9.27 2.24 1.664 10.62 1.40 1.334

Laguerre 12.29 1.35 2.570 11.66 2.02 2.189

Table 4: Mean, Variance and Root Mean Square Error (RMSE) of the delay estimates obtained
with the SPRT, CUSUM, reduced Bayesian and Laguerre methods from 1000 simulated realizations
(Example 2). The prior scenario used in each reduced Bayesian scheme is given in parentheses (see
Table 3). The true delay is k = 10 for both processes.

than those reported by Isaksson et al. Therefore, these values were used for comparing the

proposed approaches to the Laguerre method.

As it can be seen, all approaches (except for the Bayesian approach with an informative prior

on r) have a better performance with the second process which has a smaller time constant.

This suggests that the performance of all methods improves as the time constant decreases

(or as the process dynamics becomes faster). When prior process knowledge is available, the

Bayesian approach with an informative prior on the change point r outperforms the alternatives,

as expected. When little is known about r but accurate knowledge about the time constant γ is

available, the Bayesian approach with an informative prior on γ also provides significantly im-

proved delay estimates than the other methods. By contrast, when no prior process knowledge

is available, the SPRT approach results in the best delay estimates. We note how all change

point approaches, except for the Bayesian approach with noninformative priors, provide better

delay estimates than the Laguerre method. It should be pointed out that the non-parametric

CUSUM approach on the original data, which does not require any ARMA modelling, still

performs considerably better than the existing Laguerre delay estimation method for both

processes.

9 Sensitivity of the SPRT and the Laguerre delay esti-

mation methods

As discussed in Appendix A.1, the reference value b of the SPRT method must be selected

based on the dynamics of the process. However, in practice the appropriate reference value for

a particular process dynamics may not be easily obtainable.

In this section we study the sensitivity of the SPRT delay estimation method with respect
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to the choice of the reference value b and compare it to the sensitivity of the Laguerre method

with respect to the choice of its frequency parameter ω. The sensitivity analysis consists of

estimating the delay of a given process under a given step shift size by employing SPRT with

various values of b and by employing the Laguerre method with various values of ω.

Consider the process model given by equation (28) controlled by the PI controller and the

delay estimation experiment with the step shift sizes δ = 3σy and δ = 6σy (i.e., the signal-to-

noise ratios a = 3 and a = 6). Recall that the true delay of the process is k = 3. To study the

sensitivity of the methods, the experiment is simulated 100 times and during each experiment

the delay is estimated by applying the following:

(i) The SPRT method and using the range of reference values 0.875 ≤ b ≤ 2 for a = 3 and

using 1.75 ≤ b ≤ 4 for a = 6

(ii) The Laguerre method and using the range of frequency values 1 ≤ ω ≤ 2.8 for a = 3 and

using 0.5 ≤ ω ≤ 1.4 for a = 6.

Under each signal-to-noise ratio, the ranges of the b and ω values were determined so that

they cover the minimum of the delay estimate root mean square error (RMSE) value. As it

can be seen, in order to achieve the minimum RMSE under a smaller signal-to-noise ratio, in

SPRT a smaller reference value has to be used and in the Laguerre method a larger frequency

has to be used.

Figure 6 shows the RMSE of the delay estimates obtained with SPRT and the Laguerre

method and under increasing b and ω values. As it can be seen, under both shift sizes the

SPRT method gives a better RMSE performance than the Laguerre approach regardless of the

b and ω parameters used. This indicates that the SPRT method is less sensitive to the choice

of its tuning parameter than is the Laguerre method.

10 Conclusions

This paper presented three new closed-loop time-delay estimation methodologies that are based

on Bayesian, SPRT and CUSUM change-point detection methods. Performance comparisons

were made against the Laguerre method in [17]. In the examples, processes that have first-order

step responses were considered. It was shown that the change point approaches work for both

first and second order responses, with the latter being more favorable due to the possibility of

overshoot.

The CUSUM approach yielded more precise delay estimates when applied on residuals

than when applied on original data. The SPRT and the CUSUM (on residuals) approaches

provided comparable quality delay estimates. It was demonstrated that even when little is

known about the delay a Bayesian approach can be used to incorporate prior information

about a different process parameter (such as the time constant) to obtain significantly better
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Figure 6: RMSE of the delay estimates obtained with SPRT and Laguerre methods under

increasing b and ω values. (a) Small step shift (δ = 3σy). (b) Large step shift (δ = 6σy). Each

RMSE is computed from 100 simulations of the delay estimation experiment.
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delay estimates than the other methods. When no prior process knowledge exists, however, the

SPRT approach yielded the best estimates. It was also shown that the proposed approaches

give better performance than the existing Laguerre method [17].

Except for the CUSUM delay estimation applied to the original data, all proposed methods

were compared against the Laguerre method assuming the correct model orders of the closed-

loop ARMA description of the process were known exactly. Although not a strict assumption,

since these orders can be estimated from regular closed-loop operating data using standard

time-series methods, it should be pointed out that the CUSUM on the data (which requires no

ARMA model be used) still overperformed the Laguerre method in our comparisons (note we

obtained better performance of the Laguerre method than that reported in [17], see Appendix

A.3).

Finally, the sensitivity analysis of the SPRT and the Laguerre delay estimation methods

showed that the SPRT method is less sensitive to the selection of its tuning parameter than

the Laguerre method. Therefore the SPRT method is easier to tune with respect to the true

dynamical response of the process and performs better overall.

A Appendix

A.1 Selection of the reference values of the SPRT and the CUSUM

schemes.

Performance of a Statistical detection scheme is usually assessed based on its run length (RL)

characteristics. The RL is defined as the number of samples required for the scheme to signal

a change. It is desirable to have an “in-control” RL (the RL when no change occurs in the

process) as high as possible and an “out-of-control” RL (the RL when a change occurs in the

process) as small as possible ([11], pp. 12).

In order to achieve a good out-of-control RL performance in a delay estimation test, the

reference value b of the SPRT and CUSUM methods must be selected based on both the actual

shift size a and the dynamical response of the process. With respect to actual shift size we need

to have that b < a. Figure 7 illustrates the performance of a detection rule in two processes

that have different dynamical behavior. In this case b1 and b2 are the reference values used in

the faster and the slower dynamics processes, respectively. As it can be seen, in order to obtain

the same out-of-control RL in both processes, one must use a smaller reference value in the

process with slower dynamics, that is, one must have that b2 < b1.
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Figure 7: Effect of the selection of the reference value b on the out-of-control run length (RL)

performance of the SPRT and the CUSUM schemes. Solid line: the step response of a process

with faster dynamics. Dashed line: the step response of a process with slower dynamics.

Here, a is the actual shift size and b < a.

A.2 Estimation of the parameters required in the change-point meth-

ods.

Define Y 1 = {yt}s
t=1 as the vector of output data before making the set-point change and

Y 1 = {yt}n
t=s+k0

as the vector of output data after the effect of the change is fully realized (recall

that k0 is the upper bound on the delay). Similarly, define E1 = {et}s
t=1 and E2 = {et}n

t=s+k0

as the vectors of the residuals (before and after the set-point change) of an ARMA model fitted

to the output data.

In the reduced Bayesian and SPRT approaches, µ1,φ,θ and σ2 are estimated from Y 1, and

µ2 is estimated from Y 2. In the CUSUM on original data µ1 and σ2
y are estimated from Y 1

and µ2 is estimated from Y 2. In the CUSUM on residuals φ and θ are estimated from Y 1, and

(µ1e, σe) and µ2e are estimated from E1 and E2. The armax function in MATLAB was used

to estimate the ARMA parameters.

A.3 Delay Estimation Using Laguerre Transfer Function Models

This appendix reviews the delay estimation method employed by Isaksson et. al. [17]. The

Laguerre transfer function model of a process can be written as

yt =
nc∑
i=1

ciLi(z
−1)ut + vt (33)

where

Li(z
−1) =

√
1− α2z−1

1− αz−1

(
z−1 − α

1− αz−1

)i−1

, i = 1, .., nc
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where α is the parameter and nc is the order of the transfer function model. In [17] the values

nc = 10 and α = 0.8 are recommended.

The coefficients ci of model (33) can be estimated using ordinary least squares by fitting to

the input-output data the following linear regression model

yt = c1u1,t + c2u2,t + ... + cncunc,t + vt (34)

where ui,t = Li(z
−1)ut (i = 1, 2, ..., nc) and it is obtained by filtering the original input signal

ut with the i-th Laguerre filter Li. Matlab’s filter command is used for this purpose.

In order to estimate the delay, the estimated Laguerre transfer function is first represented

in a rational transfer function form:

yt = G(z−1)ut + vt (35)

where G(z−1) =
∑

i ciLi(z
−1). Then, the rational transfer function is factorized into a minimum

phase and an all phase part as G(z−1) = Gmp(z
−1)Gap(z

−1). The minimum phase part contains

the unstable roots (the roots that are inside the unit circle) of the numerator polynomial

of G(z−1). The all phase part Gap is written in the frequency domain by the substitution

z−1 = e−iωTs where Ts is the sampling interval (in seconds) and ω is the frequency parameter

(in radians/second). Finally, the time delay (in seconds) is estimated as

T̂d = lim
ω→0

(
−ϕ(ω)

ω

)
(36)

where ϕ(ω) = arg{Gap(e
−iωTs)} is the phase angle (in radians) of Gap(e

−iωTs) and it can be

computed using the angle command in Matlab. In expression (36) the quantity within the

large parentheses gives the time delay at a given frequency. Therefore, in order to approximate

the pure-delay (i.e. low frequency) component of the transfer function, the limit of this quantity

is taken as the frequency tends to zero. From (36) the delay (in time periods) is estimated as

k̂ = 1 +
T̂d

Ts

.

It is noted in Isaksson et. al. [17] that in order to approximate the limit, a sufficiently small

ω must be specified by the user based on the noise level of the data. It was reported that the

value ω = 10−4 provided adequate approximation for typical industrial data.

As an illustration, we estimate the delay of the two processes considered in [17] using the

Laguerre delay estimation method and compare the root mean squared error (RMSE) of the

delay estimates from 1000 simulations to that reported in [17]. We refer to equations (31)

and (32) for the descriptions of these processes. The delay estimation experiment is of length

n = 2000 and a step shift of size δ = 2 is introduced to the process at time s = 1000.

In each simulation a Laguerre transfer function model with parameters nc = 10 and α = 0.8

was fitted to the step response data. In order to estimate the delay, the phase angle of the

estimated frequency domain transfer function model was evaluated at ω = 10−4 for the first
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Figure 8: Histograms and RMSE values of the delay estimates of the two processes considered

in [17]. Estimates are obtained with the Laguerre method from 1000 simulations. True delay

is 10.

process and ω = 0.08 for the second process. The histograms and the RMSE values of the delay

estimates obtained from the simulations are given in Figure 8. The RMSE of the estimates

computed with the Laguerre approach (using the same number of simulations) is reported by

[17] as 3.529 and 2.412 for the first and second processes, respectively. As it can be seen,

our results indicate that the Laguerre approach has a better RMSE performance than that

originally reported in [17].
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