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Abstract

A new approach to the sequential design of experiments for the rapid optimization of
multiple response, multiple controllable factor processes, is presented. The approach
is Bayesian, and approximates the cost to go function of the underlying Dynamic
Programming problem. The approximation is based on a matrix T posterior predictive
density for the predicted responses which can be cross-correlated and/or correlated
over time. The case of an unknown variance is addressed; the assumed models are
linear in the parameters but can be nonlinear in the factors. It is shown that the
proposed approach has dual control features, initially probing the process to reduce the
parameter uncertainties and eventually converging to the desired optimal solution. The
convergence of the proposed method is numerically studied and convergence conditions
discussed. A computer implementation of the algorithm is provided.

Keywords: Response Surface Methods, Dual Control, Cost to go, Dynamic Programming.

1 Introduction

In a sequential Design of Experiments (DOE), the experimental conditions, given by the lev-

els of the controllable factors in each run u′ = (u1, u2, ..., uq), are selected based on the levels

used in previous runs and on the previous observed response values. Formal algorithmic

approaches to the sequential design of experiments are of practical value when the purpose

of the experiment is to optimize a process or system as rapidly as possible, e.g., when the

cost of running an experiment is extremely high and the cost of poor response values unac-

ceptable. These conditions are frequent in capital-intensive industries (e.g., semiconductor,

large chemical plants). This paper presents a new approach to sequential DOE for the rapid

optimization of multiple response processes where the input-output relation is given by a

multivariate statistical model linear in the parameters which are also unknown.

The sequential nature of experimentation is frequently acknowledged in the Engineering

Statistics literature (e.g., Box, Hunter and Hunter, 2005). Early approaches to sequential

DOE include the Evolutionary Operation (EVOP) technique for on-line optimization of

a single-response process (Box and Draper, 1957) and the work by Kiefer and Wolfowitz

(1952), who adopted Robbins and Monro’s landmark stochastic approximation algorithm

to the problem of finding the stationary point of a single factor regression function (see

Robbins and Monro 1951), an approach soon extended by Blum (1954) to the multiple

factor case. This line of work has received considerable impetus in recent years originating

from Spall’s stochastic perturbation methods (see e.g. Spall 1992 and 2005) which require

only two experiments per iteration in the multiple factor case. However, the total number of
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iterations needed for convergence is too large to be practical in real industrial experiments.

Furthermore, these approaches do not fit a model.

Model-based sequential DOE for the optimization of a process has been discussed in the

control literature. Feldbaum (1960) introduced the concept of dual control: to control an

unknown system a sequential algorithm must initially “probe” the system by varying the

controllable factors u to learn about (or estimate) some postulated process model. Once

enough information is gathered a sequential strategy should then lead u to a region were

the control objective for the response(s) of interest is achieved. The problem then has two

conflicting objectives, estimation and control. The same underlying dual control strategy is

necessary for optimization objectives, leading to a large literature, too vast to review here

in detail, on Optimizing Control, Self-tuning Extremum Control, and related methods (see

e.g. Zarrop 1991). These methods fall under the general category of Adaptive Control,

where the algorithms act as the controller of a process (which determines the next run in the

sequence), a terminology not commonly found in DOE. Adaptive Dual Control problems are

formulated as Dynamic Programming (DP) problems for which exact solutions are impossible

to find, even for very small problems, due to curse-of-dimensionality problems that plague

this approach (e.g. see Åström and Wittenmark, 1989).

Approximate but faster solutions that try to mimic the “dual features” (estimation and

control) of the optimal control policy have been proposed. A popular approach is that by

Milito et al. (1982), (Milito (1982), (see also Wittenmark, 1975) who suggested a two-

component objective function that considers the dual objectives explicitly:

min
ut

(ŷt+1 − τ)2 − ω
|P t+1|
|P t+2| (1)

where P t is the scaled covariance matrix of the parameter estimates used to compute the

predicted response ŷ and τ is the response target (one response assumed). If ω = 1, then

the objective favors good parameter estimates [the second term is similar to the conditional

D-optimality criterion (see, e.g., Del Castillo, 2008)]; if ω = 0 the problem favors optimiza-

tion neglecting the uncertainty of the parameter estimates (certainty equivalence controller).

Pronzato (2000) shows how using a constant ω in (1) does not satisfy the sufficient conver-

gence conditions of adaptive control algorithms, first established by Lai and Wei (1982).

Ben-Gal and Caraminis (2002) recently propose a DP-based strategy for a single response

system that explicitly considers the monetary cost of each experiment. Their approach aims

to find experimental designs to best estimate (gain information about) a process model.

Notable features of their approach are the consideration of a model updating step via lack

of fit tests and the development of rules that indicate when to stop experimenting.

A different attack on the Dual Control problem, adopted in this paper to generate a

sequential DOE, is to approximate the “cost to go” equation used by the exact solution in
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the DP formulation. First explored in Tse and Bar-Shalom (1973), this strategy has received

definite recent contributions by Pronzato and coworkers, who studied the case of a single

response process and a known process variance (see Kulcsar et al., 1996).

This paper addresses the unknown variance, multiple response, multiple factor case, when

the input-output relation may be nonlinear in u. The approach is Bayesian, and the approx-

imated cost to go function requires the use of a matrix T predictive density. This density

allows to model correlation between the responses (a common concern in the DOE litera-

ture) and also allows to model correlation over time. Pronzato et al. (1995) have shown how

even if a process obeys a static model, the dual control solution constitutes a dynamic sys-

tem given the interplay between parameter estimation and control (i.e., correlation between

parameter estimates obtained close results in response values correlated over time, etc.).

The rest of this paper is organized as follows. Sections 2 and 3 discuss the assumed

statistical model and cost function, respectively. Section 4 presents the approximated cost

to go function. Section 5 explains the prior-posterior computations (matrix T) used by the

proposed solution. Section 6 the numerical behavior of the proposed sequential DOE ap-

proach is studied via simulation. Comparisons are made with an off-line, known-parameters

solution (which provides a best performance benchmark) and with the case where the dual

control algorithm is given initially perfect information about the process parameters. Finally,

section 7 explores the convergence properties of the proposed method. The paper ends with

conclusions and directions for further research.

2 Model assumptions

Consider the following multivariate linear statistical model:

y = Θx + ε, ε ∼ N(0,V ) (2)

where y is a p×1 vector of responses, x is an r×1 vector of regressors and V is an unknown

p × p covariance matrix. Let u be a q × 1 vector of controllable factors so that x = f(u).

The nature of f(u) can be nonlinear in u as long as y is linear in the parameters. We focus

in this paper on the case when f(u) corresponds to a second order polynomial model:

x = f(u) = [1, u1, u2, ..., uq, u1u2, ..., uq−1uq, u
2
1, ..., u

2
q]
′. (3)

thus r = dim(x) = (q + 2)(q + 1)/2 in this case. The p × r matrix Θ contains unknown

model parameters that correspond to the model form specified by x.

In the sequential design problems discussed herein it will be necessary to predict the p

responses for the next m periods based on k observations. Let Ỹ = [ỹk+1, . . . , ỹk+m] (from

here on, a tilde over a variable indicates a future, non yet observed variable). As discussed by
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a number of authors (see Geisser, 1993, Kibria, 2006, and Minka, 2001), the predictive density

of Ỹ , either for non-informative or conjugate/informative priors is a matrix T distribution.

A p×m random matrix T is said to follow a non-central matrix T distribution (denoted

T ∼ T p,m(ν, µ,Ψ,Ξ)) if its density satisfies:

p(T ) ∝ |Ψ−1 + (T − µ)Ξ−1(T − µ)′|− ν+p+m−1
2

where Ψ > 0 is a p×p matrix, Ξ > 0 is m×m, and ν > p+m−1 is a shape parameter (the

degrees of freedom). The mean and variance of T are E[T ] = µ and Var(T ) = Ξ⊗Ψ/(ν−2),

which exists if ν > 2. Associated with a random matrix T are two covariance matrices, Ψ

and Ξ. The correlation between the rows of T is modeled by Ψ. The correlation between the

columns of T is modeled by Ξ. If either Ψ or Ξ is diagonal it implies the rows or columns

are uncorrelated. Thus, the predictions may be correlated across the m future time periods

or correlation can exist contemporaneously between the p predicted responses.

3 Assumed cost function

Let the cost of running the process at period k +1 with controllable factors uk, set at period

k, be the quadratic function:

ck(uk) = (ỹk+1 − τ k+1)
′Γk+1(ỹk+1 − τ k+1) + w′

kRkwk (4)

where ỹk+1 is a p× 1 random vector of one step ahead future responses with corresponding

vector of targets τ k+1, Γk+1 is a p× p matrix of off-target costs (usually a diagonal matrix),

wk = uk − uk−1 is the adjustment made to the factors and Rk is a q × q adjustment cost

matrix (also diagonal).

The objective to minimize is the sum of all expected costs involved over a horizon of N

observations or periods, that is,

JN(U (N)) = E

[
N∑

i=1

ci(ui)|D(0)

]
(5)

where U (N) = {u1,u2, ..., uN}. Note that cN(uN) = 0, as there is no adjustment in period

N . D(i) denotes the information available at the end of period i, so we have that

D(j) =
{

U (j−1), Y (j), D(0)
}

where Y (j) = {y1,y2, ..., yj} and U (0) = ∅.
The Dynamic Programming equation that solves problem (5) is

min
u1

Eỹ2
{c1(u1)+ · · ·+ min

uk

Eỹk+1
[ck(uk) + min

uk+1

Eỹk+2
[ck+1(uk+1) + · · ·

· · ·+ min
uN−1

EỹN
[cN−1(uN−1)|D(N−1)] · · · |D(k+1)]|D(k)] · · · |D(1)}

(6)
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The optimal cost to go at step k is given by the Bellman equation:

J∗k,N(D(k)) = min
uk

Eỹk+1

[
ck(uk) + J∗k+1,N(D(k+1))|D(k)

]
, k = 1, 2, ..., N − 1

with boundary condition J∗N,N(D(N)) = 0. No simple recursive solution exists for this equa-

tion when Θ and V are unknown. When they are known and f(ui) is linear in u, the

Bellman equation has a well known solution, the Linear Quadratic Gaussian (LQG) solution

described in Åström (1970). In this paper, in contrast, f(ui) is assumed to be quadratic

and the parameters Θ and V are assumed to be unknown, and hence an approximation to

the cost to go is necessary.

4 An approximation to the cost to go

Following the notation in the last section, the cost to go at the end of period k can be

expressed as follows:

Jk,N(uk) = Eỹk+1
[ck(uk) + J∗k+1,N(D(k+1))|D(k)] (7)

which needs to be minimized with respect to uk,uk+1, . . . , uN−1. To evaluate the right hand

side, one needs:

• The predictive density ỹk+1|(D(k),uk) for the first term, and

• The predictive densities ỹk+2|(D(k+1),uk+1), . . . , ỹN |(D(N−1),uN−1) for the second term.

The difficulty of the problem lies in that the expected value in equation (7) depends on

future observations that in turn depend on yet unobserved factor settings uj, j > k, i.e.,

D(k) contains uk, D(k+1) contains uk+1, etc.. Thus, finding the optimal cost to go J∗k,N(uk)

requires optimization over nested multivariate expected values.

Following an idea in Kulcsar et al. (1996), who considered the case p = q = 1 and

known variance, we approximate the predictive densities shown above using the information

available at period k. Let Θ̂j denote the mean of p(Θ|D(j)), the posterior of Θ at period j.

The predictive densities are then approximated as follows:

{
ỹk+1|(Θ̂k,uk), ỹk+2|(Θ̂k+1, uk+1), . . . , ỹN |(Θ̂N−1, uN−1)

}
(8)

≈
{

ỹk+1|(Θ̂k−1,uk), ỹk+2|(Θ̂k−1, uk+1), . . . , ỹN |(Θ̂k−1,uN−1)
}

In Kulcsar et al. (1996), the authors noted that if the error variance is known (as assumed

by them), then the posterior covariance matrix P j of p(Θ|D(j)) can be propagated forward

in time via a Kalman filter and used in the approximate solution since it does not depend on
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the data (past or future). This, unfortunately, is not the case in our present problem, since

the covariance V is assumed unknown. Suppose for a moment, however, that the covariance

V is known. The approximate cost to go associated with future process adjustments W̃ =

[w̃k, . . . , w̃N−1] is equal to

Ĵk,N(W̃ ) = E

[
N−1∑

i=k

(ỹi+1 − τ i+1)
′Γi+1(ỹi+1 − τ i+1) + w̃′

iRiw̃i|D(i)

]

=
N−1∑

i=k

(Θ̂k−1x̃i − τ i+1)
′Γi+1(Θ̂k−1x̃i − τ i+1) + tr(Γi+1Var(ỹi+1)) + w̃′

iRiw̃i

where Var(ỹi+1) = V
{
1 + x̃′iP

−1
i−1x̃i

}
. If V is known, P j does not depend on the future

data.

Suppose now that V is unknown. Instead of considering the distributions in (8), consider

the joint distribution of ỹk+1, ỹk+2, . . . , ỹN . This can be obtained from the p ×m matrix

(where m = N − k is the number of periods to go):

Ỹ = [ỹk+1, . . . , ỹN ].

For an unknown variance V and normally distributed errors, the posterior predictive distri-

bution of Ỹ is a matric-variate T, see Kibria (2006) and Geisser (1993). With this random

matrix, the approximated cost to go is

Ĵk,N(W̃ ) = trE[(Ỹ − τ )′Γ(Ỹ − τ ) + W̃
′
RW̃ ] (9)

where τ is a p×m matrix of response targets. Thus the approximate cost to go involves the

expectation of a matrix quadratic form of a matrix T distribution.

Gupta and Nagar (2000) (p. 60 and p. 136), provide several results on matrix dis-

tributions useful to compute the approximate cost Ĵk,N . In particular, they show that if

Ỹ ∼ Tp,m(v, µ, P ,Q), then:

E[(Ỹ − τ )′Γ(Ỹ − τ )] =
1

ν − 2
tr(Γ′P )Q + (µ− τ )′Γ(µ− τ ) (10)

where ν are the degrees of freedom of the matrix T distribution and µ
.
= E[Ỹ |D(k)] =

Θ̂k−1X̃. Combining (9) and (10), we obtain a closed-form expression for the approximate

cost to go from period k to period N . The proposed approximate solution to problem (5) is

then:
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for k = 1 to N

m = N − k

min Ĵk,N(W̃ ) to get uk,uk+1, ..., uN−1

implement controllable factors uk

observe yk+1 and update D(k+1)

end

The Bayesian update of the matrix T predictive density necessary to carry out the min-

imization of Ĵk,N at each k is discussed next.

5 Assumed Priors and Bayesian update of the Poste-

rior Predictive density

It is well-known (see Press, 1982) that the joint conjugate prior for Θ and V under normal

distributed errors is a Matrix Normal-Inverse Wishart, that is,

p(Θ, V |X(t)) ∼ N(Θ;Θ0,V ,K) · W−1(V ; S0, N0)

where Θ0, K, S0 and N0 are the prior parameters. Assume in particular that Θ0 = 0,

K = αIr, and S0 = N0Ip. As α → 0 and N0 → 0 this prior becomes Jeffrey’s non-

informative prior, (see Minka, 2001). Under this prior, the posterior predictive density of a

set of m future observation vectors is a matrix T distribution (Minka 2001, Kibria 2006):

Ỹ ∼ Tp,m(v, µ,P ,Q),

with ν = k + N0 − p + 1 degrees of freedom. Here, k is the size of the data set, and N0 can

be understood as the number of periods worth of data the user thinks his/her prior is worth.

The p × p matrix P is the variance-covariance matrix for the rows of Ỹ and the m × m

matrix Q is the covariance matrix for the columns of Ỹ . Let X(t) = [x1, ..., xt] be a r × t

matrix of past regressors. The covariance matrices can be updated as follows:

Q = (Im − X̃
′
(Sxx + X̃X̃

′
)−1X̃)−1

where Sxx = X(t)X(t)′ + K. Note how as long as α > 0 this prior allows to make inferences

for all k, since Sxx will always be invertible. We also have that

P = Sy|x + S0

where Sy|x = Syy − SyxS
−1
xx S′

yx, Syy = Y (t)Y (t)′ + Θ0KΘ′
0, and Syx = Y (t)X(t)′ + Θ0K.

With the previous notation, let

Θ̂
(t)

= SyxS
−1
xx
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so that µ = E[Ỹ ] = Θ̂
(t)

X̃ represents the p × m mean matrix of Ỹ . We also have that

Var(Ỹ ) = Q⊗P /(ν−2), which exists only if ν > 2, or equivalently, if k > p+1−N0. Thus

we have that

Ỹ − τ ∼ Tp,m(v, µ− τ ,P , Q).

Thus, the approximate cost to go Ĵk,N (equation 9) can be computed at each stage k using

(10) and the results in this section.

6 Examples

Example 1. No adjustment cost, short horizon. Khuri (1996) reports the following

models fitted from a p = 2, q = 3 experiment ran in a semiconductor manufacturing process:

y1 = [2756.5, 547.6, 616.3, -126.7, -52.9, -156.9, -550.3, -1109.5, -286.1, 989.1] · x + ε1

y2 = [746.3, 62.3, 128.6, -152.1, -28.9, -122.1, -140.6, -289.7, -32.1, 237.7] · x + ε2

where x is defined as in equation (3) and V is diagonal with elements 602 and 302. Here,

y1 is the removal rate of metal in a chemical-mechanical polishing process, y2 represents the

within wafer standard deviation, and the controllable factors are Tablespeed (u1), Downforce

(u2) and Slurry Concentration (u3). The controllable factors have been coded into the (-1,

1) range following common practice in designed experiments. The desired targets for these

responses are τ = (3200, 500)′. The second target is not achievable but was used in an effort

to make the removal rate as large as possible. In this example we assume these models to be

the true description of the process for simulation purposes, and assume no adjustment costs

(R = 0).

If the model parameters were known, the sequential control problem can be formulated

as a constrained nonlinear program (NLP). We will use the solution to such NLP as a

benchmark to test the dual control algorithm of previous sections (the parameters remain

unknown to the dual control algorithm). The NLP formulation is to minimize d2
1 + d2

2,

where di = τi − θ′ix, subject to −1 ≤ ui ≤ 1, i = 1, 2, 3. The solution to this quadratic

programming problem can be easily obtained using a NLP solver such as LINGO (2008).

The optimal solution found using LINGO is u∗ = (u1, u2, u3)
′ = (0.822, 0.293, 1.000).

The optimization of the cost to go Ĵk,N from t = k, ..., N subject to the constraints

−1 ≤ ui ≤ 1, i = 1, 2, 3 was carried out for N = 20 periods. A Matlab program

(DualControl.m) was written to implement the dual control algorithm described above and

was used to obtain all the examples in this paper (see Appendix). The program utilizes

Matlab’s fmincon procedure solve the optimization problems at each step subject to the

constraints ŷ1 ≥ 3100, ŷ2 ≤ 550 which were observed to help getting better solutions in the
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first few periods. A set of 10 initial points selected according to a Latin Hypercube was

used to start the optimizer. The optimization of Ĵk,N is a hard NLP problem. A single

N = 20 simulation/optimization run took an average of 20 minutes on a Pentium 3.6 Ghz

PC (see Appendix for more details about the computer implementation of the algorithm).

Thus, in this case, the time until getting the next solution at each step (about one minute

on average) is not too long to make the algorithm unpractical. Figure 1 shows a sample

simulation of this process under the actions of the dual controller described in the previous

sections. A non-informative prior (α = 0.00001, N0 = 0) was used for all the parameters,

starting from a mean prior value of zero. The controller initially probes the process to acquire
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Figure 1: Sample simulation for Example 1 (N = 20). Left: computed controllable factors

u1, u2, u3. Right: observed responses y1, y2.

better parameter values and eventually stabilizes in a region in the controllable factor space

where the responses are as close to their targets as possible. This illustrates the dual feature

of the controller: current performance is sacrificed for future and (better) control actions.

This is achieved without having to specify arbitrary weights that switch the objective of

the controller from one of parameter estimation to one of control to target, as in Milito-like

approaches (equation (1)).

One hundred independent simulation/optimizations were ran for this example using the

same “true” parameters as above. Figure 2 shows a histogram of the Euclidean distances (i)

||ŷ20 − τ ||, (ii) ||u20 − u∗|| (where u∗ is the NLP solution to the known parameters case),

and (iii) ||Θ̂20 − Θ||. As a comparison, for the NLP solution under known parameters,

||ŷ20 − τ || = 78.75. The results indicate consistent estimation to the true parameters and

convergence to the optimal solution despite the relative large errors (ε). Figure 3 provides
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Figure 2: Results from 100 simulation/optimization cycles, Example 1. Left to right, dis-

tances from: 1) predicted responses to targets; 2) optimal settings (known parameters) to the

Dual Control solution at time=20; and 3) distance from the estimated to the true parameters

at t=20.

additional empirical evidence on the convergence of the Dual Control approach for this exam-

ple. The value for the third controllable factor, Slurry Concentration, was set to 1 about 95%

of the times. The distribution of the first factor, Tablespeed, centers at 0.8383 and the factor

Downforce is centered at 0.2835. These are all very close to the NLP solution for the known-

parameters case. The response values can also be contrasted to those that would be obtained
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Figure 3: Solutions provided by the Dual Control algorithm, Example 1 (non-informative

priors), 100 simulation/optimization cycles conducted.

if the true parameters were used in the prior and a large α value used instead to indicate a

very informative prior (α = 1000 was used). The average of the solutions over time provided

by the dual control algorithm, using perfect information, was u∗ = (0.864, 0.3025, 1)T with
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corresponding standard deviations of σ̂(u∗) = (0.001106, 0.0004278, 0)T . This provides evi-

dence that having perfect information yields a consistent solution that is very close to the

known parameters solution obtained via NLP.

Example 2. No adjustment cost, longer horizon. Consider the same process as

simulated in example 1 but suppose the horizon is now N = 100 periods. The same non-

informative priors were used. Figure 4 shows a sample simulation of this process under the

actions of the dual controller for 100 iterations. Similarly to what was observed before, the
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Figure 4: Sample simulation, Example 2 (N = 100). Top left: observed responses (y1, y2)
′.

Top right: computed controllable factors (u1, u2, u3)
′. Below: posterior mean of the model

parameters.

controller “probes” the process initially and as soon as it has sufficient information about

the process it converges to a specific solution. The time average solution for this particular

simulation was u = (0.853, 0.407, 1)T . Figure 4 also shows the estimates Θ̂ over the course of

this sample simulation. As the system is probed, the dual controller gathers more information

about it, converging to the true parameter values.

Example 3. The effect of a high adjustment cost on a controllable factor
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(hard to vary factor). In the previous examples, the cost of an adjustment was negligible

compared to the cost of having the process responses off target. To investigate the effect

of a non-neglible adjustment cost, the adjustment cost related to factor u2 (downforce) was

increased (Figure 5) keeping all other data as in Example 2. Here diag(R) = (0, r2, 0)T where

r2 was varied over the values {0, 500 and 500× 103}. As expected, the adjustment variance

0 500 500000

0.05

0.1

0.15

0.2

0.25

M
S

S
D

Adjustment cost (r
2
)

0 500 500000

0.25

0.3

0.35

0.4

0.45

0.5

0.55

S
td

. D
ev

ia
tio

n

Adjustment cost (r
2
)

Figure 5: MSSD and SDev(u2) for different adjustment costs r2, Example 3 (10 simula-

tion/optimizations).

is smaller as the adjustment cost increases. The Standard Deviation of the adjustments in

the second factor and the Mean Square Successive Difference (MSSD) were computed for

comparing the algorithm performance under the three different adjustment costs (r2). The

MSSD statistic (Von Neumann et al., 1941) is defined as MSSD =
∑N

i=2(Xi−1−Xi)
2/(2n−2)

and provides an unbiased estimate of the variance. A Kruskal-Wallis test reveals that the dif-

ferences between the medians of the standard deviations for each adjustment are statistically

significant at a 0.05 level. It was observed that the computational time increases significantly

when adjustment costs are used. Hence, results for only 10 simulation/optimization cycles

are reported in Figure 5. For this example where adjustment costs were included, a single

N = 100 simulation/optimization cycle took on average 10.2 hours on a Pentium 3.6GHz

running our Matlab code (see Appendix). Naturally, giving the shorter horizons m for the

later time periods, most of the computing effort occurs at the initial runs, when the planning

horizon is large.

Example 4. Correlated responses. In this example, the error covariance matrix

used in Example 1 was modified to reflect correlation between the two responses. The

correlation ρ between the responses was set at values -0.89, -0.125, 0.125 and 0.89. Table

1 summarizes the estimated time average and standard deviations of the N = 20 solutions

found for 100 simulations under each correlation scenario. As expected, the algorithm is

more consistent when more information about the process becomes available. The standard
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ρ Ê(u1) σ̂(u1) Ê(u2) σ̂(u2) Ê(u3) σ̂(u3)

-0.889 0.8415 0.0509 0.2581 0.4259 0.9993 0.0068

-0.125 0.8358 0.0667 0.2769 0.4306 0.9651 0.1952

0.000 0.8383 0.0655 0.2835 0.4733 0.9721 0.1705

0.125 0.8228 0.0960 0.2499 0.4622 0.9684 0.1827

0.889 0.8547 0.0369 0.3243 0.2488 1.0000 0.0002

Table 1: Summary statistics for solutions obtained under different correlation between errors,

Example 4 (100 simulation/ optimizations, N = 20). Known-parameters optimal solution is

u′ = (0.822, 0.293, 1.000). ρ = ±0.889 corresponds to Cov(ε1, ε2) = ±402 and ρ = ±0.125

corresponds to Cov(ε1, ε2) = ±152. As the error correlation increases in magnitude, the

solutions get better and more consistent.

deviation of the solutions obtained with the highly correlated errors (ρ = ±0.889) is smaller

than the standard deviation of the solutions obtained in the uncorrelated case. Figure 6

shows how the algorithm converges faster in the correlated errors case. For the purposes

of this example, convergence was defined heuristically as the number of periods t until

‖wk‖ ≤ 0.2, k = t, t − 1, t − 2 for the first time. A one-way ANOVA reveals a significant

difference in the number of iterations until convergence as the correlation between responses

changes (p-value < 0.0005.) It was found that if the errors are correlated, the total solution

time becomes considerably longer (see Appendix).

Example 5. A 3-response 6-factor example. Consider the fitted models reported

in May et al. (1991). Four responses were fitted to model a plasma etch process; since there

is an apparent error in one of their models (for Oxide Selectivity, which results in abnormal

negative values) we consider only the remaining three responses. The fitted models for the

remaining three responses (p = 3 and q = 6) are as follows:

y1 = [4498, 162, 454.25, 121.675, -350.625, -134.4, 179.5, 0, 0, -127.5, 117.3, 0, 106.25, 0, . . .

. . . , -125.4, 0, 110.625, 0, 0, 0, 0, 0, 0, 0, -82.5, -331.875, 0, 0] · x + ε1

y2 = [8.72625, -1.925, 2.2475, -2.1125, 6.9375, -2.67, 0, 0, 0, 0, 0, 0, -2.2125, 5.175, 0, 0, . . .

. . . , -2.625, 0, 0, 0, 0, 0, 0, 0, 0, 4.48875, 0, 0] · x + ε2

y3 = [12.032, 0.2275, 1.245, 0.10625, -0.38625, -0.0957, -0.0325, -0.125, 0.1625, -0.2625, . . .

. . . , 0, 0.0925, 0, 0.135, 0, 0, -0.09375, 0, 0, 0, 0, 0, 0, 0.0675, 0, 0, 0.06813, 0] · x + ε3

where x is defined as in equation (3) and V is diagonal with elements 502, 22 and 0.092.

Here, y1 is the polysilicon etch rate in Å/min in a plasma etch modeling process, y2 rep-

resents the etch uniformity measured, and y3 represents the photoresist selectivity. The
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Figure 6: Number of periods until convergence (as defined in Section 6) for different corre-

lation values, Example 4 (100 simulations/optimizations). The error covariance speeds up

convergence.

controllable factors, coded in the (-1,1) range, are RF power (u1), Pressure (u2), Electrode

Spacing (u3), CCl4 (u4), Helium Flow (u5) and Oxygen Flow (u6). The desired targets

for the responses correspond to the ideal solution where each response reaches its single

optima, τ = (5680, 0.7, 14.5)′. In this example the models are assumed to be the true

description of the process for simulation purposes. Similarly to what was done in Ex-

ample 1, if the parameters of the model were known, the control problem can be formu-

lated as a constrained nonlinear program. The optimal solution found using LINGO is

u∗ = (u1, u2, u3, u4, u5, u6)
′ = (1, -1, 1, -1, 1, 1)′. The optimization of Ĵk,N from t = k, ..., N

subject to the constraints −1 ≤ ui ≤ 1, i = 1, . . . , 6 was carried out for N = 50 periods.

Matlab’s fmincon optimization procedure was utilized to solve the optimization problems

using the constraints ŷ1 ≥ 4000, ŷ2 ≤ 20 and ŷ3 ≥ 10. A set of 5 initial points selected

according to a Latin Hypercube was used to start the optimizer. Figure 7 illustrates the

closeness of the Dual Control solution to the ideal vector of targets.

7 Convergence properties

Sufficient conditions for the convergence of stochastic adaptive controllers were given by Lai

and Wei (1982) and further discussed by Pronzato (2000), who showed that the Milito-like

dual control compound objective (eq. 1) with fixed weight ω does not satisfy the sufficient

conditions of convergence. When these sufficient conditions are met, the least squares pa-
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Figure 7: Performance of the proposed dual control algorithm for two sample simulations

and for the known parameters solution, Example 5. Performance is measured as the sum of

absolute deviations between observed responses and the target.

rameter estimates converge to the true parameters of the underlying model, assuming the

model structure known. The convergence of ut to the optimal solution of the cost function

would follow if the optimization step min Jk,N(W̃ ) can be solved globally. Convergence con-

ditions for the parameters in the Bayesian case involve the eigenvalues of the Sxx matrix

described before. If λmin,k and λmax,k denotes the smallest and largest eigenvalues of the Sxx

matrix, the sufficient conditions for parameter convergence are, as k →∞:

λmin,k →∞

and
log(λmax,k)

λmin,k

→ 1.

These conditions are, evidently, asymptotic conditions, not achievable in a finite horizon

N . It is still of importance to determine if the proposed sequential DOE algorithm does

at least approximate these conditions for larger horizons N . The conditions indicate that

the smallest eigenvalue should diverge faster than the largest eigenvalue. Figure 8 shows a

plot of λmin,k and log(λmax,k)/λmin,k vs. k for the problem studied in example 2. After 100

observations, in agreement with the convergence conditions the smallest eigenvalue keeps

increasing and the ratio in the second condition has a value close to 3.0 at k = N for most

of the simulations presented. The behavior depicted in the figure is representative of what

we found in other numerical experiments that were conducted.
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Figure 8: Convergence diagnostics log(λmax/λmin) and λmin observed for the 100 simula-

tion/optimizations conducted in Example 2. Left figures: observed values; Right figures:

ensemble averages.

8 Discussion and Conclusions

A new approach for the sequential design of multiple response optimization experiments

was presented. The method assumes the responses of interest can be modeled by linear

statistical models, and is based on an approximation to the cost to go function based on a

Matrix T predictive density. It was shown how the algorithm has dual control behavior, first

probing the process and eventually converging to the optimal solution. It was shown how

the algorithm satisfies the sufficient conditions for convergence as the length of the horizon

increases. The proposed dual control can be justified when the cost of having the process

responses running far from their targets is very expensive.

A natural alternative to the algorithm presented is to run a classical response surface

experimental design, fit models, and obtain an off-line solution based on the fitted models.

The solution obtained from the fitted models obtained after completion of the DOE may be

quite good in general since the models may fit quite well. For fitting second order polynomial

models as used in the examples of this paper, a popular DOE is a Central Composite Design

(CCD), which, if the second order model form is correct, will provide excellent support for

these models. However, the advantages a sequential design provides while the DOE is run

will be lost in such approach, since no consideration is being made on the observed response
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values, and the off-target cost may be unacceptably high for some runs. Likewise, the large

fluctuations the controllable factors are required to have to comply with the CCD may be

excessive for the ”hard to vary” factors. Furthermore, fitting the responses individually will

not take advantage of the correlation in the errors, if this exists. Example 4 illustrated how,

as the error correlation increases, the convergence of the dual control algorithm speeds up.

To illustrate, consider the semiconductor manufacturing process described in Example 1.

We simulate the models fit by Khuri (1996) as if they were the true process and evaluated

the response models at each of the 17 points of a face-centered CCD (this keeps the range

of the coded factors between (-1,1) and will allow for comparisons). The error variances are

the same as in Example 1 but we set Cov(ε1, ε2) = 402. The off-line optimization problem

was formulated as follows: minimize (ŷ1 − 3200)2 + (ŷ2 − 500)2 subject to −1 ≤ xi ≤ 1 ∀i
and solved using LINGO upon completion of the CCD, which yields the solution u∗ =

(0.781, 0.3854, 1)′. Figure 9 shows the simulated responses obtained while the CCD was run

(17 runs) and for three more runs (runs 18-20) after completing the CCD at the optimal

settings u∗. As it can be seen, the solution obtained from the CCD is of very high quality
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Figure 9: Left: Observed responses for all 20 periods. Horizontal lines represent the pro-

cess targets. Right: Controllable factors during the face-centered CCD followed by off-line

optimization at period 17, maintaining the solution for the last three iterations.

despite the correlation between the responses. This is because the model form is the same for

all responses, and the least squares estimates obtained upon completion of the CCD are still

the minimum variance linear unbiased estimators (Press, 1982, p. 233). The main difference

with the dual control approach presented here (compare to Figure 1) is in the speed with

which the optimum is reached and the more moderate fluctuations in the controllable factors

during the experiments, as compared to what the CCD requires. The easiness with which

”hard to vary” factors can be incorporated into the experimental problem (Example 3) is

another practical feature of the dual control approach.
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The proposed approach assumes a standard multivariate linear statistical model in which

the form of the models (the design matrix) is the same for all responses. If this is not the case,

we have what Zellner (1962) called the “Seemingly Unrelated Regression” (SUR) model. The

off-line frequentist estimation of SUR models is conducted by using generalized least squares

with an estimated covariance matrix. The Bayesian estimation of the SUR model has been

studied by a number of authors (e.g. Percy, 1992) and requires Markov Chain Monte Carlo

techniques, as there is no closed-form expression for the predictive distribution. While in

principle the dual control approach presented in the present paper could be extended to the

SUR case, coupling the MCMC computations with the dynamic programming optimizations

will result in an extremely difficult problem from a computational point of view. If these

computational obstacles can be overcome by some means for the SUR case, a model updating

mechanism such as that used by Ben-Gal and Caraminis (2002) could be incorporated.

Other refinements the present paper did not explore seem more feasible to implement.

For instance, the model could be expanded to incorporate noise factors, which could be

simulated in the predictive density according to given distributions. Miro et al. (2004) used

this approach in their (off-line) Bayesian solution to the Robust Parameter Design problem.

This will increase also the computational burden (which could be reduced with multiple

CPU’s and a more efficient computer implementation). Finally, the possibility of developing

a stopping criterion, similar to what Ben-Gal and Caramanis (2002) propose, can be studied.

The idea is to stop the dual control optimizer when the marginal benefit of re-optimizing

the process seems low.
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Appendix. Computer implementation of the dual con-

trol algorithm.

The Matlab program DualControl.m implements the Matrix-T dual control algorithm pre-

sented in this paper and can be downloaded from

http://www2.ie.psu.edu/Castillo/research/EngineeringStatistics/software.htm

The program requires Matlab’s optimization and statistics toolboxes. The fmincon solver

was used to find the minimum of Jk,N(W̃ ) (equation 9). The solver is started from a set of

initial points u0 selected according to a Latin Hypersquare design, and attempts to find a

minimum u satisfying a set of bounds and nonlinear constraints. These optimization steps

requires most of the computing time. To illustrate, Figure 10 shows the functions consuming

the largest amount of time during one of the Simulation/Optimizations conducted for Exam-

ple 4 (N = 20, 10 initial points). The top five time-consuming routines (qpsub, compdir,

qrdelete, planerot, and qrinsert) are all related to the sequential quadratic program-

ming routines invoked by fmincon (e.g., qpsub solves the classical quadratic programming

problem: Min 1
2
x′Hx + f ′x, subject to Ax ≤ b and the other 4 routines are auxiliaries of

qpsub). These functions accounted for 90% of the total computational time in Example 4,

but the behavior was similar in all examples. The times in the figure correspond to a Pentium

qpsub compdir qrdelete planerot qrinsert x2fx contterm
0

10

20

30

40

50

60

T
im

e 
co

ns
um

pt
io

n 
in

 h
ou

rs

Set of Commands

Commands consuming most of the simulation time

0%

17%

33%

50%

67%

83%

100%

Figure 10: DualControl.m time-consuming functions for one simulation/optimization cycle

(N = 20) in Example 4 (10 initial points).

3.6 Ghz single processor PC. While faster solution times can be achieved by compiling the

program (recoding in C, perhaps) and/or running it in a multiple CPU PC, the above times
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indicate the solution to the dual control problem is still computationally difficult. However,

the times per time period indicate the overall approach is practical with modern computing

power.
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