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ABSTRACT

The setup adjustment problem occurs when a machine experiences an upset at setup that needs
to be compensated for. In this paper, feedback methods for the setup adjustment problem are stud-
ied from a small-sample point of view, relevant in modern manufacturing. Sequential adjustment
rules due to Grubbs (1983) and an integral controller are considered. The performance criteria is
the quadratic off-target cost incurred over a small number of parts produced. Analytical formu-
lae are presented and numerically illustrated. Two cases are considered, the first one where the
setup error is a constant but unknown offset and the second one where the setup error is a random
variable with unknown first two moments. It is shown how Grubbs’ harmonic rule and a simple
integral controller provide a robust adjustment strategy in a a variety of circumstances. As a by-
product, the formulae presented in this paper allow to compute the expected off-target quadratic
cost when a sudden shift occurs during production (not necessarily at setup) and the adjustment

scheme compensates immediately after its occurrence.

1. INTRODUCTION.

Suppose that due to a defective setup machine operation, the quality characteristic generated by
a production process is in a state of statistical control but the process starts off-target. Adjusting the
process is justified if the only relevant cost is the cost of running the process off-target. Sequential
adjustment rules for this problem were proposed by Grubbs (1983). These rules have been shown
to derive from a much broader class of setup adjustment problems based on stochastic control
methods by Del Castillo, Pan and Colosimo (2002). In this paper, the small sample performance
of Grubbs’ adjustment rules are studied and contrasted with other feedback adjustment methods.

To introduce some basic notation that will be used in what follows, let Y; denote the observed

deviation from target of some quality characteristic of interest. Following Grubbs (1983), a simple



but useful model for the setup adjustment problem is to assume
Yi=d+ U1 +ve=pt+ vy (1)

where d is the setup error, U, is the level of the controllable factor set after producing part ¢ (this
will have an immediate effect on part ¢ + 1), y; is the mean deviation from target for part ¢, and
vy ~ N(0,02) models both the part-to-part variability and the measurement error.

Two different control rules were derived by Grubbs depending on two sets of assumptions made

on the setup error d:

1. If d is an unknown constant, minimization of Var(uy,+1) subject to E[pn41] = O results in

Grubbs’ “harmonic rule”:
Up=—dy, dy=d1+KY, K=1/t (2)

or

Y,
Ur= Uy = VU = =~

thus the weights K; follow a harmonic series. An initial (a priori) estimate dy is required to
set the first setting of the controllable factor at Uy = —dy. Del Castillo, Pan and Colosimo
(2002) point out how adjustment rule (2) is a particular case of Robbins and Monro’s (1951)
celebrated stochastic approximation method. Therefore, this paper contains (indirectly) a
small-sample performance study of stochastic approximation methods applied to the simple

case of estimation of an unknown constant.

2. If d ~ N(d, o) with both d and o known, minimization of E[}_]" ; u?] is achieved by Grubbs’
second adjustment rule. In this case,

1

dy = di_1 + KYi, Ki = ——
t+ %
d

and VU; = —K,;Y. (3)

This rule is called Grubbs’ “extended” rule by Trietsch (1998).

Del Castillo, Pan and Colosimo (2002) provide a Bayesian formulation based on a Kalman
filter to the solution of the second setup adjustment problem above (random d) that yields Grubbs
extended rule as a solution. Define the posterior variance of py as P, = Var(u¢|Yy, Yi—1, ..., Y1). The

Kalman filter formulation yields in this case (Del Castillo, Pan, and Colosimo, 2002):

2 2 p2
Ptflo',u UvPU

P, = - dy = dy_1 + K,
¢ 0'12)+Pt71 O',%-FtPO t t 1+ trt
1
Kt == o) and VUt == —KtY% (4)
t+ 3
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The interpretation is that, a priori, d ~ (dg, Py). Thus for Grubbs’ extended rule to be optimal with
respect to E[Y7; p2] we need to know d (so we can set dy = d) and o2 and o2 must be known for
us to use (3). Evidently, if Py = 02, (3) and (4) are identical. Note how under this interpretation,
if there is no prior information on the offset (P — oo) (4) is equivalent to (2), Grubbs’ simpler
harmonic rule.

A pure Bayesian point of view will stop after stating the solution (4). It is still of practical
interest, however, to study how this rule behaves if the prior distribution is not exactly equal to the
true setup distribution. In other words, what if d and o2 are not known but someone still applies
Grubbs’ extended rule with Py # 03 and/or Jo # d? The opposite is also of interest: to study the
performance of Grubbs’ simpler harmonic rule under the assumption of a random setup error.

An additional adjustment rule that will be contrasted is an integral controller (Box and Lucernio,
1997);

VU; = —-)\Y; (5)

which, contrary to Grubb’s rules, does not converge to zero since A is a constant.

The remainder of this paper is organized as follows. Section 2 presents the small sample perfor-
mance indices which will be used to compare the three adjustment rules given by equations (2), (4)
and (5). Given the emphasis in modern manufacturing for short production runs, the performance
analysis in this paper focuses on the performance for a small number of parts. Section 3 shows
the numerical results for the case the setup error is an unknown constant. Section 4 presents the
corresponding results for the random setup error case. All the numerical results in sections 3 and 4
were obtained analytically and are not based on simulation. The paper concludes with a summary

of results.
2. PERFORMANCE INDICES FOR SMALL SAMPLES.

The performance indices that will be used in the remainder of this paper are presented in this
section for the two cases considered by Grubbs.

Consider first the case where the setup error d is an unknown constant or “offset”. For this
case, the performance index considered is the scaled Average Integrated Square Deviation (AISD)

incurred over m time instants or parts. This is defined for integer m > 0 as:

AISD(n) = — S B = — o > (Vv + BY?). (6)

v i=1 v =1
The AISD is a common performance index in the control engineering literature. Since Y; models
deviations from target, the AISD index is like an average “variance plus squared bias” calculation,
and is a surrogate of a quadratic off-target “loss” function. We avoid dependency on o2 by dividing

by this quantity.



One important byproduct of the AISD formulae (presented later in the paper) is that they
provide a measure of the quadratic cost incurred by a process after a shift of size d occurs at any
point in time (not only at startup) assuming the process is adjusted after the occurrence of the
shift with one of the adjustment policies here discussed.

Consider now the case where the setup error d is a random variable. The performance measure
to be used when d is random is once again the AISD but we need to account for the additional

variability in the setup error, so we define

1

2
mog

AISD4(m) = m102 E, [i E[Yf]] =

oo m
| Y B aw)ds (7)

v i=1 =1
where the outer expectation is taken over the distribution of d. Note that if d is a non-random
constant, then AISD(m) = AISD4(m). The case when d is normal with known mean and known
variance was discussed by Trietsch (1998). Under such conditions, Grubbs’ extended rule is optimal

for the AISDy criterion.
3. PERFORMANCE FOR AN UNKNOWN CONSTANT SETUP ERROR.
Suppose d is an unknown constant but unaware of this fact a user applies Grubbs’ extended rule

(i.e., the Kalman filter adjustment scheme given by (4)) to the process. It is shown in Appendix A
that this rule applied to the process Y; = d + U;_1 + v; (with d constant) results in

Bl A
avt C Bit-1)+1 ®)
and VY] 1
t —
agt = B ri—12 )

where A = (d — cfo) /o, measures how far off the initial estimate of the offset was. The quantity
By = Py/0? is a measure of the “confidence” on the initial offset estimate.

To study the performance of Grubbs’ adjustment rules, equations (8) and (9) can be substituted
into equation (6) and the sum computed for given values of A, B; and m. Note that our analytic
expressions are exact and avoid use of simulation to estimate the AISD(m). Alternatively, an
expression for the sum in AISD(m) is given by formula (17) in Appendix A which can be easier to
use if a software that computes the polygamma function is available (e.g., Mathematica or Maple).
We note that the corresponding expressions for Grubbs’ harmonic rule are obtained from (8) and
(9) by letting By — oo.

For a discrete integral controller (or EWMA controller), it can be shown that

EYi]

Oy

=(1-)NAa (10)



and 2(t-1)
V1Y 2 — A1 — X2

v

o
from where AISD(m) = m+r5 Sm (E[Y;)? + V[Y;]) can be computed or one can use the closed-form
expression (eq. 18) in Appendix A. The AISD(m) expressions allow to study the trade-offs between
the sum of the variances and the sum of squared expected deviations (squared bias). For the Kalman
filter scheme, as By = Py/o? — 0, implying increasingly higher confidence in the a priori offset
estimate, then m 1Y, V[Y;]/02 — 1 (i.e., we get lower variance), but m~ 1 >"7 | E[Y;]?/o? — A?
(i.e., we get larger bias). Similarly, for the EWMA or integral controller, as A — 0, implying less
weight given to the last observation we have that m 13", V[Y;]/0? — 1 (lower variance), but
m~ LY E[Y;]? /o2 — A% (larger bias).

The performance of the following adjustment rules was evaluated based on the AISD criterion

(in all cases, adjustments are given by VU; = —cht):
1. Grubbs harmonic rule, where th = cit_l +Yi/t;

2. Kalman filter rule 1 (assumes o2 is known), where d; = dy_; + %. This is equivalent to

Grubbs’ extended rule;

3. Kalman filter rule 2 which is same as above but o2 is estimated on-line from 2, = Y; — U;_;

using only the data available at time ¢;
4. Discrete integral controller (EWMA controller), where dy =dy_1 + )Y,

There are two parameters that can be modified in Grubbs’ adjustment rules: do and P, The
effect of these parameters can be studied from looking at the effect of changes in A and By, as

previously defined. Therefore, the four scenarios presented in Table 1 were investigated.

By small B large

|A| small | good choice (case 1) | bad choice (case 2)

|A| large | bad choice (case 3) good choice (4)

Table 1: Scenarios of interest, adjusting schemes, A = (d — dy)/o,, By = Py/o?.

In the table, if the initial prior variance Py is large relative to o2 (i.e., if By is large), the weights
K, will be close to 1/t (Grubbs’ harmonic rule), i.e., the initial estimate CZ(] will be discounted faster.
This turns out to be a good decision if the initial offset estimate is far from d, where the distance
between d and czg is measured relative to o,. A similar good decision is when Py is low and cio is a
good estimate of the offset (B; small, |A| small). In such case, K; < 1/t, so there will be a slower

discounting of the initial estimate dg. Cases (2) and (3) on the table indicate bad decisions, when



the value of Py does not reflect how good the initial offset estimate really is. Since in the absence
of historical information it is difficult to know a priori the value of d it is of practical interest to

study the four cases on the Table.

Table 2 contrasts the AISD performance of Grubbs’ harmonic rule, the discrete integral con-
troller (EWMA controller) and the Kalman filter adjusting scheme (02 known). The table shows
the values of AISD(m) for m = 5,10 and 20. As can be seen from the Table, the “gap” between the
column minimum and the AISD provided by Grubbs rule shrinks as the offset d gets much larger
than o, (i.e., as |A| increases). This gap, however, is quite moderate except in the case where one
is very confident (By = Py/0?2 small) of our a priori offset estimate and the a priori offset estimate
turns out to be quite accurate (i.e., A = 0). This is not a practical case because it implies we

practically know the value of the offset d.

If A =0, it can be seen from (8) and (10) that the AISD indices equal the average scaled
variance since the deviations from target will always equal zero on average. If d = do = 0, the
AISD quantifies the average inflation in variance we will observe for adjusting a process when there
was 1no need to do so. Note that for A =0 (no offset), one can get an inflation in variance equal to
zero if By = 0 in the Kalman filter scheme or if A = 0 in the integral control scheme. This inflation
in variance has been studied, for discrete integral controllers, by Box and Luceno (1997) and Del
Castillo (2001), although these authors looked at asymptotic variances, and not at small-sample

variances as we do here.

Perhaps it should be pointed out that if one were extremely confident on the estimate of the
offset of the machine (B; — 0), simply setting U; = —dy for t = 0,1, .... will result in an on-
target process assuming we indeed have do = d. Thus, for most practical cases where a sequential
adjustment rule is needed, the Kalman Filter rule (and Grubbs’ extended rule) does not perform

significantly better than Grubbs’ harmonic scheme in the case of a constant unknown setup error.

2

¢ 1s unknown the performance of the Kalman filter scheme (Grubbs’

Intuitively, if the variance o
extended rule) can only worsen. This was confirmed by estimating AISD using simulation. Thus
Grubbs harmonic rule is also superior, in the single realization case, to the Kalman Filter scheme
with variance unknown.

Turning to the discrete integral controller, it can be seen that it also provides a very competitive
scheme compared to the Kalman filter (Grubbs’ extended rule) scheme. The parameter A has the
effect of bringing the process back to target more rapidly the larger A is. The trade-off is that there
is an increase, for small A, of the AISD index as A is increased. That is, the inflation in variance

due to unnecessarily adjusting an on-target process (d = 0, A = 0) increases as A increases. From



m=25

B : A|=0 |Al=1 |A=2 |A]=3
1/90 1.00023 195791  4.83092  9.61929
0.5 1.09344 1.48656 2.66589 4.63144

1 1.16394 1.45667 2.33483 3.79844

2 1.24138 1.47815 2.18847 3.37233

90 1.41043 1.61046 2.21056 3.21074
Grubbs 1.41667 1.61667 2.21667 3.21667

I controller (A =0.1) | 1.01655 1.70215  3.75895  7.18696
I controller (A =0.2) | 1.05601  1.55191  3.03962  5.51914
I controller (A =0.3) | 1.10922  1.49030 2.63354  4.53894

m = 10

By |[Al=0 JA|=1 J|Al=2 |A4]=3
1/90 1.00049 1.91004  4.63869  9.18644
0.5 1.09038  1.31359  1.98323  3.09930

1 1.13792  1.29290 1.75783  2.53271

2 1.18491  1.30578 1.66840 2.27276
90 1.27952  1.37954  1.67959 2.17969
Grubbs 1.28290  1.38290  1.68290  2.18290

I controller (A =0.1) | 1.02830  1.49063  2.87761  5.18925
I controller (A =0.2) | 1.08060 1.35518  2.17890  3.55178
I controller (A =0.3) | 1.14190 1.33782  1.92558  2.90518

m =20
B : A|=0 |Al=1 |A=2 |A]=3
1/90 1.00090 1.82739  4.30685  8.43929
0.5 1.07243 1.19211 1.55117 2.14960

1 1.10008 1.17989 1.41931 1.81835

2 1.12585 1.18691 1.37009 1.67539

90 1.17564 1.22565 1.37568 1.62573
Grubbs 1.17739 1.22739 1.37739 1.62739

I controller (A =0.1) | 1.03899  1.29825  2.07606  3.37240
I controller (A =0.2) | 1.09568  1.23455  1.65116  2.34552
I controller (A =0.3) | 1.15917  1.25721 1.55133  2.04152

L
1

Table 2: Kalman filter adjusting scheme (o2 known), Grubbs’ harmonic rule and Integral controller

AISD performance. A = (d — dy)/o,, By = Py/o2. Bold numbers are minimums by column.



m =10, N = 100

By : A=0 A=1 A=2 A=3

1/90 1.0009 1.8208 4.2807  8.3805

0.5 1.0760 1.1233  1.2653  1.5019

1 1.0948 1.1177 1.1865 1.3012

2 1.1082  1.1224 1.1648 1.2354

90 1.1277  1.1377  1.1677  1.2177

Grubbs 1.1182  1.1287 1.1583 1.2083

I controller (A =0.1) | 1.0493 1.2050 1.6719  2.4502
I controller (A =0.2) | 1.1130  1.1508  1.2643  1.4535
I controller (A =0.3) | 1.1798  1.2001  1.2610  1.3626

Table 3: Kalman filter adjusting scheme (02 known), Grubbs’ harmonic rule and I-controller
AISD(10,100) performance. Ten adjustments were made after which 90 additional parts were

produced. A = (d — do) /oy, B1 = Py/o?. Bold numbers are minimums by column.

the Table, it appears the value A = 0.2 provides a relatively good trade-off between fast return to

target and inflation of variance if the process is really on-target (no offset).

Adjusting only the first few times

It could be argued that in practice, only the first few adjustments will be implemented after which
no further adjustments are made to the machine. The machine then runs at the final setting that
resulted at the end of the adjustments until completion of the batch of IV parts. The performance
of the adjustment rules should be investigated on this assumption instead. For this reason, let m
denote the number of adjustments implemented in a batch of size N parts produced. For discrete
m such that 1 <m < N, the average integrated squared deviation index is defined as:

mAISD(m) N (N —m)(V[Yyi1] + E[Yimi1]?)
N No? '

AISD(mn, N) =

Closed-form expressions for AISD(m, N) for the Kalman filter, Grubbs harmonic, and discrete in-
tegral control rules can be found in Appendix A. They were used to produce Table 3 where the

AISD(10,100) performance indices were computed. Clearly, if mm = N, then AISD(m, N)=AISD(m).

From Table 3 and similar computations for other values of m and N, it was observed that



the conclusions expressed before based on the AISD(m) index, which measures off-target cost only
while the adjustments take place, are practically unchanged if we consider in addition the cost
incurred after adjustments stop and the process keeps operating. Only when A — 0 (no offset or
perfect offset estimate) and B; = Py/o? is small, the Kalman filter rule outperforms the harmonic
rule. The discrete integral controller with A = 0.2 is a good intermediate value that balances a
rapid return to target for large offsets with a low inflation in variance in case the process was really

on-target but we nevertheless adjust.
4. PERFORMANCE WHEN THE SETUP ERROR IS A RANDOM VARIABLE.

Suppose now that the offset d is a random variable such that d ~ (dg,02). Note that no
assumption on the distribution of d is made. We wish to evaluate the performance of the different
adjustment methods by averaging over the possible realizations of the random offset d.

As mentioned earlier, if the mean and variance of d are known, then the Kalman Filter scheme,
and hence, Grubbs extended rule are optimal for a quadratic loss function such as our AISDy
criterion. This was the case discussed by Grubbs (1983) and Trietsch (1998). In this section we
consider the more general case when the mean and variance of d are both unknown.

When d is random, we need to use a prior estimate dy with associated variance Py to start the
Kalman filter scheme (4). The situation is depicted in Figure 1. Using (7) as our performance

index, it is shown in Appendix B that for the Kalmna Filter (KF) scheme:
AISDd(m)KF =C (B2 + A%) + Cy (12)

where Ay = (dg — do)/oy is a measure of the average error in the offset estimate, By = 02 /02
is a measure of the variability of the setup, and C;, and Cy (and C5 used next) are functions of
By = Py/o? and m shown in Appendix A. For Grubbs’ (G) harmonic rule this reduces to:

_ Bt Ay
m

AISDy(m)q Cs. (13)

Recall that B; is a measure of confidence in CZ(], therefore, since 03 is not known, we have that in
general By # By. Closed-form expressions can be obtained for AISD4(m)gwwma, see Appendix B.
The AISD performance of the Kalman filter approach, Grubbs basic harmonic rule, and that of
an integral controller were evaluated using equations (12-13) and (22). Figure 2 shows cases when
the Kalman filter approach is better than Grubbs’ harmonic rule for different values of By, B, Ao,
and m. The shaded regions correspond to cases where AISDy(m)xr < AISDg(m)g. As it can be
seen, for large average offsets (Ag large) and/or large setup noise (B; large), Grubbs harmonic rule
is better. Here “large” and “small” are terms relative to the process variance o2. The advantage

of the harmonic rule over the Kalman filter scheme decreases with increasing value of B) = Py/o2.



d prior of d

Figure 1. Starting the Kalman filter scheme, dy and/or 03 unknown.
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Note that under the assumptions in Case 1 above (when dy and o2 are known), i.e., when we have
that By = By and Ay = 0, the Kalman filter method always dominates Grubbs rule. This agrees
with our earlier comment which indicated that the Kalman filter scheme (and Grubbs extended

rule) is optimal for the AISDy criterion if the parameters are known.

m=5, B1=0.5 m=5, B1=1
B2 B2
BD 1 2 3 4 g .- 1 2 ] 4 g
2.5 2.5
2 2
A2 1.5 A2 1.5
1 1
a.s 0.5
a o
m=25, B1=0.5 m=25, Bi1=1 m=25, B1=2
B2 B2 B2
R 1 2 3 4 L] 3Q 1 3 3 4 =] & 1 2 3 4 =]
2.9 25 2.8
2 2 2

A2 1.5 A2 15 A21.5
1 1 1
a a a
Figure 2. Kalman filter and Grubbs rule performance, random setup error. Shaded regions
indicate cases for which AISD4(mn) kr < AISDy(m)g. By = Py/o%, By = 02/02, Ay = |dy — do| /0.

Figures 3 and 4 compare the AISD, performance of the Kalman filter approach with that of an
Integral controller with A = 0.2 and A = 0.1, respectively. As it can be seen, the Kalman filter
scheme is to be preferred over more cases as the number of observations m increases. The integral
controller should be preferred when the average offset is large (Ag large) and/or the setup is very
variable (large Bg). This is even more true as the confidence in the initial offset mean decreases
(i.e., the larger By). Observe how for cases where the average offset is very small the integral

controller also dominates the Kalman filter approach.
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m=25, B1=0.5

Figure 3. Kalman filter and discrete integral (EWMA) controller (with A = 0.2) performance,
random setup error. Shaded regions indicate cases for which AISDg(m)xr < AISDg(m)EWMA.
By = Py/o?, By = 03/02, Ay = |do — do /0.
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Figure 4. Kalman filter and discrete integral (EWMA) controller (with A = 0.1) performance,
random setup error. Shaded regions indicate cases for which AISDy(m)gr < AISDg(m)gwma -
Bl = PO/O',?},BQ = 03/0',3,142 = |d0 - C/l\0|/0,u.

Finally, Figure 5 shows the AISD,; comparison between Grubbs’ harmonic rule and an integral
controller. The integral controller outperforms the harmonic rule for cases near the origin, when
As is small (small average error in offset estimate) and Bs is small (low setup variance). As the

sample size increases, Grubbs’ harmonic rule dominates the integral controller scheme.
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Figure 5. Grubbs harmonic rule and discrete integral (EWMA) controller performance, random
setup error. Shaded regions indicate cases for which AISD4(m)g < AISDy(m)gwMA-
By = 02/02, Ay = |dy — dol /0.

5. CONCLUSIONS AND FURTHER RESEARCH.

The small sample properties of Grubbs (1983) adjustment schemes and that of an integral
controller were analyzed for the case a setup error is systematic (non-random) and when it is a
random variable with unknown mean and variance. The performance metric used was a quadratic
off-target cost.

In the setup error is an unknown constant it was shown that for most practical cases when
sequential adjustment is necessary, Grubbs (1983) harmonic rule represents a better strategy than
the Kalman filter scheme (and therefore it performs better than Grubbs’ extended rule). The even
simpler integral or EWMA controller with weight A = 0.2 provides a competitive alternative to the
harmonic rule for cases when the offset is small (in the order of less than one standard deviation of
the process). It was shown that these conclusions remain essentially unchanged if the performance
is evaluated based not only while adjustments take place but also by considering additional runs
in which no further adjustments are made to the process.

If the setup error is instead a random variable, an integral controller performs better than the
Kalman filter scheme when the setup noise is relatively high and the offset is very large on aver-
age. When the offset is large and/or the setup noise is large, Grubbs harmonic rule outperforms
the Kalman filter scheme. The analytic formulae in Appendix B allow to obtain similar results
for other values of the process and controller parameters without recourse to simulation. Further
recommendations about when to use each method in the random setup error case can be reached

by looking at Figures 2-5.
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The main advantage of the discrete integral controller over the other methods considered in
this paper is that it stays alert for compensating for further shifts in the process that occur while
in manufacturing (i.e., not at setup). The weights in Grubbs rule, for example, would have to
be reset every time a shift is detected. This points toward integration of the adjustment schemes
with a detection mechanism that will trigger the adaptation of the weights, along the lines recently
followed by Guo et al. (2000). Such integrated SPC/EPC approaches require further research.
The important connection between Grubbs harmonic rule and Robbins and Monro’s Stochastic
Approximation method (1951) point out to a very large body of literature and theoretical results

some of which may prove useful in process adjustment applications.
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APPENDIX A: MEAN AN VARIANCE OF THE QUALITY CHARACTERISTIC AND AISD
FORMULAE FOR AN UNKNOWN CONSTANT SETUP ERROR.

The set point at time ¢ is given by Uy = — Zle K)Y; — CZ(]. Thus, YV; =d— cfo — f;i K, Y; + vy.
So, for ¢ =1 we have that
Yy =d—do+u (14)

from which E[Y1]/o, = (d — do)/o, = A and V[Y1]/02 = 1 (compare with egs. 8 and 9). Given
that

1

K =———,

t U%/P(] +1

we have that
~ 2
(d—do)a—v -1 1
Y;g = 027])0 H 1-— ) ; + f17)1 + f27)2 oo+ ftfl’l)tfl + (0 (15)
AN R

2 ~
where the quantities { fk}};;ll are functions of %g but not of d or dy. After some algebra, equation

(15) simplifies to:

~ 2 P

(d—do);—” ;El-l-l

Y, = > : + fivr + fova + ...+ g
gy \th -

o

Taking expected value and variance in the previous expression results in equations (8) and (9).

An expression for

LS v+ By (16)

=1

AISD(m) =




can be obtained after some algebra from properties of the sums involved. Define

_ U(1/By) - ¥'(m+1/By)

C
! B?m

and
Bi[W(m + 57) = ¥(g)] + ¥ (m+ 5) — ¥'(50)
C2= Bim 1

where ¥ (z) = dInT'(z)/dz (Psi or digamma function), and ¥'(z) = d¥(z)/dz (trigamma function).

If a software is available that computes these functions, finding the AISD is facilitated by the

formula. Then, equation (16) can be written as:
AISD(m) = C1 A% + Cs. (17)

Taking limit as By — oo, we get a simple formula for the AISD given by Grubbs harmonic rule:

v A?
AISDg(m) =1+ (m) ;7 R A% Jm + Cs
where v =~ 0.5772156 is Euler’s constant and
v
Cy=14 LM+
m

For the discrete integral (or EWMA) controller, the corresponding expression for the AISD is
given directly from equations (10) and (11):

AISDgwaa (m) = 2 5+ (1 — ((12_ Mzm) (A—2 — L) : (18)

Adjusting only the first few items.

Closed-form expressions for AISD(m, N) can be obtained by direct substitution of the AISD(m)

formulae presented above into:

mAISD(m) N (N —m)(V[Yms1] + E[Ym+1]2)‘

AISD(m, N) =
SD(m, N) N No2

After some algebra, for the Kalman filter scheme this turns out to be:

mB3} + A? )

N —
AISDxr (m, N) = %(AQCl + Cy) + Tm (1 +

where (', and Cy are the functions of m and B; defined before. If B; — oo, one gets the corre-
sponding expression for Grubbs harmonic rule:

A2 +y+U(m) -1

1
AISDg(m,N) =1 + ~ +—.

(20)
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Finally, for the discrete integral (EWMA) controller this turns out to be

m — _ 2m 2
i - ()
_ _ 2m
+ % {(N - m)[% +(1- )\)QmAQ]} ) (21)

APPENDIX B. AISD,; (RANDOM SETUP ERROR) FORMULAE.

Assume that dy and/or 0 are unknown. We have that AISD g (rn) = Cy A?+Cy. The expression

for AISD4(m) is obtained from its definition as follows

AISDg(m)kr = /_OO AISDgr(m) fa(z)dz

[o'e) 32 00
= o[ wra [ " fula)ds

o 02
Cy [ 5
= g_mw_w%+@h@“+@
Since [*0_ d? fq(z)dx = 03 — dj and [ d fq(z)dz = dy, then
C - A
AISDd(m)KF = 0—21(03 + (d(] — d(])2) + Oy

v

= Cl(BQ + A%) + Cs.

The AISDy(m) formula for Grubbs’ harmonic rule is obtained in a similar way. Note that the
AISD, depends only on the mean and variance of d. For the integral (or EWMA) controller, the

corresponding erxpression is

2 1—(1—N)2m
AISD =
SDa(m)ewma = 5— + G- om

) (22)

B2+A% 1 ]

It is possible to obtain AISD4(m, N) formulae for when only the first few adjustments are imple-
mented using each method, and this can be useful to determine the optimal number of adjustments

when considering the performance of the adjustment scheme under random setup errors.
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