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Abstract

Reconstructing a free-form surface from 3-dimensional noisy measurements is a
central problem in inspection, statistical quality control, and reverse engineering.
We present a new method for the statistical reconstruction of a free-form surface
based on 3-dimensional cloud point data. The surface is represented parameterically,
with each of the three cartesian coordinates (x, y, z) a function of surface coordinates
(u, v). This avoids having to choose one euclidean coordinate (say, z) as a “response”
function of the other 2 coordinate “locations” (say, x and y), as commonly used in
previous euclidean Kriging models of manufacturing data. In the proposed method,
parameterization algorithms from the manifold learning and computer graphics lit-
erature are applied to find the (u, v) surface coordinates. These are then used as
locations in a spatial Gaussian Process model that considers correlations between
two points on the surface a function of their geodesic distance on the surface, rather
than a function of their euclidean distances over the xy plane. It is shown how the
proposed Geodesic Gaussian Process (GGP) approach better reconstructs the true
surface, filtering the measurement noise, than when using a standard euclidean Krig-
ing model of the ’heights’, i.e., z(x, y). The methodology is applied to simulated
surface data and to a real dataset obtained with a non-contact laser scanner. The
parametric surface representation is compatible with computer-aided-design (CAD)
models and allows differential-geometry manipulations such as the computation of
surface areas.
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1 Introduction

We consider the statistical reconstruction of a surface S embedded in 3-dimensional (3D)

euclidean space from noisy measurements. In applications in engineering and geostatistics,

Kriging and Gaussian Processes have been used for modeling spatially distributed data of

some scalar field, e.g., temperature, under the assumption that observations z(x, y) that

occur on nearby locations (x, y) ∈ E2 (euclidean 2D space) will tend to be alike, where

“closeness” is defined by the standard euclidean distance on E2. Our focus is instead on

those situations where there is no such scalar field of interest: the (x, y, z) data occurs

on a non-euclidean surface and the object of interest is the true 3 dimensional underlying

surface, which can only be inferred –or reconstructed–from noisy measurements in the

form of a cloud point dataset of euclidean coordinates (x, y, z). This is an increasingly

common situation in industry given the wide availability of non-contact measuring sensors

which provide 3D cloud point data. In this paper, we adopt a geodesic hypothesis: due

to the physics involved in generating and measuring the surface, correlations between the

measured coordinates may exist, but the spatial correlation will depend on the geodesic

distance between the points located on the surface, rather than depending on the inter-

point euclidean distances on the space the surface is embedded in.

There are two main applications that motivated our work. First, in industrial quality

control, measurements (x, y, z) on the surface of a “free-form” manufactured part are taken

by definition on a non-euclidean 2-manifold with the purpose of inspecting the part by

comparing it to some ideal geometry. Here it is relevant to model and filter –as much as

possible– the measurement error, which occurs in all 3 spatial coordinates. Furthermore,

correlations will likely occur as a function of distance on the surface. Data obtained

with non-contact sensors (laser scanners) from machined surfaces has been reported to

be gaussian-like and strongly spatially correlated (Sun et al., 2008), although empirical

investigations have only considered planar surfaces. Besides inspection, engineers may

wish to perform statistical process control on surface data, and Gaussian Process models

of cloud point surface data can be used for this purpose (Colosimo et al., 2012). A second

motivation for the present work is in the area of “reverse engineering” in manufacturing,

where one measures some complex surface of a product in order to build a model of it,

usually with the final purpose of copying it. It is then necessary to reconstruct the surface

from unorganized cloud point data, in order to create a Computer Aided Design (CAD) file.
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Finally, while not our direct interest, a related problem occurs when modeling geostatistical

data obtained from deposits whose directions follow non-euclidean paths (Boisvert et al.,

2009).

The proposed Geodesic Gaussian Process (GGP) approach uses a parametric represen-

tation of the surface where each of the three coordinates is modeled via a Gaussian Process

on the parametric space defined by surface coordinates (u, v), i.e., GGP produces models

x̂(u, v), ŷ(u, v) and ẑ(u, v). This is the preferred representation of surfaces in CAD (e.g

see Patrikalakis and Maekawa, 2002) and CAD file standards (e.g., IGES). Our approach

solves a dilemma one faces when modeling a surface using GP’s or Kriging: it is not clear

which of the 3 coordinates should be the ‘response’ and which ones the ‘locations’.

The rest of this paper is organized as follows. Section 2 reviews related prior work

on Gaussian Process modeling and cloud point data. Section 3 introduces the main GGP

model assumptions as well as the differential geometry notions that will be used later on.

Section 4 discusses the computation of a near isometric parameterization of a 3D surface

(and therefore, computation of geodesic distances), a problem intensively studied in recent

years in the fields of computer graphics and manifold learning. Section 5 describes how

to fit the GPP model. Section 6 presents examples of surface reconstruction using the

GGP model, including simulated examples and an example using a real data set obtained

with a laser scanner. Section 7 discusses the problem of using noisy surface locations (u, v)

and presents an iterative version of the basic GGP approach to reduce the impact of error

in the locations. The paper concludes with some general discussion and suggestions for

further research. Appendices include details of the parameterization algorithms used, the

software implementation of GGP, and an appendix on the differential geometry analysis of

the surfaces fitted with GGP, including the problem of how to estimate the surface area of

the underlying true surface.

2 Related prior work

Gaussian Processes have been used to model metrology data obtained via a coordinate

measurement machine (CMM) by Xia, Ding et al. (2008 and 2011). Rather than using

a GP model for each measured coordinate in m = (mx,my,mx)
′ as we do here, they

consider modeling the projection of m on the direction of approach of the CMM probe,

which results in a scalar that is then modeled with a GP. While this approach is useful for

CMM data, it cannot be applied for modeling surface data obtained by other means (e.g.,
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non-contact sensors). Pedone et al. (2009) have recently used universal Kriging for devising

inspection sampling plans for one dimensional features of surfaces, such as circularity and

straightness. Colosimo et al. (2012) use Gaussian Process models for process monitoring

of manufactured surfaces.

There exists also considerable work on spatial models where the covariance is not only

a function of the euclidean distance between points, the so-called anisotropic covariance

case. This relates to our problem, since in surface data the non-euclidean 2-manifold where

the data resides causes the anisotropy. A standard approach in the earth sciences to model

anisotropic spatial covariance whose contours are elliptical is to use Mahalanobis distances

between two points wi and wj, rather than their euclidean distance, i.e., the covariance

function is C(Ah) instead of C(h), where h = wi − wj and A is some invertible n × n

matrix (Schabenberger and Gotway, 2005). This, however, will not be adequate when

there is local anisotropy, a term used in geostatistics to describe the changing direction

behavior of deposits on a region subdivided in cells, a situation that can be due to the data

originating from deposits forming a non-euclidean manifold (Boisvert and Deutsch, 2011).

As discussed by Curriero (2007), covariance functions that are known to be valid (positive

definite) in euclidean space are not necessarily valid on non-euclidean space.

Using a Mahalanobis distance is an instance of so-called space deformation methods.

These suggest transforming the non-euclidean space into an euclidean space, a line of work

that originated with Sampson and Guttorp (1992). Their procedure requires repeated mea-

surements at a set of 2-dimensional space locations {wi = (x, y)i} (the process is assumed

time stationary), and applies multidimensional scaling (MDS) on the variances computed

from the replicates to obtain locations {w∗
i = (x∗, y∗)i} on a transformed, euclidean space,

where a standard variogram or covariance model can then be estimated (and its validity

be assured). Finally, using thin plane splines, they fit a function f : E2 → E2 (note this is

a function from 2D to 2D) such that an isometry is found, i.e., f(w) = w∗. This function

then allows to extend the mapping from the observed points to any other new point w

at which it is desired to predict the response of interest. Boisvert and Deutsch (2011)

use the Isomap algorithm (Tenenbaum et al., 2000) to find near geodesical distances in a

mining application in order to allow Kriging predictions on a scalar spatial response. Their

procedure requires considerable prior knowledge of the directions of the deposits in order

to specify an anisotropic field (5 additional parameters per spatial cell are needed).
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Other work that follows a space transformation strategy is by Schmidt and O’Hagan

(2003), who present a bayesian approach to find a transformation f : E2 → E2. They set

the prior of f as a Gaussian Process and use MCMC techniques for posterior inference.

Kim et al. (2005) focus on modeling sharp transitions in the covariance function, which

they argue cannot be modeled with the type of smooth splines used by Sampson-Guttorp

approaches. They also consider finding a transformation f : E2 → E2 but their approach is

based on partitioning the domain D, assuming each subregion is homogeneous and hence

adequately modeled by a standard stationary kriging or gaussian process. In contrast with

these procedures, our geodesic Gaussian Process model finds a 2D to 3D parameterization

since it models all 3 measured coordinates and does not require replicated observations at

the same locations or extra surface parameters. Furthermore, it allows inferences in the

true underlying surface in the presence of noise, a modeling aspect recently emphasized by

Cressie and Wikle (2011).

A different strategy for modeling anisotropy is to directly fit a non-stationary covariance

model to the data, rather than transforming the 2D locations space and use stationary

covariance models in the transformed space. Recent efforts along this line are Paciorek and

Schervish (2008) who modify the Mahalanobis distance |Ah| by including the covariance

matrices of a gaussian kernel centered at each point i. Jun and Stein (2008) propose

non-stationary models for the specific case the process occurs on a 2-sphere.

Some early work on manifold learning, in particular, the Principal Surfaces method

by Hastie (1984), a nonlinear generalization of principal components, is related to a part

of our method. Similarly to the more general manifold learning methods which we use in

section 4, this method provides a parameterization of a manifold, and hence dimensionality

reduction, although it has some limitations with respect to dataset size and estimation

(see Chang and Gosh, 1999). As it will be seen, finding geodesic distances on a surface is

facilitated by a parameterization transformation (parameterization methods we tried and

used are described in sections 4 and Appendix A).

We now present our proposed method, which falls in the first category of strategies

mentioned above, that of space transformation methods.
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3 Model assumptions

The spatial statistical modeling of data obtained on a surface requires appropriate definition

of the ‘locations’ at which the data are observed. In the same way that a curve C embedded

in a 2D space can be described by a single (scalar) parameter t, i.e., by points p(t) =

(x(t), y(t)) ∈ C ⊂ E2 such that t ∈ D ⊂ E, a surface S embedded in 3D space can be

described by two parameters, i.e., by points p(u, v) such that

p(u, v) ≡ p(w) =

 x(u, v)
y(u, v)
z(u, v)

 , w = (u, v) ∈ D ⊂ E2, p(w) ∈ S ⊂ E3 (1)

thus p : D ⊂ E2 → S ⊂ E3 is said to be a parameterization (see, e.g., O’Neill, 2006) from

the space D of surface coordinates or parameters (u, v) to a 3-dimensional point p(u, v) on

the surface S (see Figure 1). Since we wish to model the uncertainty on all 3 coordinates,

we decompose p(u, v) in its three parametric component surfaces (Figure 2).

We assume points p(w) lie on a 2-dimensional manifold that forms a surface patch

embedded in E3. This means that p is a one-to-one differentiable function (so its inverse

exists, see Figure 1) and its Jacobian J = (∂p/∂w) has rank 2 (see O’Neill, 2006). This

regularity condition guarantees any 2 of the 3 inverse functions can be solved to “extend”

the mapping (see Kreyszig, 1991) to a new location (u0, v0) on D (e.g., once the models are

fit, we can solve, e.g., p̂x(u0, v0) = x0 and p̂y(u0, v0) = y0 for u0 and v0). In practice this

implies a patch does not bend or curve on itself. The parametric surface representation (1)

is the preferred approach to model a surface in CAD as it is used by Non-Uniform-Rational

B-spline Surface models (NURBS) (Patrikalakis and Maekawa, 2002). We assume points

p(w) on the true underlying surface are not directly observable, but are observed only in

the presence of measurement error (Cressie and Wikle, 2011), thus we observe:

m(w) =

 mx(w)
my(w)
mz(w)

 = p(w) + ε(w), w ∈ D (2)

where ε(w) ∼ N (0,Σε) denotes a non-smooth i.i.d. measurement error process defined

on D with Σε containing the “nuggets” τ 2
i , i ∈ {x, y, z}. It is further assumed the true

underlying surface is a smooth, non-stationary spatial Gaussian Process, which makes up

the “state” equation

p(w) = µ(w) + δ(w), w ∈ D (3)
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3D (x,y,z) measurements on 
original non-euclidean surface

Near-isometric 
parameterization 
mapping

(u,v) parameterization 
on euclidean space

p−1(x , y , z )=(u , v )

[ x (u , v)y (u , v )
z (u , v )]= p (u , v)= p (w )

p :D⊂E 2→ S⊂E 3

D

S

(u1, v1)=w1

(u 2,v2)=w2

p(w1)= p(u1, v1)

p (w 2)= p (u2,v2)

∣w 1−w2∣≈d s( p(w1) , p (w2))≥∣p (w1)− p (w 2)∣

Figure 1: An isometric parameterization is a mapping p : D ⊂ E2 → S ⊂ E3 such that distances on the
non-euclidean surface ds(p(w1),p(w1)) equal the euclidean distances between the corresponding points
w1 = (u1, v1) and w2 = (u2, v2) in the parameterized space, obtained by “flattening” the surface S. As it
is well-known in cartography, an exact parameterization is not possible except for the case of developable
surfaces. There exist several algorithms for finding near isometric mappings.

where

µ(w) =

 β′
xfx(w)

β′
yf y(w)

β′
zf z(w)


models long-range (systematic) variation and δ(w) is a zero-mean, smooth (no-nugget),

3-dimensional vector stationary Gaussian Process with covariance functions Cx(h), Cy(h),

and Cz(h), respectively, where h = wi − wj. Reconstructing S implies making inferences

about the state (the underlying surface) p(w), not about m(w) (the observed surface).

The functions f •(w) are vector functions of the w = (u, v) surface coordinates and the

vectors β• are the corresponding regression parameters. In most cases, a linear or an

interaction model in (u, v) suffices for x(u, v) and y(u, v), as can be seen in Figure 2. In

applications in manufacturing metrology, the state equation (3) can represent the deviation

surface from a nominal geometry T (w), usually specified by a NURBS patch in CAD

systems. In such application, our model allows the deviation surface to have systematic

(β′
•f •(w)) and random (δ•(w)) components, which would vary depending on the state of

the manufacturing process, a matter that has implications for process monitoring, a topic
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we do not discuss herein. If no CAD model is available (e.g., in a reverse engineering

situation) then equation (3) models directly the manufactured surface S. Hereafter, we

refer to equations (1-2) as the Geodesic Gaussian Process (or GGP) model. The main steps

of this modeling methodology are shown diagrammatically in Figure 3.

p (u , v)= p (w)=[ x (u , v)y (u , v )
z (u , v )]

x (u , v)=x (w)

y (u , v)= y (w )

z (u , v)=z (w)

Figure 2: Points on a surface embedded in 3D euclidean space can be described in parametric form as a set
of points p(u, v) where (u, v) are coordinates described on the surface. With this parametric representation,
the surface is decomposed into its three euclidean coordinate functions x(u, v), y(u, v) and z(u, v), each
described over the same space of coordinates (u, v), shown as a plane of points in the right 3 graphs.

Our GGP method will be contrasted to the most common alternative used in practice

for modeling a surface using a gaussian process. This consists in using what is called

a Monge patch (Kreyszig, 1991) in Differential Geometry, resulting in the euclidean GP

model:

m(x, y) =

 x
y

pz(x, y)

 +

 0
0

εz(x, y)

 and p(x, y) =

 0
0

µz(x, y)

 +

 0
0

δz(x, y)

 ,

(4)

where (x, y) ∈ E2. In simpler words, equation (4) models only the ‘heights’ (z) of the

surface patch as a function of the other 2 euclidean coordinates, i.e., z(x, y). In such a

model, spatial correlation is a function of euclidean distances in the xy space, and not a

function of distances on the surface space S as model (1) assumes. In this case, p(x, y) is
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Near-isometric
parameterization algorithm

 (E2 → E3 mapping and its inverse)

GP parametric 
surface fitting (REML)

Reconstruction of surface

(mxi ,m y i
,mzi)i=1

n

(u i , vi )i=1
n

b̂ , Ŝ e , Ŝ d

[ x̂ (u , v)ŷ (u , v )
ẑ (u , v )]= p̂ (u , v)= p̂ (w )

Systematic variation
model forms

m (u , v )

Procrustes alignment

aligned (u i , v i)i=1
n

Figure 3: Main steps of the proposed Geodesic Gaussian Process (GGP) surface reconstruction method.

a trivial parameterization of the surface. Depending on the application, selecting one of

the three coordinates to be the (univariate) ‘response’ and to assume the remaining two

coordinates to be noise-free ‘locations’ may be arbitrary and not justifiable in general. If

spatial correlation is a function of geodesic distances on S, this model will result in biased

predictions. We discuss further the issue of considering the errors in the locations in section

7.

4 Finding an E2 → E3 surface parameterization

A key step in the proposed surface reconstruction method is finding a parameterization

p(u, v), for (u, v) ∈ D (Figure 1). Since the parametric coordinate space D is Euclidean,

once a parameterization is available we can use any standard valid spatial covariance mod-

els on this space (Curreiro, 2007). Given observed coordinates (mxi
,myi

,mzi
)n
i=1, we wish

to find the corresponding surface coordinates (ui, vi)
n
i=1. There exist several techniques

to do this task. These include algorithms from the area of manifold learning, such as

the Isomap method (Tenenbaum et al., 2000) and the LLE method (Roweis et al., 2000).

Manifold learning methods, extensively studied in the last decade, attempt to solve the
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more general problem of dimensionality reduction from El2 to El1 , where l2 ≫ l1. In the

field of CAD and computer graphics there exist another very large thread of literature on

methods to solve the more specific l1 = 2, l2 = 3 parameterization problem. The CAD

literature is naturally concerned with the surface parameterization problem, given the use

of NURBS models in CAD software systems. Some of the earlier parameterization methods

in CAD were described by Ma and Kruth (1996). These authors propose a “base surface”

method, which has been influential in this literature. Their idea is to use a simple (base)

surface that approximately resembles the surface one wishes to parameterize. The base

surface is created interactively by selecting 4 corner points and fitting a NURBS surface.

The parameterization is then obtained by closest-distance projection of the points on the

surface of interest onto the base surface. Weiss et al. (2002) review other parameteriza-

tion techniques used by CAD systems, and suggested using algorithms from the computer

graphics literature for this task.

The main interest in the computer graphics literature is texture mapping, that is, to

set a “texture” value (usually, RGB color values) at a particular location (ui, vi) on a 3D

surface p(u, v) in a scene in order to make it appear in the most realistic way.

There are many different ways to define what a good parameterization is. The ideal

case is to find an isometry, a mapping that preserves distances between corresponding

points. Formally (O’Neill, 2006, p. 265), if p : D ⊂ E2 → S ⊂ E3 is an isometry, then

dD(w1,w2) = dS(p(w1),p(w2)) ∀ w1,w2 ∈ D (5)

where in our case dD(w1, w2) = |w1−w2|, the euclidean distance on D ⊂ E2. An isometric

mapping can be thought of as a transformation that bends the surface S into a different

shape without changing the intrinsic distances between points on S. Hence, it can be

shown that an isometry also preserves areas on S and angles between curves on S (i.e.,

it is a conformal mapping). An isometric mapping is also a geodesic mapping, in which

geodesic distances between points in one space (dD) map into geodesic distances dS on

the image space (Kreyszig, 1991, Theorem 94.2). But as it is well-known in cartography,

finding a perfectly isometric mapping is possible only if the surface is developable, i.e., if

the surface has a gaussian curvature of zero everywhere (Kreyszig, 1991, p. 181).

Most popular parameterization algorithms in the computer graphics literature find a

conformal mapping, which has nice mathematical properties (Floater and Hormann, 2005);
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Figure 4: Near isometric parameterizations from noisy data obtained from two sample surfaces, a cylindrical
patch (400 points) and a sinusoidal patch (900 points). The distances between pairs of points, dD(wi, wj)
on the uv plane D on the right are approximately equal to the geodesic distances between the corresponding
points p(wi) and p(w2) on the patches S on the left. These parameterizations were obtained using the
ARAP algorithm (Liu et al., 2008), see Appendix A.

however, they result in pronounced area deformations. Extensive work on the surface

parameterization problem over the past decade has resulted in algorithms that instead

attempt to preserve areas, or that minimize a weighted sum of distortions due to differences

in angles and due to differences in areas, achieving in this way an “as isometric as possible”

mapping (e.g., Liu et al., 2008, Sorkine and Alexa, 2007, Deneger et al. 2003). This type

of parameterization methods are particularly useful for our approach, since we assume

correlations are a function of the geodesic distances on the surface, and these are provided

by an isometric mapping. Figure 4 shows two instances of surface patches, observed with

noise, and their near-isometric parameterization.

Figure 5 shows scatter plots of the exact geodesic distances between points p(u, v)i

and p(u, v)j on a cylindrical patch plotted against the euclidean distance between the

corresponding (ui, vi) and (uj, vj) points (for 400 points there are 79800 such pairs) obtained

with two parameterization algorithms, Isomap (Tenenbaum et al., 2000) and the “As-Rigid-

As-Possible” (ARAP) method (Liu et al., 2008) that we describe more fully below and in

Appendix A. As it can be seen, both methods are near isometries, since the scatters are close
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Figure 5: Parameterizations of noisy measurements from a cylinder based on 400 points using the Isomap
algorithm (top) and ARAP algorithm (bottom). The scatter plots show the exact geodesic distance on the
true underlying surface between all 79800 pairs of points plotted against the euclidean distance between the
corresponding estimated (u, v) points provided by each method. The estimated correlation coefficients of
the scatter plots equal 0.9984 (Isomap) and 0.9953 (ARAP), indicating both mappings are near-isometric.

to a 45o line (in view of equation (5), the correlation coefficient of the scatters is a measure

of near-isometry) with the estimated correlations exceeding 0.995 for each method. Table 1

shows the estimated correlation coefficients of similar scatter plots (not depicted) obtained

with other algorithms used for the parameterization step, applied to 400 noisy observations

taken from a half cylinder (here we added noise generated with a geodesic gaussian process

with an exponential correlated function with parameters ϕ• = 1, σ2 = τ 2 = 0.0001 to the

true points on the cylinder, see next section for a description of the covariance model used).

Note that if noise is added, the measured observations no longer form a developable surface,

so one should not expect a perfect rectangle on the uv plane. The first 2 algorithms are

from the computer graphics literature, while the bottom 4 are from the manifold learning

literature. Although the correlations shown are only point estimates, the overall conclusion

is clear: among the tested parameterization algorithms, only Isomap and ARAP are able

to find a near isometry in the case of a cylinder. If an algorithm is unable to “unfold”

this particularly simple, developable surface, it will typically be unable to unfold near

isometrically more complicated, non-developable surfaces. In particular, the first algorithm
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on the table (Least Squares Conformal Map or LSCM, Levy et al., 2002) shows how

conformal parameterization algorithms from the computer graphics field are not useful for

our purposes, since they severely distort distances. A complete survey of parameterization

methods from the manifold learning literature up to 2009 is given by der Marteen et al.

(2009). These authors also provide a very useful library of Matlab programs some of which

were used to prepare Table 1.

For our purposes, all that is necessary is to find a reliable near-isometric parameter-

ization method, perhaps one that is fast to compute for large point clouds, and both

Isomap and ARAP have these properties. Although we suggest using either method, it is

important to point out their weaknesses: as it can be seen in Figure 5, ARAP typically

distorts the boundaries of the object (this is also a problem, but of lesser magnitude, for

Isomap). Likewise, (see Figure 6) Isomap distorts a surface near a “hole” (ISOMAP proof

of asymptotic convergence to a near isometry rests on the assumption observations lie on a

geodesically convex manifold, see main theorem in Bernstein et al. (2000), an assumption

that is false if the surface has holes). ARAP scales better with the number of points than

Isomap, which needs to be modified for large data sets (see Appendices A.1 and A.2).

Estimated correlation (ρ̂)
Algorithm Reference(s) No measurement error With measurement error

LSCM Levy et al., 2008 0.9291 0.8784
ARAP Liu et al., 2008 0.9976 0.9953
LLE Roweis et al., 2000 0.9420 0.8998

HLLE Donoho et al., 2005 0.9442 0.9434
KPCA Shölkopf et al., 1998 0.9557 0.9557
Isomap Tenenbaum et al., 2000 0.9995 0.9984

Table 1: Correlation coefficients between euclidean and geodesic distances obtained with different pa-
rameterization algorithms applied to the 79800 pairs of points from a grid of 400 noise-free observations
generated on a half cylindrical patch.

Surfaces with holes might be a common situation in a metrology situation: some regions

of the object might have no measurements due to the pose of the object relative to a non-

contact scanner, and this results in gaps in the measured surface. Therefore, we look at

this issue in more detail in example 3 below.
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ARAP (u,v) 
parameterization x̂(u , v) ŷ (u , v)

ẑ (u , v)
ISOMAP (u,v) 
parameterization

Figure 6: Parameterization of a bilinear NURBS surface patch with a rectangular hole. Whereas the
ARAP parameterization preserves the geometry of the hole, the ISOMAP algorithm does not retain the
rectangular features of the surface hole.

5 Model fitting

Given the coordinates on the surface {ui, vi}n
i=1 that correspond to the n measurements

{m(ui, vi)}n
i=1 (collected in the n × 3 design matrix M ), the next step (see Figure 3) is

to fit a Gaussian Process model to the x(u, v), y(u, v), and z(u, v) surfaces. In principle,

one could model the three parametric surface components with a multivariate gaussian

process. Such model would require specification of the spatial cross-covariance matrix

C(w,w′) ∈ E3×3, (where recall w = (u, v)) which equals to:

Cov(p(w),p(w′)) =

 cov(x(w), x(w′)) cov(x(w), y(w′)) cov(x(w), z(w′))
cov(y(w), x(w′)) cov(y(w), y(w′)) cov(y(w), z(w′))
cov(z(w), x(w′)) cov(z(w), y(w′)) cov(z(w), z(w′))


for w ̸= w′, which as emphasized by Cressie and Wikle (2011) needs not be symmetric

(note that the within-location variance-covariance matrix C(w, w) = Cov(p(w),p(w)) =

Var(p(w)) ∈ E3×3 is symmetric). Specifying a non-symmetric cross-covariance has proved

difficult (Gneiting et al., 2010) because of the positive definitiveness constraint. Simplifying

assumptions are usually made, such as adopting a “separable” correlation matrix (Banerjee

et al., 2004), C(w,w′) = ρ(w, w′) · T , where T models within-location correlations and

14



ρ(w, w′) models spatial correlation between locations, assumed the same for all responses

(clearly inadequate for our case). Furthermore, this results in a symmetric cross-covariance.

Other methods that require symmetry are a multivariate Matern model by Gneiting et al.

(2010) and Corregionalization (see Banerjee et al., 2004), although Kleijnen and Mehdad

(2012) indicate that Corregionalization usually does not outperform separate kriging pre-

dictions of each response. As discussed by Cressie and Wikle (2011), the symmetry as-

sumption is very strong, and this is particularly true for our surface modeling application.

For these reasons, we proceed to fit each parametric surface model independently, assum-

ing Σε = diag(τ 2
x , τ 2

y , τ 2
z ) in eq. (2) and C(w, w′) = diag(Cx(h), Cy(h), Cz(h)) in eq. (3)

where h = w − w′ (see conclusions section for more on this).

For each component δ• in equation (3), we use a powered exponential spatial covari-

ance model (Banerjee et al., 2004) such that the n × n covariance matrix of each surface

component x(wi), y(wi) and z(wi) over all measurements can be written as

Σ• = σ2
• exp(−ϕ•Dw)p• + τ 2

•In, • ∈ {x, y, z} (6)

where Dw is an n×n euclidean distance matrix on the D space. Therefore, the covariance

parameters for each surface component model are θ• = {ϕ•, σ
2
•, τ

2
• , p•}. These parameters

and β• (eq. 2) are estimated using restricted maximum likelihood (REML, see Santner et

al., 2003). For each parametric surface model, the REML estimator minimizes

(n − k•) log(σ2
m(θ•)) + log(|R(θ•)|) + log(|F ′

•R(θ•)
−1F •|)

where σ2
m(θ•) is the variance C•(0) expressed as a function of its covariance parameters,

F • is the n× p matrix which expands the set of uv locations M according to the terms in

the mean model form f•(w) in eq. (3), R(θ) is the n×n correlation matrix between the n

points computed from (6) and k• is the number of parameters estimated in each parametric

surface model. The REML objective has several minima, and therefore we use a simulated

annealing (SA) global optimization routine (MATLAB, 2011) started from a set of well-

dispersed initial points for its minimization. At each point returned by the SA routine,

we ran the fmincon interior point nonlinear minimization routine in MATLAB. In this

paper, when n ≤ 1600 we used the full n× n matrix and followed the recommendations in

Lophaven et al. (2002) for dealing with numerical issues related to the computations of the

inverses and determinants in the likelihood function. For larger n, we use a sparsification

approach due to Snag and Huang (2012) used in the laser scanner example of section 6.2
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and further explained in Appendix B. Given the minimizing parameters θ•, we estimate

β• from its generalized least squares estimator (Santner et al., 2002). This procedure is

then repeated for each parametric surface, giving the parameter estimates θ̂• and β̂•, for

• = {x, y, z}.

Given the surface coordinates (u0, v0) where a prediction is desired, minimum mean

square (MSE) prediction follows the usual approach in Gaussian Processes (Santner et al.,

2003). The prediction equation for each true underlying surface component in p(u0, v0) is

given by:

p̂•(u0, v0) = f(u0, v0)
′β̂• + c′

p•Σ
−1
• (M• − F •β̂•), • = {x, y, z} (7)

where M• are all the measurements of each coordinate • = {x, y, z} across the n observa-

tions in (2). To predict all three surface components p̂(u0, v0) we now only need to evaluate

all three of them at (u0, v0).

An important detail in expression (7) is that the vector cp• is equal to

cp• ≡ Cov(p•(u0, v0),M•) =


cp•(w0 − w1)
cp•(w0 − w2)

...
cp•(w0 − wn)


which are the covariances between the true underlying surface component p• in (3) and

the observed coordinate M• in equation (2), where • = {x, y, z}. Cressie and Winkle

(2011) emphasize how these covariances should not contain the nuggets (τ 2
• ), since we are

predicting the true underlying surface (p(u0, v0)), not the observed one (m(u0, v0)).

Finding prediction error estimates σ̂2
p can be done in the usual way by using the “plug

in” standard error estimate, or a bootstrapping estimate as suggested by Der Hertog et

al., (2006). This will provide a 3D prediction ellipsoid around a point prediction. A

bootstrapping estimate would have to incorporate the imprecision in the near-isometric

parameterization algorithm, which is not perfect. Some ideas on how to do this via cross-

validation are given in the last section of the present paper.

6 Examples of surface reconstruction using a GGP

6.1 Examples with simulated surface data

In the simulations shown in this section, we first generated a grid of points over the true

underlying surface (in most cases below, a NURBS surface) to which we added geodesically
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correlated gaussian errors (section 8 also considers the case of no spatial correlation present).

To do this, we computed the (u, v) parameterization of the noise-free points using either

the ARAP or Isomap method and then generated spatially correlated normal noise using

a powered exponential correlation function, where euclidian distances (in the D space)

were used, as these correspond closely to the geodesic distances on S. The model fitting

and prediction methods shown below were then applied in the GGP approach to these

simulated data sets. To evaluate the surface reconstruction performance of the GGP and

the more common euclidean Gaussian Process (section 2), we simply predict the surface at

the simulated points with each method and compute the euclidean distance between the

predicted 3D points and the corresponding true surface points, since these are available.

We then report the mean squared prediction error per point. For the GGP model this is:

MSPGGP =

√∑n
i=1 |p̂(ui, vi) − p(ui, vi)|2

n
(8)

where p̂(ui, vi) = (x̂(u, v), ŷ(u, v), ẑ(u, v))′ and | · | denotes euclidean distance. For the

euclidean gaussian process model the mean prediction error is:

MSPz(x,y) =

√√√√√√√∑n
i=1

∣∣∣∣∣∣
 mxi

myi

ẑ(xi, yi)

 − p(ui, vi)

∣∣∣∣∣∣
2

n
(9)

where the first two coordinates are not predicted and the z coordinate is predicted as

a function of the euclidean coordinates x, y instead. Since we are simulating data from

known surfaces to which we add noise, in all of these expressions above we are comparing

the predicted 3D points against the true underlying 3D cartesian coordinates at each

point (ui, vi) on the surface (p(ui, vi)). In simulated cases (where the true surface points

are available), the mean square prediction error statistics above can be compared to the

simulated mean square error:

MSE3D =

√∑n
i=1 |m(ui, vi) − p(ui, vi)|2

n
=

√∑n
i=1 |ε(ui, vi)|2

n

which is a measure of the mean “noise” added to all 3D points on the surface. If in a

simulation it turns out that MSPGGP < MSE3D this means the GGP model is able to filter

the measurement error enough to get predictions that on average are closer to the true

surface than what the observed measurements are.
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Example 1.- a cylindrical surface patch.

Table 2 shows the performance metrics of a series of simulations taking the cylindrical

patch of Figure 5 as the true underlying surface. Geodesically correlated Gaussian noise

was added to a grid of points on the surface, as described before, with correlation function

parameters ϕ• = 1, σ2
• = τ 2

• = 0.00001. An interaction model (in u, v) was fit to the mean

of x(u, v), while a quadratic model was fit to the mean of y(u, v), z(u, v), and z(x, y). We

studied the performance of the GGP methodology compared to the alternative euclidean

Gaussian process predictions (see section 2) for different number of points. The statistics

are averages and standard deviations from 30 independent simulations and model fits (same

data used across methods). Fitting both the GGP and the euclidean GP models required

inversions of n × n matrices, with the total computing time of 30 model fits exceeding

12 hr., hence the apparently small sample size (see Appendix B for more details about

how to fit the GGP model for large n). Despite this, the standard errors of the mean

squared prediction errors are relatively small, and the results allow to make some general

observations. As it can be seen from the table, in some cases, the parametric 3D predictions

get closer to the true unknown surface than the simulated data, since the mean square error

of the simulated points is higher than that of the parametric 3D predictions (thus, the

proposed approach is effectively filtering the observational noise in the state-space model

2-3). The euclidean GP approach (z(x, y)) incurs in considerable higher prediction errors

(around 50% compared to the parametric GGP predictions).

n MSE3D MSPGGP MSPz(x,y)

400 0.00756 0.00773 0.01178
(0.00006) (0.00108) (0.00091)

900 0.00798 0.00796 0.01188
(0.00109) (0.00108) (0.00099)

1600 0.00771 0.00764 0.01192
(0.00098) (0.00099) (0.00094)

Table 2: Prediction results for cylindrical patch example, 30 simulations, mean and standard deviations
of performance statistics (standard deviations inside parenthesis). MSPGGP is the per observation mean
square 3D prediction error using the proposed GGP model (eq. 8), MPSz(x,y) is the corresponding error
if an euclidean gaussian process is used (eq. 9). MSE3D is the simulated mean square error of the 3-
dimensional points. If a surface reconstruction model gives a MSP smaller than MSE3D, it is effectively
“filtering” the measurement noise.

Example 2.- a sinusoidal surface patch.
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In this case the true surface is z(u, v) = 0.1 sin(u), depicted in Figure 4. This is a type

of surface patch reported to be useful as a model in high precision micro machining (Zhang

et al., 2009). The same noise parameters as in the cylindrical patch case were added to a

grid of points generated on this surface. An interaction model (in u, v) was fit to the mean

of x(u, v), and to the mean of y(u, v), while a constant (intercept only) model mean was

used for z(u, v), and z(x, y).

The euclidean GP approach (z(x, y)) incurs in worse prediction errors compared to

the parametric 3D predictions (Table 3). While the underlying surface is developable

(gaussian curvature is zero) the measured points are not, so the uv surface will not be

a perfect rectangle even if a perfect isometry were to be found. This surface has strong

curvature, so modeling the heights as a function of 2D euclidean spaces badly estimates

the distances, and hence the correlations, between points on the surface, resulting in an

underestimation of the peaks and troughs of the function (see Figure 8). This curvature

also makes the GP predictions worse relative to those in the cylindrical patch example.

By strong curvature we are referring to large values of the principal curvatures at some

points, not to the gaussian curvature values, which for a near-developable surface will be

near zero. As the density of points increases, all models fit better. This is probably due to

the shorter inter-point distances which makes the effect of curvature less severe. Still, for

n = 1600 the GGP achieves a MSP error of less than half that of the euclidean GP model,

approaching the level of the simulated noise.

n MSE3D MSPGGP MSPz(x,y)

400 0.00761 0.02435 0.04552
(0.00089) (0.00693) (0.00187)

900 0.00785 0.01284 0.02946
(0.00132) (0.00284) (0.00148)

1600 0.00752 0.00954 0.01957
(0.00099) (0.00123) (0.00112)

Table 3: Results for sinusoidal patch example, 30 simulations, mean and standard deviations of perfor-
mance statistics (standard deviations inside parenthesis). MSPGGP is the per observation mean square
3D prediction error using the proposed GGP model (eq. 8), MPSz(x,y) is the corresponding error if an
euclidean GP is used (eq. 9). MSE3D is the simulated mean square error of the 3-dimensional points.

Example 3.- a surface with a hole. To study the effect of a hole on the GGP approach,

consider the simulated NURBS depicted in Figures 1, 2, and 6. This is a NURBS bilinear
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ẑ (x , y)p̂ (u , v)=[ x̂ (u , v )ŷ (u , v)
ẑ (u , v)]

Figure 7: Left: Sinusoidal function observed points (light dots), GGP parametric surface predictions p̂(u, v)
(dark dots), n = 400 points. The plane of dots are the parameters (u, v). Right: side view, showing also
the predictions based on the Euclidean Gaussian Process, ẑ(x, y), which badly fail to reconstruct the full
depth of peaks and troughs.

surface with corner control points (0.0, 0.0, 0.5), (1.0, 0.0, -0.5), (0.0, 1.0, -0.5), and (1.0,

1.0, 0.5). Geodesically correlated Gaussian noise was simulated as described above with

parameters ϕ• = 1, τ 2
• = σ2

• = 0.0001 and p• = 1 (powered exponential correlation function)

and added to the 400 3D points representing the surface. An interaction mean model was

specified for x(u, v) and y(u, v) and a quadratic mean model was set for z(u, v). We created

a rectangular hole on this surface and applied the proposed GGP methodology to it. Figure

6 shows the 2D surface parameterization obtained with the ARAP algorithm and the 3

fitted parametric surfaces using GGP. In this particular case, the performance of predicting

the three coordinates using GGP result in a mean square error of the predictions of 0.0073

that compares favorably with the prediction error from fitting the euclidean GP model

z(x, y) (which yields a mean squared prediction error of 0.0162). The simulated error MSE

was 0.0072, so the GGP-fitted surface is quite precise, showing the procedure is unaffected

by holes or gaps. As a comparison, the figure also shows the parameterization obtained

with the ISOMAP algorithm (reducing the dimensionality from E3 to E2). As it can be

seen, the rectangular feature of the hole is lost with this parameterization. Appendix A

describes briefly the Isomap and the ARAP algorithms.

6.2 Reconstruction from real surface data: laser scanner data

In this section we reconstruct a surface from a cloud point dataset acquired with a struc-

tured light sensor first considered by Cavallaro et al. (2010) and further studied by
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Figure 8: Laser scan data. From left to right: original artifact, full dataset (n = 9635), a decimated data
set (n = 964), and on the right the (u, v) parameterization of the decimated 3-dimensional data using the
ARAP algorithm.

Colosimo and Pacella (2011). A structured light scanner yields a large set of points ar-

ranged in a regular grid which are characterized by their high density and low precision.

We contrast the performance of the proposed approach in modeling this surface via cross-

validation, fitting the different models in a subset of data and predicting a different subset

of points, given that contrary to the previous simulated examples, there is no “known

underlying surface” available. Hence, we estimate the mean square prediction errors sub-

stituting the true surface points (p(ui, vi)) with the observed measurements (m(ui, vi)) at

which we are predicting (different to the points at which we fit the model), so n is substi-

tuted in (8-9) by npredict, the number of points at which we are predicting, not the points

used to fit the model as in the previous section.

The original dataset consists of 9635 points from a free form surface (see Figure 8) of

base size 100 mm. × 100 mm., acquired with a laser scanner system. We fit the GGP and

euclidean GP models to 9000 (= nfit) randomly sampled observations, using the remaining

635 (= npredict) for cross-validation. We also fit preliminary models for smaller number of

points (nfit = 402, obtained by selecting every 24 point and nfit = 964, obtained from

selecting every 10th point). The preliminary fits from the smaller datasets are useful to

select mean models to use in the full dataset, given the computational effort to fit the

models when nfit is large. Just as for a standard euclidean GP model, when nfit is large,

fitting the GGP model requires sparse matrix techniques for handling the inverse and

determinant operations needed in the REML routine (see Appendix B for computational

details). The ARAP algorithm was used for the parameterization.

Table 4 shows mean square prediction errors obtained by cross-validation. The cross
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validation was done at npredict different points than the original ones, for which the (ui, vi)

parameters were computed first (i.e., the parameterization mapping was extended) and

then the predictions for these points were computed using the GGP models fitted with

the original data. This was done for each parametric surface in our model. Finally, we

compute the mean square error of the predictions generated by GGP (MSPGGP ) and also

by the euclidean GP method (MSPz(x,y), see section 2). As mentioned in section 4, since

the underlying surface is unknown, the mean square error statistics (8-9) were computed by

substituting the true surface points (p(ui, vi)) with the observed measurements (m(ui, vi)).

We tried different mean models for x(u, v), y(u, v), z(u, v) and z(x, y). From the mean

square errors per point of the cross-validated predictions, the best mean models are an

interaction model for x(u, v) and y(u, v) and either a constant (intercept) or a quadratic

model for z(u, v) and z(x, y), which were about the same. We compared the GGP predic-

tions to the euclidean GP method (i.e., only predicting the heights z as function of euclidean

coordinates x, y). The mean square errors of doing this in the best fitting models are con-

siderably higher than assuming correlations along geodesic distances. Note how MSPz(x,y)

is computing squared errors only on the heights z, whereas MSPGGP computes squared er-

rors on all 3 coordinates. Thus, it is notable how in every case MSPGGP < MSPz(x,y). If

we consider only the GGP prediction errors along the z(u, v) coordinate response (column

labeled (MSPz(u,v))), the table shows how these are about half of what a standard euclidean

GP model fit to z(x, y) would provide, regardless of the number of points used to fit the

model nfit. Hence, these statistics provide evidence that the data set contains correla-

tions that are better modeled along the surface rather than in euclidean space, and that

the GGP model is predicting this surface substantially better than a standard universal

kriging model fitted in euclidean space to z(x, y).

Table 5 shows the parameter estimates when using the “interaction, interaction, quadratic”

mean models for both nfit = 402 and nfit = 964. Here, τ̂ 2 + σ̂2 represents a mix of model

error and measurement error (or random noise due to other causes). If the true model

for p(w) were known as in the previous simulated cases, then we could clearly identify

these two variances with measurement (small scale) and spatial (larger scale) variability,

but this type of knowledge is not practically available in the majority of applications. The

estimated parameters do not change much as a function of nfit. Since for nfit = 9000 a

different, approximated covariance function was used (see Appendix B), we do not include
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nfit npredict Mean models for (x, y, z) MSPGGP (MSPz(u,v)) MSPz(x,y)

402 401 interaction, interaction, intercept 0.0160 (0.0103) 0.0230
964 963 interaction, interaction, intercept 0.0140 (0.0104) 0.0195
402 401 interaction, interaction, quadratic 0.0165 (0.0110) 0.0257
964 963 interaction, interaction, quadratic 0.0129 (0.0088) 0.0181
9000 635 interaction, interaction, quadratic 0.0112 (0.0077) 0.0157

Table 4: Cross-validation results for Laser scanner data, mean square errors performance statistics. Dif-
ferent mean models were used. The estimated mean square prediction errors per observation are shown.
The error of the GGP in predicting only coordinate z(u, v) is shown in parenthesis. The prediction errors
given by the GGP method are consistently about half of what an euclidean GP model provides for z(x, y),
regardless of the number of points used to fit the model.

the parameter estimates for this case in the table.

nfit npredict (ϕ̂, σ̂2, τ̂2)x(u,v) (ϕ̂, σ̂2, τ̂2)y(u,v) (ϕ̂, σ̂2, τ̂2)z(u,v) (ϕ̂, σ̂2, τ̂2)z(x,y)

402 401 0.34, 1e-5, 0.7e-15 0.34, 0.0019, 0.13e-14 0.50, 0.0007, 0.4e-15 0.67, 0.0006, 0.5e-15
964 963 0.34, 0.0003, 0.3e-16 0.34, 0.0131, 0.7e-14 0.50, 0.0002, 0.5e-14 0.67, 0.5e-5, 0.7e-17

Table 5: Cross-validation parameter estimates for the GGP model, laser scanner data, for mean models:
interaction for x(u, v) and y(u, v) and a quadratic model for z(u, v) and z(x, y).

7 Reducing the impact of measurement noise on the

estimated (u, v) surface locations

The GGP approach thus far presented takes 3D cloud point data {mxi
,myi

,mzi
}n

i=1 gener-

ated by some sensor to estimate surface coordinates {wi = (ui, vi)}n
i=1 from which gaussian

process models are then fit to each spatial coordinate. Hence this approach is based on

initial “noisy”, or unreliable locations wi. If the surface location errors can be reduced

or filtered, the reconstruction of the surface could in principle be improved over what was

shown in early sections. This problem is related to work by Gabrosek and Cressie (2002)

and Cressie and Kornak (2003), who proposed spatial statistical models in the presence

of location errors. These authors concentrate on the case when there is a set of intended,

known locations which differ from the actual locations where the process is observed. The

assumption of known locations does not hold in the type of applications that motivated the

present study, particularly non-contact sensed data. Fanshawe and Diggle (2011) propose

a model where no intended set of locations is assumed. However, they point out how the

location error variance is confounded with the nugget variance and the range parameters,

and hence, they make the simplifying assumption that the location error variance is known

from past history, again an assumption untenable for the type of applications we desire to
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Figure 9: Mean squared prediction errors per observation for the iterative GGP. Left: for a simulated
cylindrical surface patch with parameters ϕ = 1, τ2 = 0.0001, σ2 = 0.0001, p = 1 (same for all 3
coordinates). The simulated surface noise was MSE3D = 0.02251 > minMSPGGP = 0.02204. The
prediction error given by the euclidean GP approach was MSPz(x,y) = 0.02647. Right: for a simulated
sinusoidal surface patch with parameters ϕ = 1, τ2 = 0.001 , σ2 = 0 (no spatial correlation, hence only
uncorrelated measurement noise is present), p = 1 (same for all 3 coordinates). The simulated surface
noise was MSE3D = 0.05486 > minMSPGGP = 0.048317, while the prediction error given by the euclidean
GP approach was MSPz(x,y) = 0.050734.

work in.

As an alternative solution to reduce the location error we tried the following iterative

procedure: starting from the raw cloud point measurements, estimate initial surface coor-

dinates as in the basic GGP approach of Figure 1. We then use the reconstructed surface

{x̂(wi), ŷ(wi), ẑ(wi)} as the data in a parameterization algorithm to provide revised loca-

tions {w(rev)
i = (u

(rev)
i , v

(rev)
i )}. The GGP models for each coordinate are then fitted again

at these revised locations (using the original data xi, yi, zi as responses), from where revised

predictions are obtained to provide a new surface reconstruction, in a process that can be

iterated. Given that the GGP predictions are less noisy than the original observations

(provided the surface patch is developable), as was demonstrated above, the revised sur-

face coordinates will be more precise, and will yield a more precise surface reconstruction.

Figure 9 shows the sequence of MSP iterations for two examples using the iterative GGP

approach.

As it can be seen from Figure 9, the iterative GGP reduces the mean squared prediction

error after a few iterations compared to the standard (non-iterative) GGP, i.e., that given

in iteration 1, and seems to be convex in the number of iterations. Figure 9 shows an

example for the cylindrical patch used earlier, where there is significant spatial correlation

on the surface, followed by the behavior for a case where there is no spatial correlation

at all in the sinusoidal patch used earlier, and hence the cloud point data simply contains
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iid measurement noise on all coordinates. Remarkably, in this case not only the standard

GGP provides a better reconstruction of the surface than the euclidean GP approach

(MSPz(x,y) = 0.050734 > MSPGGP = 0.0495 at iteration 1) but the iterative procedure is

able to further improve the reconstruction by approaching more closely the true surface

S, with a minimum MSP reached after 4 iterations. Here the better reconstruction of the

GGP approach can be explained by the superior parametric surface model approach it

adopts.

8 Discussion and conclusions

A new parametric surface approach for the statistical reconstruction of surfaces embedded

in 3-dimensional space based on cloud point data was presented. The Geodesic Gaussian

Process (GGP) method first finds a parameterization on the surface patch under study

and then fits spatial Gaussian Process models on each of the three cartesian coordinate as

a function of the two surface coordinates. This avoids the problem of having to select one

coordinate as the “response” (usually z is chosen) and using the other two coordinates as

the (noise free) “locations” (usually, (x, y)) that one faces when using a standard kriging

model for surface data. This parametric surface modeling approach is compatible with

CAD models. It was shown how the GGP approach reconstructs surfaces better than the

usual Kriging/GP modeling approach found in the literature which assumes correlations

occur over an euclidean space and only the “heights” z(x, y) are modeled. If the correlation

occurs as a function of geodesic distance between points on the surface or when there is

no spatial correlation, euclidean spatial models resulted in considerable worst predictions,

giving mean square prediction errors that on average were around twice those given by the

GGP model for the laser scanner data set in section 6.2. An iterative GGP method was

presented where the noise in the surface parameters is considered and this further improves

the predictions.

From an industrial application point of view, it is of interest to determine if for a variety

of real-life machined surfaces the “geodesic hypothesis” holds, i.e., determine whether

correlation can be better modeled geodesically or over euclidean distances. A study similar

to the laser data of section 6.2 could be conducted with this aim (there it was found that

our GGP model which assumes correlations over geodesic distances fits better). We have

found this hypothesis true also in a CMM dataset of the artifact depicted in Figure 8, but

more empirical testing seems necessary.
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The parameterization approaches used (ARAP and Isomap) may find difficulties if the

surface has severe curvature or sharp edges, inevitable problems common to all parame-

terization algorithms. A way to handle severe curvature is to segment a complicated 3D

object that perhaps closes into itself (so it is not a surface patch) and partition it in such

a way that we get a series of patches each with less curvature. There is a great number

of algorithms to do this in the computer graphics literature, and we plan to study the

problem of how to fit an overall GGP model to the collection of patches. We also plan to

integrate GGP and CAD models in the near future.
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Appendix A.1. The Isomap algorithm

Assume we wish to find a function p(w) from El1 to El2 where l1 < l2. The Isomap algo-

rithm (Tenenbaum et al., 2000) first approximates the geodesic distances dg(p(wi), p(wj))

by connecting the points p(wi) with its closest q neighbors, where q is a parameter that can

be tuned depending on the noise level of the data. These neighbors are represented by a

weighted graph over the points, with edges equal to the euclidean distances |p(wi)−p(wj)|.
The basic idea exploited in this and many similar “manifold learning” algorithms is pre-

cisely the definition of a manifold: an abstract space (perhaps of high dimension) which

in small neighborhoods can be approximated well with an euclidean space. To compute

the geodesic distance matrix DS over all points, Isomap finds shortest paths between all

points in the graph made up of all neighborhoods, a problem usually solved with Dijkstra’s

algorithm. These shortest distances are the approximated geodesic distances. Isomap then

minimizes the Frobenius norm of D − DS with respect to the vectors wi, where D is the

matrix of euclidean distances. This multidimensional scaling problem requires the eigen-

decomposition of DS, which is an O(l32) operation. Thus, for a large number of points l2,

Tannebaum et al. (2000) proposed an alternative “Landmark Isomap” algorithm which

computes distances over a subset of l3 < l2 points (landmarks) only. Provided the domain

D of p(w) is convex and developable and the points come from a uniform distribution on

the manifold, the authors prove the asymptotic convergence of Isomap to a perfect isom-
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etry (Bernstein et al., 2000). The algorithm is very useful for dimensionality reduction

(l2 >> l1), since the objective can be minimized for different dimensions l1 and the “opti-

mal” reduced dimension can be obtained by choosing l1 such that |D − DS|F is smallest

(where | · |F denotes Frobenius norm). In our parameterization application, l1 = 2 and

l2 = 3 are fixed instead.

Appendix A.2. The “As-Rigid-As-Possible” (ARAP) algorithm

Suppose we have a triangulation mesh of 3D points where triangles are numbered 1 to T

and the areas of each triangle denoted by At. The goal is to find a parameterization from

the 2D plane uv to the 3D mesh. For each triangle, denote by wt = {w0
t ,w

1
t ,w

2
t} its 2D

vertices on D (to be determined) and by xt = {x0
t , x

1
t ,x

2
t} its 2D vertices defined on the

plane local to each triangle embedded in E3. The mapping between xt and wt has a 2× 2

Jacobian Jt(w) for each triangle which models the distortion it goes through. The ARAP

algorithm (Liu et al., 2008) tries to minimize the area distortions:

T∑
t=1

At|Jt(w) − Lt|2F (10)

where L = {L1, ..., LT} is a set of rotation matrices to be applied to each triangle. The

algorithm is then trying to find a rigid transformation and the locations of the 2D vertices

wt such that areas are distorted as least as possible when the mesh is flattened. The

optimization is performed in 2 stages following an approach by Sorkine and Alexa (2007).

First, the rotation matrices Lt are found for fixed w′s (this involves a SVD factorization

per triangle); then the w′s are found for given L’s (this involves solving a linear system).

The process is repeated until a convergence criterion is reached. Liu et al. (2008) show

how (10) can be modified to add a term that considers also angle distortions, but from

their numerical experiments, and ours, this is not necessary: the angles are preserved quite

well so the resulting parameterization is close to an isometry. An inital parameterization

is required to start the ARAP algorithm; following Liu et al. (2008) we used the Least

Squares Conformal Map (LSCM) which provides a quick (conformal) mapping. Figure 10

shows the different steps of the ARAP algorithm applied to the 398 point CMM dataset

of section 7. Note how a procrustes alignment step is required after the algorithm ends

in order to align the parameterization (ui, vi) with the original data (xi, yi, zi). Since only

small (2 × 2) SVD factorizations are required to solve (10), this algorithm scales much

better with the size of the dataset than the standard Isomap method.
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Figure 10: Illustration of the ARAP algorithm for the CMM data of section 7. Left: the triangulation of the
original 3D data projected over the 2D x-y plane. Center: the 2D triangulation after rigid transformations
are applied. Note how the triangles on the “tail” are most distorted. Right: a final procrustes alignment
step is required to keep the orientation of the resulting (u, v) mapping with respect to the original 3D
data.

Appendix B. Software implementation

We have used Matlab throughout this research due its support for graphics and opti-

mization techniques. We made use of its built-in triangulation routines and found the

MATLABMesh toolbox (Schmidt, 2009) particularly useful. The NURBS surfaces used

in this work were created with the NURBS toolbox (Spink, 2010). The manifold learn-

ing algorithms listed in Table 1, including Isomap, where run using the routines written

by der Mateen et al. (2009). Our ARAP routine was adapted from that by Liu et al.

(2008). When nfit ≤ 1600, no covariance approximation was done and the full covariance

matrix was used in the REML routine. However, when the number of points to fit the

model is large, the suggested REML routine requires the inverse and determinant of a

n × n matrix, and this requires special handling to overcome the computational burden,

which for the inverse has O(n3) complexity. There is a large body of recent literature that

address the “big n” problem in Gaussian Process model fitting. For fitting the models

in the laser scanner example (nfit = 9000) we used the method due to Sang and Huang

(2012) to approximate the 9000 × 9000 covariance matrix. This method partitions δ(w)•

in equation 3 into δ1(w)• + δS(w)• where δ1(w)• is a low rank approximation of δ(w)•

based on m “knots”, used to model long-range correlations throughout the space D, and

δS(w)• = δ(w)•−δ1(w)• is the residual of this approximation for which a taper function is

applied in order to model small-range correlation. While we still used an exponential spa-

tial covariance model with parameters ϕ•, σ
2
•, τ

2
• , • = {x, y, z}, the resulting approximated
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covariance model differs from that used when no approximation to the covariance matrix

was done (equation 6). Throughout the REML optimization, sparse matrix techniques

were used, in particular, the sparseinv.m function (Davies, 2011) was used to compute

the required inverses. For the laser scan data where nfit = 9000, we used m = 576 equidis-

tant knots over a grid in D and a spherical tapering function with γ =0.01 resulting in a

sparsity ratio of 0.0025. For large n, the GGP model allows straightforward parallelization,

since the models for x(u, v), y(u, v) and z(u, v) can be fit in different CPUs in parallel once

the (u, v) parameterization is available, since it is used by all 3 models and the coordinate

response models are assumed independent. We used a cluster of Intel Xeon 3.0 GHz pro-

cessors operating in batch to fit each coordinate model separately. Fitting the 9000 point

laser data set took approximately 4.5 hr of a single CPU (core) time for each of x(u, v) and

y(u, v) and about 100 minutes for z(u, v), the significant difference in time probably due

to the different loads in the CPU’s being used at the time (the euclidean GP model z(x, y)

took also about 4.5 hr. using the same sparsification techniques as for the GGP model).

The Matlab code that implements the GGP modeling of all the examples in this paper

is available upon request from the first author. Matlab’s Optimization, Global Optimiza-

tion, and Statistics toolboxes are necessary.

Appendix C. Differential-Geometrical analysis of the fitted surface

A benefit of the parametric surface model approach is that it allows estimation of lengths,

angles and areas on the true underlying surface in the presence of measurement error (on all

3 coordinates), in contrast to finding the same surface characteristics using a triangulation

of the observed data (which simply either neglects measurement noise or filters the data

disregarding any statistical modeling). Here we show how to estimate the surface area.

Assume we have fitted p̂(u, v) = (x̂(u, v), ŷ(u, v), ẑ(u, v))′, the Gaussian Processes of

each of the parametric components coordinates (1). Define the vectors of partial deriva-

tives (where in the rest of this section we omit the “hat” used to denote estimates of the

reconstructed surface):

d1(u, v) ≡ ∂p(u, v)

∂u
, and d2(u, v) ≡ ∂p(u, v)

∂v

Then the coefficients of the first fundamental form of S, used to determine its surface area,

are equal to (see Kreyszig, 1991):

g11 = |d1|2, g12 = d1 � d2, g22 = |d2|2
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and the area of S defined parametrically on the domain D of the uv plane is given by

A(S) =

∫∫
D

|d1 × d2| du dv =

∫∫
D

√
g du dv (11)

where g = g11g22 − g2
12 is the discriminant of the first fundamental form. It can be shown,

after some algebra, that for the Gaussian Processes assumed in this paper (for p• = 1), all

the partial derivatives in d1 and d2 evaluated at an specific pair (u0, v0) have the form:

∂p•
∂u0

=
∂

∂u0

(f •(u0, v0)
′β•) + σ2

n∑
i=1

∂Si•

∂u0

, • ∈ {x, y, z}

and
∂p•
∂v0

=
∂

∂v0

(f •(u0, v0)
′β•) + σ2

n∑
i=1

∂Si,•

∂v0

, • ∈ {x, y, z}

where
∂Si,•

∂u0

= ϕ•(ui − u0)γi,•
exp(−ϕ•|(u0, v0) − (ui, vi)|)

|(u0, v0) − (ui, vi)|
, i = 1, 2, ..., n,

and
∂Si,•

∂v0

= ϕ•(vi − v0)γi,•
exp(−ϕ•|(u0, v0) − (ui, vi)|)

|(u0, v0) − (ui, vi)|
i = 1, 2, ..., n

where γi,• is the ith entry of the vector γ• ≡ Σ−1
y (M• − F •β•). Integral (11) can be

evaluated numerically for the values (u0, v0) in the domain D of the parameterization

mapping. To illustrate, consider the half cylinder of Figure 5. The exact surface area in this

case is π/2 = 1.5708. We simulated 400 and 900 points with low noise (σ2
• = τ 2

• = 0.00001)

on this surface and use the Isomap parameterization. The estimated areas, using both a

triangulation of the points and using equation (11) are shown in Table 6. As n increases,

the quality of the area estimates improves, with the surface integral being better for this

case, although this is at a computational cost. Depending on the domain of the surface,

doing a coordinate transformation may be better if the integral (11) is used, as usually

done in numerically integration. Integrating over a irregular boundary will provide much

more imprecise results (for both methods), as typically happens in numerical multiple

integration. In general, computing areas via a triangulation is less robust to noise, since

the GGP models are “filtering” the measurement error, although it is considerably faster.
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