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Abstract

The existing procedures for adjusting setup errors in a production process over a
set of lots are based on the assumption of known process parameters. In practice, these
parameters are usually unknown, especially in short-run production. Due to this lack of
knowledge, simpler procedures such as Grubbs’ rules (1954, 1983) and discrete integral
controllers (also called EWMA controllers) aimed at adjusting the initial offset in each
single lot, are typically used. This paper presents an approach for adjusting the initial
machine offset over a set of lots when the process parameters are unknown and are
iteratively estimated using Markov Chain Monte Carlo (MCMC). As each observation
becomes available, a Gibbs Sampler is run to estimate the parameters of a hierarchical
normal means model given the observations up to that point in time. The current lot
mean estimate is then used for adjustment. If used over a series of lots, the proposed
method allows to eventually start adjusting the offset before producing the first part in
each lot. The method is illustrated with application to two examples reported in the
literature. It is shown how the proposed MCMC adjusting procedure can outperform
existing rules.
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1 Introduction

Modern manufacturing practice has as one of its tenets the reduction of the size of the lots
or batches of product (i.e., a tendency for smaller production runs) in order to improve the
efficiency of operations and eliminate waste. When parts are processed in small batches,
two sources of variability become relevant: the ”within-batch” variability and the ”between-
batches” one. Between-batches variability implies that the quality characteristics produced
in each batch or lot can be characterized by different means which represent offsets when
measured with respect to a target value. This can be due to ”day-to-day changes, shift-to-
shift changes, unknown shifts in level of a machine for a given setting due to repair work,
etc.” (Grubbs 1954, 1983), or more generally, due to an incorrect setup operation. If the
offset characterizing a lot were observable without error, it could be removed at once by
adjusting the process mean after the first part in the lot has been observed. Unfortunately,
within-batch variability does not allow to observe directly the magnitude of the offset, and
the adjustment procedure should estimate the offset to effectively reduce scrap and rework.

F. E. Grubbs proposed a procedure that will be called in the following Grubbs’ “extended
rule” (following Trietsch, 1998), aimed at adjusting initial offsets over a set of lots. In his
model, Grubbs assumes the initial offset in each lot can be considered as an occurrence
of a random variable with known mean p = 0 and known variance o} (the between-batch
or between-lot variance). Furthermore, the within-batch or within-lot variance o2 (due to
process and measurement errors) is also assumed to be known before starting adjusting. No
further offsets or “shifts” are assumed to occur within a lot. If all these assumptions hold,
Grubbs’ extended rule is optimal if the off-target costs are quadratic and no cost is incurred
when performing the adjustments. If off-target costs are based on a 0-1 loss criterion, Sullo
and Vandeven (1999) derived the optimal adjustment strategy considering again process
parameters are known.

Del Castillo, Pan and Colosimo (2002a) showed how Grubbs’ extended rule has a Bayesian
interpretation based on a Kalman filter where an a priori knowledge of parameters character-
izing both batch-to-batch and within-batch distributions is required. When no information
on the offset is available, Grubbs’ suggested using a different rule, that we will call Grubbs’
“harmonic rule” following again Trietsch (1998). This can be derived as a special case of the
extended rule when the prior distribution on the initial offset has infinite variance, i.e., no
a priori knowledge is available (Del Castillo et al., 2002a). Although derived to compensate
for an offset while processing a single lot, this rule and the simple integral controller (or
EWMA controller) can perform better than the extended rule (Del Castillo et al., 2002b),
since optimality of the later rule is no longer guaranteed if the prior distribution of the initial
offset is not exactly equal to the true setup error distribution.

The present paper proposes a different approach for process adjustments over a set of
batches, when no previous knowledge on the distribution of the setup offsets and on the
process variability is available. Hence, the on-line adjustment procedure proposed herein
can be useful when starting processing lots of a new product or with a new installed pro-
cess. The approach is based on hierarchical Bayesian models and uses Markov Chain Monte
Carlo (MCMC) to derive estimates used to compute the adjustments at each observation.
Therefore, a sequence of MCMC runs is conducted, one per adjustment, and the results of
each are then used to adjust the process.



It will be shown, based on two examples reported in the literature that the proposed
adjustment approach can perform considerably better than competitor rules, in particular,
Grubbs’ harmonic rule and the EWMA controller, when no a priori knowledge is available.

The remainder of this paper is organized as follows. The problem of adjusting setup errors
over a set of lots and its relation with performing inference in a one-way random effects model
is presented in Section 2. The basic motivation for using a Bayesian hierarchical model and
details on how to compute the adjustments at each observation are presented in Sections 3
and 4, respectively. Implementation of the Markov Chain Monte Carlo algorithm used to
compute estimates required (Gibbs sampling) and related convergence issues as applied to the
setup adjustment problem are discussed in Section 5. Section 6 contains some performance
comparisons between the proposed approach vs. other competing adjustment rules (Grubbs’
rule and two EWMA controllers) on the basis of two examples presented in Box and Tiao
(1973). Finally, the last section gives conclusions and discusses some directions for further
research.

2 Setup offset adjustments over a set of batches

Assume parts are processed in batches or lots and that the quality characteristic of parts
in each lot is characterized by a different initial offset or deviation from nominal. Denote
by @ = 1,..., I the lots processed, by 7 = 1,...,J the parts in the lot and by Y}; the quality
characteristic observed at the j part of the i lot (or at time (i, 5), for short). This quality
characteristic is measured with reference to a nominal value T which is assumed, without loss
of generality, to be equal to zero. Denote by 6; the initial (unknown) offset before starting
processing the 7 lot. It is assumed that the initial offset in each lot is generated as a random
realization from a normal distribution with mean p and variance o3, both unknown, i.e.,

01|M703 ~ N(/L,O'g) : (1)

Note that contrary to Grubbs’ extended rule, parameters are assumed unknown and the
mean p can be different from zero. This can occur due to some systematic errors that affect
all the setups performed on the machine.

Before starting processing the first item of the i lot, assume the controllable factor has
been set to the value U;g. This value will be referred in what follows as the “set point” of
the machine. The deviation from target for the first part processed is thus characterized by
a mean 6;; equal to the initial (unknown) offset 6; plus the set point decided:

0 = 0; + Uy

As in Grubbs’ model (Grubbs, 1954, 1983), process variability plus measurement errors are
modelled together and assumed to be normally distributed with zero mean and variance o2
It is further assumed that o2 is unknown, relaxing the corresponding assumption in Grubbs’
extended rule. The quality characteristic observed at the first part in the i lot is thus given
by:

Yii =0a +vi



where v;; YN (0,02) represents random error. Once the quality characteristic has been
observed, the adjustment VU;; = U;; — U, has to be determined and implemented in order
to ”cancel” the offset 6,1, i.e.,

VUi = —0i
where 0;, is an estimate of the offset of the current lot (lot 7) after obtaining the measurement
for part 1. Due to this adjustment, the mean of the quality characteristic for the next
processed part changes to:
Oio = 0;1 + VUi

and the quality characteristic observed for the second part in the lot is given by:
Yio = 02 + viz

Continuing this way, the quality characteristic of the j* part processed in the i lot is given
by:
Yij = 0i +vij (2)
where:
0ij = bij—1 + VU1 (3)
and #;0 = 6;. Hence, the next adjustment is selected as:

Therefore, adjustments VU;; can be determined by estimating the relevant unknown param-
eter, in this case, the mean of the quality characteristic in the current lot, based on data
available up to time (i, j).

An important relationship with the problem of estimating the means in a one-way ran-
dom effects model can be seen after some manipulations in expressions (2) to (4). Solving
recursively equation (3) and considering that VU;; = U;; — U;;—1 , the mean of the quality
characteristic can be rewritten as:

Oij = 0; + Uij_1 . (5)
Therefore, the quality characteristic of the j part in the i lot can be rewritten as:
Y;j = HZ + Uz’j—l + U,’j . (6)

Considering that at the time Yj; is observed, U;;_; is known, a new variable X;; can be
defined as:
Xij = Y;j — Uijfl = 02 + Uz’j . (7)

Merging the last expression with equation (1) permits to derive an analogy with a one-way
random effects model, i.e.,:

Xij|0;, 00 ~ N(b;,07) , (8)
9i|:u70—g ~ N(,LL,O';)



Finally, expression (4), which defines the adjustment rule or feedback “controller”, can be
rewritten from equation (5), thus obtaining:

VU, = _55 = —é\i|mij — U1 or, alternatively,

Uj = —bijz¥ | 9)

where €% = {x11, T12, ..., L1, .-, Ti1, ..., Tij } Tepresents all (transformed) data observed at the
time the estimate of #; is computed, and é:|:c” represents the estimate of the i mean in the
random effects model, given all data available up to time (7, j). We point out that selecting
an adjustment at each step reduces to performing inference about means in an unbalanced
one-way random effects model as long as processing of the current lot (i.e., the last lot) has
not been completed (so j < J). We now consider the Bayesian estimation of the parameters
of such model.

3 Why a Bayesian model?

Box and Tiao (1973), Gelman et al. (1996) and Carlin and Louis (1996) discussed par-
allels in random effects model estimation using sampling-based and Bayesian approaches.
In particular, consider the estimation of the i mean, 6;, in the model given by equation
(8). Referring for simplicity to the balanced case, traditional inference based on sampling
theory can be performed by first performing an Analysis of Variance (ANOVA). Standard
sampling theory results suggest two candidate estimators for the lot means. The first one is
the average of data collected in the i lot:

Al 2T
S M J ’

S |

(10)

where, following common notation, a dot in the subscript means average is computed over
that subscript. The second estimator considers complete pooling and is given by:
D Vi (11)
1
The selection between these two estimators depends on the outcome of an F test performed
to evaluate if means characterizing lots can be considered different. If the test suggests
that the ratio of between to within mean squares (M .S,/MS,,) is not statistically significant,
the pooled estimator in (11) should be used, while separate estimates (given by equation
10) have to be used otherwise. Depending on the first type error selected for the F test,
usual sampling-based approaches imply a sudden shift from none to complete pooling of the
independent estimates. As outlined in Gelman et al. (1996) the Bayesian approach permits
to naturally overcome this choice, since the Bayesian estimator of 6;, i.e., the posterior
mean when adopting a normal prior density, is a weighted combination of the complete and
separate estimates and the extreme cases (none or complete pooling) turn out to be special
cases of the Bayesian solution. Box and Tiao (1973, pp. 388) pointed out how this has
a parallel with certain results in sampling theory, specifically with the work of James and
Stein.



The Bayesian approach has some additional advantages over the sampling approach re-
lated to the estimation of variance components and to flexibility in departures from assump-
tions. Variance components estimates can be useful in adjusting for initial offsets. After
some lots have been processed, estimates of between-lots and within-lot variances, i.e., o3
and o2, can be obtained and Grubbs’ extended rule can be adopted thereafter. Considering

the estimation of the variance components, traditional sampling theory suggests using:

aAg = MS, and (12)
-~ MS(, - MSw
o5 = —7 (13)

A first well-known problem concerns c;g, which turns out to be negative if M S, < MS,.

Furthermore, the estimate o3 given by (13) has a complex distribution that induces problems
in deriving a confidence interval for this quantity. In contrast, the Bayesian approach permits
to tackle easily the lack of normality and/or independence and possible heterogeneity of
variances (Box and Tiao, 1973).

Due to the considerations outlined, a Bayesian approach has been adopted for determining
the adjustments for an on-line setup adjustment in a lot by lot production process.

4 Bayesian online adjustment of initial offsets

From a Bayesian perspective, the one-way random effects model is a special case of a hier-
archical model, used in describing multiparameter problems in which parameters are related
based on some structure that depends on the specific problem addressed.

The Bayesian model used for the setup adjustment problem can be described by con-
sidering the case when the j% part in the i lot has been just processed and we have to
decide the adjustment for the next part in lot 7. In this case, the first stage of the hierarchy
models the distribution of data conditionally on unknown parameters and is given by the
first equation in (8). In this equation, the (transformed) data distribution is given condi-
tionally on two unknown parameters: the current mean 6; and the variance within lots o2.
The second stage in the hierarchy specifies the distribution of these unknown parameters.
The within lot variance o2, which represents process variability plus measurement errors,
does not depend on any other parameter. Therefore the probabilistic specification of this
parameter at the second stage of the hierarchy models the previous or subjective knowledge
on it, i.e. its prior distribution. Adopting conjugacy at each step of the hierarchical model
(a common choice for the random effects model, Gelfand et al., 1990; Gelfand and Smith,
1990), the prior distribution for o2 is given by:

0'12)|Cl2, b2 ~ IG(CLQ, b2) s (14)

where IG represents an Inverse-Gamma distribution and as, by are assumed known and
have been chosen both equal to 0.001 to model ”vague” prior information (Spiegelhalter et
al.,1994).

The second unknown parameter modelled at the second stage in the hierarchy is the initial
offset 6;, given by equation (1). As it can be observed, its distribution is given conditionally
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on other two parameters, ;1 and oj. These are hyperparameters and are modelled at the
third stage in the hierarchy, where the prior distributions on them is reported. Adopting
once again conjugacy, priors on these hyperparameters are given by:

#|N0703 ~ N(,LLO,CT%) ) (15)
a§|a1,bl ~ IG(CLl,bl) s (16)

where IG is the Inverse-Gamma distribution and pg, 0, ay, b; are assumed known. In par-
ticular, they were selected according to values suggested in the literature (Spiegelhalter et
al.,1994) to model ”vague” prior distributions, i.e., pg = 0, o3 = 1.0E + 10, a; = b; = 0.001.

The random effects model, hereafter called model My, can be described by three stages
modelling respectively data, parameters and hyperparameters. Using this approach, the
model M, can be graphically represented as in Figure 1 and is given by:

Three-stage hierarchical model M,

o first stage: data Xy, (k =1,...,7 and p = 1, ..., J) with distribution given by the first
equation in (8);

e second stage: parameters 0y, (k =1,...,i) and o2 with distributions given respectively
by equations (1) and (14);

e third stage: hyperparameters p and o with distributions given respectively by equa-
tions (15) and (16).

We point out the similarity between the assumed model and a “normal means” model
(Gelfand et al., 1990). Once data from all lots are available, the normal means model allows
for different lot sizes and different within-lot variances whereas we assume a constant lot
size and the same within-lot variance distribution for all lots. Extension to such case is
straightforward but not addressed in this paper.

As already mentioned, the adjustment VU;; can be computed using (9) once the deviation
from target Y;; has been measured, i.e., it is based on estimating the initial offset ¢;. Using
the three-stage hierarchical model, the estimator of ; is given by the expected value of the
posterior distribution and can be computed if at least two parts from different lots have been
already processed (otherwise the variance between lots o3 can not be estimated). Therefore
adjustments VU;; for lots starting from the second lot are given by:

Uyj=—E]z¥ M) i=2,....,1 and j=1,...,J, (17)

where conditioning on M, means the estimation is computed using the random effects model
M.

Notice how when selecting the adjustment for the j+1 part in the i’ lot, we have unequal
lot sizes since for all the lots already processed (k = 1,...,7 — 1) J entries are available (in
accordance to our constant lot size assumption) while for the current lot (k = 1) just j < J
data have been already collected. However, lot sizes can be treated as equal by considering
future data (i.e., p = j+1, ..., J) of the current lot i as if they were missing data (Spiegelhalter
et al., 1994).



for (p IN 1)

for (e IN 1)

Figure 1: Graphical representation of the three-stage model M;, where 7, = 1/0? and
79 = 1/03 are the precisions of the two normal distributions in the model.

A main advantage of applying Bayesian hierarchical modelling is the possibility to select
the initial set-point U;;;1 ¢ that has to be set on the machine before processing the first part
in the next lot (lot ¢ + 1). In contrast, Grubbs’ harmonic rule requires to collect at least
one (uncontrolled) observation in each lot in order to set the controllable variable starting
with the second part in each lot. Using the hierarchical model described, the predictive
distribution for the offset in the next lot can be derived using information collected in all
the previous lots. Therefore, we can set:

Uis1 0= —E(0 4]|z*, M) for i=3,..,1 (18)

where 6, |z*, M; is the posterior predictive distribution (Gelman et al., 1996) of a future
offset given all the data collected from previously produced lots. Similarly as before, pre-
diction can start from the third lot since at least two lots have to be processed to start
estimating the variance between lots.

To start adjusting in the first lot, a reduced two-stage model M, was used. When only
one lot is being processed, the initial offset #; can be considered not as a realization from
a random variable but simply as an unknown parameter. Hence, the three-stage model M,
“collapses” into a two-stage model, describing the data distribution at the first stage and
priors on unknown parameters at the second one. Therefore, the first stage in model M; is
given by the first equation in (8), just as in model M;. The second stage reports priors on
the two unknown parameters 6, and o2. The prior on the last parameter is given again by
equation (14), and the prior on 6, is given by:

91|/'La0-3 ~ N(Ma O-Z) ) (19)
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Xy

B
for (p IN 143
Figure 2: Graphical representation of the two-stage model M, where 7, = 1/0? is the
precision of the normal distribution in the model.
Batch ‘ U; Ui;
1 0 equation (21) for j =1 and equation (20) for j =2,.....J
2 0 equation (9) for j =1,...,J
3 ... I | equation (18) equation (9) for j =1,...,J

Table 1: Bayesian adjustment of initial offset over a set of lots.

where now p and o3 are supposed known and chosen to model vague prior information on
61, i.e., p = 0 and 0 = 1.0E + 10. Therefore, the model for selecting adjustments in the
first lot is given by:

Two-stage hierarchical model My

e first stage: data Xy, (p =1, ..., j) distribution given by the first equation in (8);

e second stage: parameters 6; and o2 with distributions given respectively by equations
(19) and (14).

For the second model the adjustments VU;; are obtained by computing the expected
value of the posterior distribution of 6;, given data already observed and the model M, | i.e.:

Ulj = —E(01|$1j,M2) s ] — 273: seey J ; (20)

where j starts from 2 since at least two parts have to be processed to estimate the within-
lot variance o2. To start adjusting just after the first part in the first lot is processed and
measured, the trivial estimator:

Ui = —o11 (21)

can be used which coincides with Grubbs’ harmonic rule. In summary, the proposed adjust-
ment procedure consists of computing the adjustments as reported in Table 1.



5 Gibbs Sampling implementation and convergence is-
sues

Although Bayesian models permit to overcome difficulties implied by sampling theory and to
derive easy extensions to more complex problems, it is well-known that their main drawback
is related to computational difficulties in the calculation of marginal posterior densities re-
quired for Bayesian inference. Problems exist related to the exact computation of functions
of the marginal posterior densities since they require solving complicated high-dimensional
integrals. In the last two decades, these difficulties have been greatly reduced due to the
development of simulation-based approaches (Gelfand and Smith, 1990), which permit to nu-
merically compute marginal posteriors. In particular, Markov Chain Monte Carlo methods
are widely spread and consist of performing Monte Carlo integration using Markov Chains.
One of the better known MCMC algorithms used to construct this chain is the Gibbs sam-
pler. The basic ideas of the Gibbs sampler applied to the adjustment problem at hand are
summarized in Appendix Al.

A complete implementation of a Gibbs sampler requires dealing with convergence issues.
In particular, it is necessary to specify the variables ¢ (truncation point) and m (stopping
point) in equation (28) in Appendix Al. The first of these variables represents the number
of iterations that are required to reach the steady-state (i.e., the approximately true) distri-
bution. The t variable constitutes what is called the burn in period in which observations
have to be discarded for computing moments of the posterior marginal densities. This rep-
resents the transient period during which the Markov Chain has not reached stability and
is thus highly influenced by starting points (initial values of the parameters that have to be
estimated).

The second variable, m, is the total number of iterations, and is required to determine the
additional number of samples m —t that have to be drawn after convergence has been reached
to compute all relevant moments of the posterior distribution (equation 28). This variable is
critical due to the Markov nature of the algorithm. If convergence has been reached, all the
samples are identically distributed. However, since the samples are autocorrelated, the slower
the simulation algorithm is in moving within the sample space, the higher the number of
samples required to efficiently obtain the required estimates. Although typical choices in the
literature (¢ = 1000 and m = 10000) have shown to be appropriate for many applications, we
use convergence diagnostic algorithms proposed in the literature to evaluate if these values
are satisfactory for the adjustment problem. These convergence diagnostic algorithms are
briefly described next. This is followed by a discussion of the software implementation of
the proposed approach to the setup adjustment problem.

5.1 Convergence diagnostic algorithms and their use in the ad-
justment problem

Although theoretical results oriented to define ez-ante the number of iterations ¢ required

to reach convergence appear to be a promising solution to deal with convergence issues in

MCMC, results obtained in this field are far from being actually applied due to their math-
ematical complexity and excessive calculation involved (Cowles and Carlin, 1995). Thus,
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most of the applied work on MCMC focuses on using a set of diagnostic tools for assessing
convergence by analyzing output produced by MCMC simulations. Numerous studies (e.g.,
Brooks and Roberts, 1998; Cowles and Carlin, 1995) have compared the convergence diag-
nostics proposed in the literature over a set of problems in order to rank them. Since at
this time, no diagnostic algorithm seems globally superior to all others, we follow the rec-
ommended approach of applying simultaneously more than one diagnostic method to assess
convergence of the lot mean estimates needed for adjustment at each point in time (7, j). In
particular, we use two of the most popular methods adopted in the literature, proposed by
Raftery and Lewis (1996) (RL) and Gelman and Rubin (1996) (GR).

The first algorithm (RL) is based on monitoring the autocorrelation within one single
chain. It requires as input the quantile ¢ of the posterior distribution that has to be estimated
to within £ with probability s. Default values suggested by Raftery and Lewis are ¢ = 0.025,
r = 20% - ¢ = 0.005 and s = 0.95. Since the adjustment selection requires computing the
posterior mean, the 0.5 quantile (median) has been selected as reference. Accuracy has been
defined accordingly as ten percent of the desired quantile, thus obtaining » = 10% - ¢ = 0.05.
Concerning s, the value s = 0.95, suggested by Raftery and Lewis, has been utilized.

The RL algorithm has the main drawback of masking excessive slow convergence of
Markov Chain simulation, a problem common to other methods based on a single simulated
chain. It could happen that looking at one single chain, convergence seems achieved although
the chain is stuck in one place of the target distribution. In order to overcome this problem,
Gelman and Rubin (1992, see also Gelman, 1996) suggest to perform multiple simulations,
starting from different initial values for parameters that have to be estimated. These val-
ues have to be chosen to be “overdispersed” with reference to the target density. Since the
target density is not known in advance, sometime this technique has been criticized for the
lack of guidelines about selecting the starting points. In our process adjustment application,
however, this choice can be easily performed considering basic knowledge of the process pro-
ducing the quality characteristic. For example, a rough idea of the process capability can
give information on the range of variation (at least its magnitude) of the quality character-
istic and this information can be easily used in determining overdispersed initial values for
parameters derived through MCMC.

Once starting values are selected, the GR algorithm is based on mixing simulated chains
and comparing the variance within each chain to the total variance of the mixture of chains.
These (estimated) variances permit to derive the “estimated potential scale reduction” factor
R. As simulations converge, R declines to 1, thus assessing that parallel chains are essentially
overlapping. The rule of thumb suggested when performing the GR diagnostic is to continue
simulation until R is close to one, for example, lower than 1.2. In the setup adjustment
application, diagnostics are run on the simulated lot mean (6;) corresponding to the current
lot (7).

Using both of the diagnostic algorithms briefly described, the proposed setup adjustment
approach can be summarized as follows. After the first part is processed in the first lot and
the first -trivial- value U;; = —wq; is set on the machine, the second part in the first lot is
processed and x5 is observed. Therefore, adjustment U;s has to be selected according to
equation (20). The expected value required is thus computed through MCMC. Starting from
the trial values suggested in the literature (¢ = 1000 and m = 10000) two MCMC chains are
simulated, each one starting from different initial values, as previously mentioned. Then, the
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RL diagnostic check is performed on each chain for #,, the parameter of interest. If the RL
algorithm suggests for one of the chains higher ¢ or m values, (i.e., convergence diagnostic
has failed thus far), MCMC is rerun for both chains using the new ¢, m parameters suggested
by RL. To avoid an excessive number of reiterations, these values are rounded to the upper
multiple of 500 for ¢ and the upper multiple of 5000 for m (thus increasing ¢ and m in steps
of 500 and 5000, respectively). Hence, MCMC simulations and RL convergence checks are
performed again until the diagnostic check is satisfied. Starting with the values eventually
assessed for ¢ and m, the GR diagnostic is then performed on both chains (for 6,).

Similarly as for the RL algorithm, if the GR method concludes that convergence has
been reached, i.e., the estimated potential scale reduction factor R < 1.2, an adjustment
is computed by calculating the expected value of the posterior distribution of 6, obtained
from the two final MCMC chains. Otherwise, ¢ and m are increased. Contrary to the RL
diagnostic, the GR algorithm does not suggest new values for these parameters, so both are
increased (in steps of 500 for ¢ and 5000 for m). Both chains are thus simulated again and
the GR check performed until the algorithm permits to conclude that convergence has been
reached and setting U5 is possible. We then proceed to compute U;3 and so on until we
process all parts in all lots.

5.2 Computer implementation of the proposed approach

All the steps in the previous section are performed for each adjustment, computed following
Table 1. A Visual Basic code has been written to simulate the determination of the adjust-
ments over a set of lots. Each time an adjustment has to be computed at time (4, j), the
code launches the execution of both the MCMC simulations and the convergence checks.
The MCMC simulation is coded in the Bugs (Bayesian inference Using Gibbs Sampling,
Spiegelhalter et al., 1994) language, while the RL and GR convergence diagnostic algorithms
in the CODA library (Best et al., 1995) are used running under R, the freely available ver-
sion of S-plus. After MCMC convergence is assessed, the adjustment is computed and all
input files required to rerun MCMC simulation for the next adjustment are automatically
generated by the VB program.

With respect to computational time, the software requires few seconds to perform each
MCMC simulation and around half a minute to perform each convergence check on a Pen-
tium 1T 333MHz. However, due to the use of different available software packages, most
of the computational time is due to writing and reading MCMC output, considering that
each chain is constituted by thousands of values. Therefore, a specific code written to per-
form MCMC and convergence checks maintaining in memory all these values of the chains
should significantly improve computational times. For most high-value added discrete part
manufacturing processes we envision the MCMC adjustment approach to be applied, the
aforementioned computing times should be adequate, that is, well below the time between
consecutive parts are produced. The present version of the software performs the different
MCMC simulation chains and the convergence checks sequentially, so computational times
could be reduced by simulating different chains on parallel processors.
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6 Two examples of sequential Bayesian setup offset ad-
justment over a set of lots

Bayesian adjustment of an initial or setup offset is useful when several lots have to be
processed but no information is available on parameters characterizing offset and process
distributions. Alternative feedback methods that can be used in this case are the harmonic

rule due to Grubbs (1983):

1

(with Ujp = 0) and the integral controller (Box and Luceno, 1997):
VU, =AYy | (23)

(with U;p = 0) since both these rules do not require any information on offset or error
distributions (Del Castillo et al. 2002b). The performance obtained with the MCMC-
based adjustment method has been compared with the performance of these competitor
rules considering two examples. Both examples were presented by Box and Tiao (1973) in
the framework of Bayesian estimation in a one-way random effects model and are reproduced
in Table 2. The first example refers to the yield of dyestuff measured from five samples taken
from six batches of raw material while the second one relates to randomly generated data with
=4, 09 =2 and o, = 4. This was used by the authors to study the Bayesian estimation of
variance components in a case where sample based theory determines a negative estimate of
og obtained with equation (13) where M S, < M S,,. For illustration purposes of the on-line
MCMC adjustment approach, we pretend the data becomes available sequentially in time
and apply the MCMC adjustment procedure at each time instant.

Two MCMC chains were simulated at each step of the adjustment procedure and different
initial values of the parameters that have to be estimated (p, o3, 02 and 6;, where i=1,...,6
for the model M;; o2 and 6; for the model M,) were specified for each chain. Among
these parameters, the 6;’s in model M; and #; in model M, can be randomly generated by
the software, using equations (1) and (19), respectively. To make this random generation
different for the two chains, a different seed must be specified for each chain. Initial values
and seeds used for both examples are reported in Table 3. To see how the effect of these

First example Second example

batch batch

1 1545 1440 1440 1520 1580 1 7.298 3.846 2434 9.566  7.99
1540 1555 1490 1560 1495 5.22  6.556  0.608 11.788 -0.892
1595 1550 1605 1510 1560 0.11 10.386 13.434 5.51  8.166
1445 1440 1595 1465 1545 2212 4.852 7.092 9.288  4.98
1595 1630 1515 1635 1625 0.282 9.014 4.458 9.446 7.198
1520 1455 1450 1480 1445 1.722  4.782 8.106 0.758  3.758

DO W N
DO W N

Table 2: First example: dyestuff data Yj;, for i=1,...,6 and j=1,...,5 (Yield of dyestuff in
grams of standard color computed with respect to target value of 1400 g). Second example:
data with =4, 0y = 2 and o, = 4 (Box and Tiao, 1973).
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Chain | p op o2 seed

First | 2000 0.001 0.001 1056126
Second | -2000 1000 1000 56111235

Table 3: Initial values and seeds for the random generation adopted in the two MCMC chains
simulated at each step of the adjustment procedure for both the examples.

3000 -
2000 + first chain
1a00 A
I:I i . Tt o w“-‘-"' sl L AWW
-100o 4
-2000 S second chan
tteration
-300o !
1] 100 200 300 400 s00 a0

Figure 3: First 600 iterations of the two MCMC chains simulating #3 in adjusting the second
part in the third lot for the first example.

starting values disappear as the MCMC simulation proceeds, consider the plot shown in
Figure 3. It represents the first 600 iterations of the two MCMC chains estimating #3 in
adjusting the second part of the third lot for the first example. As it can be observed, the
two chains start respectively around 2000 and -2000 (their mean values) and have almost
“forgotten” these starting points after 100 iterations. The trial value adopted, i.e., ¢ = 1000,
was observed to be adequate for all the simulations performed with the first data set while an
increase to only ¢t = 1500 was required for the second case studied. With respect to the total
number of runs m, it was started from the trial value of 10000. Due to high autocorrelation
of the chains, it was increased as suggested by convergence algorithms to the final values of
45000 and 20000 for the first and the second examples, respectively.

Adjustments were computed with the proposed procedure for all the lots processed in
the two examples. After the thirty adjustments were computed, a quadratic symmetric loss

function, given by:
_ 2
=33V, (21)

was used to compare the performance obtained with this approach vs. Grubbs’ harmonic
rule and two discrete integral controllers (or EWMA controllers) with different weights A =
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Adjustment rule | Costs C  AC %
First example MCMC 160982.39
GRUBBS 221316.15  27%
EWMA(A =0.4) | 254072.75  37%
EWMA (A =0.1) | 437815.98  63%
Second example MCMC 533.27
GRUBBS 649.27 18%
EWMA(A = 0.4) | 74595  29%
EWMA(A=0.1) | 107252  50%

Table 4: Costs C' (equation 24) related to the different adjustment rules and percentage
savings AC' % induced by the MCMC-based approach over the other rules for the two
examples.

0.1 and A = 0.4. These weights were chosen as they cover the range of EWMA weights
recommended in the process adjustment literature (Box and Luceno, 1997). Large values of
A (i.e., closer to 1) will bring the process back to target faster on average, but will increase
the variance of the controlled process (Del Castillo, 2001), also increasing the cost function
(24).

Figure 4 reports the pattern of deviations from target Y;; for the dyestuff data (first
example) observed in each lot using Grubbs’ harmonic rule, the MCMC-based adjustment
method, and the two EWMA controllers (with A = 0.1 and 0.4, respectively). As it can be
observed, the deviations from target induced by the MCMC approach are smaller than the
ones due to the other rules, especially after the first two lots have been machined, i.e., after
information on the variance between lots becomes available.

The deviations from target Y;; observed for the second example in each lot using the four
competing rules are reported in Figure 5, which, as before, testifies the better performance
of the MCMC approach compared to the other adjustment rules, especially after the first
two lots have been processed.

Global savings in costs attained in each lot using the MCMC-based approach versus
Grubbs’ rule and the two EWMA controllers are reported in Figure 6 for both the examples
studied. As it can be observed, savings in costs are almost always positive, showing that the
MCMC approach outperforms the competitor adjustment rules considered. Furthermore, the
three alternative methods can be ranked noting that savings induced by the MCMC approach
decrease going from the EWMA controller (A = 0.1) to the other EWMA controller (A = 0.4)
and eventually to Grubbs’ adjustment rule. This ranking is even more clear considering the
total costs C' obtained applying the different adjustment rules to the two examples considered
(Table 4). As it can be observed, percentage advantages determined by the MCMC Bayesian
procedure vary from 27 % to 63 % for the first example and from 18 % to 50 % for the second
one. The savings are mainly due to the ability to predict the initial offset before starting a
new lot.
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Figure 4: Deviations from target Y;; obtained using Grubbs’ harmonic rule, the MCMC
approach and the two EWMA controllers (with A = 0.1 and 0.4) to adjust an initial offset

for the dyestuff data (Table 2).
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Figure 5: Deviations from target Y;; obtained using Grubbs’ harmonic rule, the MCMC
approach and the two EWMA controllers (with A = 0.1 and 0.4) to adjust an initial offset
for the second example (Table 2).
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7 Conclusions and further research

This article presented a procedure to adjust the setup errors of a production process over
a set of lots assuming a one-way random effects model (with unknown parameters) for the
initial offset in each lot. The approach presented is based on repeatedly estimating the initial
offset in each lot through Markov Chain Monte Carlo simulation of a Bayesian hierarchical
random effects model. Assuming a quadratic off-target cost model, the approach presented
was compared with adjustment rules that can be applied when parameters of the initial
offset distribution are unknown, i.e. Grubbs’ rule (based on stochastic approximation) and
discrete integral controllers (or EWMA controllers). The procedure was illustrated with
application to two examples presented in the literature (Box and Tiao, 1973) where the
advantages attained with the approach presented here vary from 18 % to 27 % and from 29
% to 37 % when considering Grubbs’ rule and the best EWMA controller utilized (A = 0.4),
respectively. The proposed approach for setup adjustment can be applied to high-value
added, short run manufacturing processes, where the computational expense and relative
complexity of the proposed adjustment rule compared to the simplicity of the alternative
rules studied can be justified.

Starting from these encouraging results, a first direction for further research can be to
extend the numerical comparisons to better understand the effect of different factors (such as
the lot size, the number of lots, the parameters characterizing the initial offset distribution)
on the advantages obtained with the Bayesian approach. As previously mentioned, a further
direction concerns the situation where the number of (small) lots processed is relevant. In
this case, it is possible to estimate the unknown parameters through MCMC and plug in
these estimates in a simpler adjustment rule that assume known parameters, e.g., in Grubbs’
extended rule.

Taking advantage of the flexibility of hierarchical models, a further direction of research
could be related to different extensions of the approach presented to model situations that
can arise in short-run manufacturing. As examples, measurement errors or tool wear can be
easily included in the study adding a stage in the hierarchy and relaxing the assumption of
i.i.d. random errors, respectively.
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Appendix Al: Gibbs Sampling in the one-way random
effects model

To estimate all the unknown parameters and hyperparameters in the random effects model,
the Bayesian approach requires to assume a set of prior distributions. A common choice
for the random effects model (Gelfand et al., 1990; Gelfand and Smith, 1990) is adopting
conjugacy at each step of the hierarchical model, thus assuming:

ptlpo, o5 ~ N(po, 03) (25)
0§|a1,b1 ~ IG(alybl) 5
03|a2, bz ~ IG(a2; bZ) ;

where fiy,02, a1, by, az, by are assumed known. In particular, a;, b, (and/or ay, by) can be
assumed equal to 0 to model the usual improper prior for o} (¢2) and a vague prior for p
can be assumed by setting o2 sufficiently great, e.g., o5 > 10%.

If all the observations from all lots !/ = (z;;, i=1,...,I; j =1,...,J) have been col-
lected, inference on the unknown parameters can be performed as follows. Due to conjugacy

adopted at each step, all the full conditional posterior can be derived as follows (Gelfand et
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al., 1990):

7r'(,u|:13”,0,03,03) =

o2+ Io2 ’oi+1o2

1 1
102 I 2 )
7T(0'9|$ 707:u70-'u) = IG <a1+§I;b1+§ E (ez_ﬂ)>

1 1
102 I 2 )
7r(0-1)|m 707M700) = IG <a2+§IJ;b2+§ E E (ij_az)>

Jo? o? 0202
o(0lx! 02, 02) = N 0 gl 1 v 1, —2 g
(] H: 99 ,) Joi + o2 Jag-l—ag'u Joi + o2

where @ = (01,0, ...,01), 7i. = >, “F, zl = (z1,..,7;), 1is a I x 1 column vector of
1s and I is the I x I identity matrix. Although similar to the random effects model, the
process adjustment problem focuses on the lot means 6; as the parameters of interest, rather
than on the variance components. The conditional posteriors can be all expressed in closed
form as in (26), but the computation of the marginal posteriors requires solving complex
high-dimensional integrals.

Introducing a more general notation, assume that the hierarchical model requires the
estimation of K parameters W = (W, W5, ..., W), which are modelled as random variables
in the Bayesian framework. In the random effects model, K = I + 3, i.e., the I components
of 0, u, 02 and o3. Due to conjugacy (although this is not a required hypothesis for the
computational approach described) all the full conditional posteriors

p(wk|i'3ij; W1, W, ooy Wi—1, Wk41; +-+y wK)

can be assumed known. To estimate each parameter Wy, the marginal posterior p(wy|z®)
has to be computed.

Markov Chain Monte Carlo methods can be used to estimate these posterior marginals.
In particular, one of the most powerful MCMC methods is the Gibbs Sampler, which has
the relevant advantage of being almost independent of the number of parameters and stages
in a hierarchical model. Consider the general problem of estimating K parameters W =
Wi, Wa, ..., Wk and assume that the full conditional distributions p(wy|wiz), k = 1,..., K,
are all given. Given an arbitrary set of starting values (W,”, W% WI({0 ), the first iteration
in Gibbs sampling is performed as follows:

Draw Wl(l) ~ p(w1|W2(0); e WI({O)) ;
Draw WQ( ) Np(w2|W1(0); 3(0)= '-'7WI((0)) ;
Draw W[(;) ~ p(wk|W1(0)7 - W1(<011) ;

thus obtaining as a result a set of points (Wl(l), WQ(I), e W[(;)) which represent the starting
values for the next step. Iterating the process also in this case the convergence is proved.
Indeed, denoting with [ the generic iteration of the algorithm, it can be showed that:

(Wl(l)7 WQ(l); ceey Wf({l)) i> (Wb W27 ey WK) ~ p('LUl, W2, -+ U)K) (27)
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Assume convergence has been reached after ¢ steps, m — ¢ further samples can be drawn and
the marginal posterior density for each variable W can be then computed as:

m

. 1
POWVi) = —— > (Wil W, = W ks 7). (28)
I=t+1

that can be viewed as a ”"Rao-Blackwellized” density estimator (Gelfand et al., 1990).
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