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Abstract

An improved approach for computing the confidence regions for the optimal factor settings obtained

from optimizing a general response surface model is presented. The approach has a better computa-

tional efficiency and improved accuracy compared to existing methodology. A three-factor mixture

experiment was used for the performance comparison. The coverage rate properties of the resulting

confidence regions were assessed through an extensive simulation study. Issues in the visualization

of high dimensional confidence regions are discussed and illustrated using a five-factor experimental

design.
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1 Introduction

One of the objectives of Response Surface Methodology (RSM) is to find the optimal factor-level con-

figuration of an empirical model obtained through a series of designed experiments. Due to sampling

variability inherent in experimentation, various authors (Box and Hunter 1954; Carter et al. 1986; Myers
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and Montgomery 1995) suggest to compute the confidence region for the location of the optimal point in

order to assess the precision of this point estimate.

Aside from assessing the precision of the optimal point estimate, these confidence regions are useful

for a variety of reasons. For example, they provide an answer to the therapeutic synergysm problem

common in the pharmaceutical industry. Carter et al. (1982) discussed how if the confidence region

for the optimal dose combination excludes all individual zero dose combinations (i.e. if the confidence

region does not touch any of the axes that define each drug component), then there is evidence that all

drug components are beneficial for therapy in a synergistic way. These confidence regions are also useful

for handling multiresponse optimization problems. A compromised solution can be found by utilizing

nonlinear optimization techniques upon the individual confidence regions for the optimum of each response

(Del Castillo 1996; Khun 1999).

An early attempt at computing a confidence region on the location of the optimal point was done

by Box and Hunter (1954)(hereafter referred to as BH). They proposed a methodology for computing an

exact confidence region for the (unconstrained) stationary point of a response surface. Suppose that the

response surface can be modeled as a quadratic polynomial:

y = β0 + β′x + x′Bx + ε, (1)

where y is the response variable and ε has a normal distribution with mean 0 and variance σ2. Here, β0

is the intercept term, x is a k × 1 vector of controllable factors, β is a k × 1 vector of linear coefficients

βi, and B is k× k symmetric matrix of quadratic coefficients with ith diagonal element equals to βii and

(i, j)th off-diagonal element equals to βij/2. If x0 is the stationary point of the response surface in (1),

then the null hypothesis of zero first derivatives at x0 (i.e. H0 : β + 2Bx0 = 0) is true. BH showed that

a 100(1− α)% confidence region for x0 is the set of all x such that

δ̂x
′
V̂x

−1
δ̂x ≤ kF (1− α, k, n− p), (2)

where δ̂x = β̂+2B̂x, β̂ and B̂ are least squares estimates of β and B respectively, and F (1−α, k, n−p) is
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the upper 100(1−α) percentile of the F -distribution with k and n−p degrees of freedom. Here, V̂x is the

estimate of Vx, the variance of δ̂x, n is the number of runs, and p is the number of regression coefficients

including the intercept. Note that although equation (2) has a closed-form solution, computing the BH

confidence regions is a difficult algebraic task (Del Castillo and Cahya 2001). Also, BH discussed in their

paper that the methodology can be extended to any other (nonquadratic) response surface model as long

as the models are linear in the parameters.

A confidence region for a stationary point is of interest if the stationary point happens to be a

feasible optimal point. However, in many instances the stationary point is a saddle point which is not

useful from an optimization perspective. Even when the stationary point is indeed an optimal point,

this point is sometimes located outside the region of operability hence the optimal solution cannot be

implemented. Therefore, in practice, solutions should be limited to be inside of a constrained region of

interest. Furthermore, some problems are naturally constrained, such as mixture experiments where the

fraction of the mixture ingredients should add up to one. Stablein, Carter, and Wampler (1983) proposed

a methodology for computing the confidence regions for constrained optimal points. These authors

modified the BH approach by using the Lagrange multiplier approach to incorporate the constraints.

However, their method assumes the lagrangian multipliers as constants, hence ignoring the sampling

variability of the multipliers. This assumption is not valid since the multipliers are dependent on the

model parameter estimates and these estimates are subject to sampling variability (Peterson 1999).

In a recent paper, Peterson, Cahya, and Del Castillo (2001) (hereafter referred to as PCD) proposed

a generalized approach that has some advantages over the Stablein et al. (1983) method. This approach

does not use lagrangian multipliers, so it avoids the technical difficulty of incorporating the sampling

variability of the multipliers . Moreover, the method generalizes the quadratic polynomial model required

in Stablein et al. (1983) into any models that are linear in the parameters. This is especially beneficial in

mixture experiments where “exotic” functions of the factors sometimes provide a better fit than quadratic

polynomials (Khuri and Cornell 1996, chap. 9). However, as it will be discussed in more detail in section 2,

3



the PCD methodology has some practical drawbacks related to computational speed and the accuracy of

the resulting confidence regions. In this paper, we will discuss an approach to overcome these drawbacks.

A review of the approach by PCD is given in section 2. Our proposed approach and some performance

comparisons are given in sections 3 and 4, respectively. An aspect that cannot be separated from the

computation of confidence regions is their visualization. Section 5 discusses some concerns regarding

visualizing the resulting confidence regions, and a multi-factor example is used as an illustration. Section

6 gives some conclusions and future work.

2 Review of the Peterson et al. (2001) method

Let us assume that the response surface under consideration is linear in the parameters, i.e., it can be

modeled as

y = β0 + z(x)′θ + ε, (3)

where y is the response variable, β0 is the intercept term, z(x) is a (p− 1)× 1 vector valued function of

the factor x (k× 1 vector), θ is a (p− 1)× 1 vector of regression coefficients, and ε is the error term that

follows a normal distribution with mean 0 and variance σ2.

Without loss of generality, suppose that we are to minimize the response y. Let x0 and η(θ) be

defined as

z(x0)′θ = min
x∈R

z(x)′θ = η(θ), (4)

where R is the constraining region (for unconstrained optimization R is simply the space of x). Note that

x0 is the true minimizer of the response surface and it is unknown. To compute the 100(1−α)% confidence

region of x0, one can find the set of all x-values such that the null hypothesis H0 : η(θ) − z(x)′θ = 0

is not rejected at level α. PCD proposed a way to compute the 100(1 − α)% confidence interval for(
η(θ)− z(x)′θ

)
and rejecting H0 simply by checking whether this confidence interval excludes 0. Since(

η(θ) − z(x)′θ
)
≤ 0 for all θ, the lower bound of the confidence interval is always less than zero.

Therefore, the confidence interval for
(
η(θ)− z(x)′θ

)
excludes zero if the upper bound is less than zero.

4



This upper bound is given by (see PCD for the derivation):

UB = min
w∈R

bx(w), (5)

where

bx(w) =
(
z(w)− z(x)

)′
θ̂ +

√
c2
α

[(
z(w)− z(x)

)′
V̂

(
z(w)− z(x)

)]
. (6)

Here, θ̂ is the estimate of θ, V̂ is the estimated variance-covariance matrix of z(x)′θ, c2
α is the 100(1−α)%

upper percentile of an F -distribution with k and n− p degrees of freedom.

Equation (5) allows us to construct the 100(1 − α)% confidence region for the optimal factor level

x0 in a straightforward manner. This confidence region is denoted as CR for brevity. A point x ∈ R

does not belong to CR if UB < 0. However, it is not necessary to perform the minimization in (5) and

get the minimum value UB. To discard a point x from being inside the CR, it is only necessary to

find a single other point w ∈ R such that the function bx(w) < 0, since UB ≤ bx(w) for all w ∈ R.

This clearly would imply that UB < 0. Furthermore, for a response surface that satisfies the following

conditions: (i) the response is quadratic (hence it is differentiable); (ii) the response is strictly convex in

a statistical sense, i.e. the matrix of quadratic coefficients B is positive definite (p.d.) for all θ ∈ C where

C = {θ : (θ̂ − θ)′V̂θ
−1

(θ̂ − θ) ≤ c2
α} is the 100(1− α)% confidence region for θ̂ and V̂θ is an estimate of

Vθ, the variance covariance matrix of θ̂, PCD proposed the following two-step derivative approach:

Step 1 (BH Step): For all points x in the interior of R, select confidence region points according to

the BH criterion.

Step 2: For all points x on the boundary of R, search for the first d-value on D such that b′x(x;d) < 0,

where D = {d : d′d = 1,x+hd ∈ R for small h > 0} and b′x(w;d) = limh→0+ [bx(w+hd)−bx(w)]/h.

PCD showed that, for differentiable response models, b′x(x;d) = d′D(x)θ̂+cα[d′D(x)V̂ D(x)′d]1/2 where

D(x) is the k×(p−1) matrix of partial derivatives of z(x) with respect to x. For subsequent discussions,

the first step of this derivative approach will be referred to as the BH Step.
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In general, some response models do not satisfy differentiability nor convexity assumptions (e.g. Becker

1968; Cornel and Gorman 1978). We note that even though a fitted quadratic polynomial is strictly convex

(i.e. B̂ is p.d.), B might not be p.d. everywhere on C (see Peterson 1993 for checking whether B is

statistically positive definite). For general response surface models, a two-step derivative-free approach

was then proposed:

Step 1: Compute the estimated optimal point x̂0. Set w = x̂0 and use bx(x̂0) as a criterion to reject as

many points in R as possible.

Step 2: For any x not rejected in Step 1, search for the first w ∈ R such that bx(w) < 0.

We hasten to point out that for response surfaces that are differentiable on R but not necessarily convex,

an efficient algorithm can be constructed by adding the BH Step (for checking points in the interior of

R) in between Steps 1 and 2 of the derivative-free approach.

Problems Attributed to a Low Grid Resolution

In practice, the computation of the confidence region for the optimal factor-level is initialized by first

“discretizing” the constrained region R into grid points (from here onward, what we mean by R is its

discretized version). The second step of the PCD’s derivative-free approach described above is a very

slow process since to reject x ∈ R, bx(w) needs to be computed repeatedly until bx(w) < 0. In a worst

case scenario, bx(w) needs to be computed for every w ∈ R. Decreasing the grid resolution reduces the

number of grid points and will expedite the computation process at the expense of a lower quality of the

confidence region displays.

A more crucial problem of using a low grid resolution is that it reduces the accuracy of the resulting

confidence region. To clarify the discussion about this accuracy problem, some definitions will be given.

A point w ∈ R is defined as a dominating point of x ∈ R, if bx(w) < 0 (next section gives a theorem

regarding a special property of this dominance relation). The domination region Wx is defined as the

set of w points that dominate x, i.e., Wx = {w ∈ R | bx(w) < 0}. A point x belongs to the confidence
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region CR if Wx is empty. The accuracy problem arises when the domination regions Wx for some points

x are too small compared to the grid resolution, i.e., none of the grid points are inside of the domination

region (this problem is illustrated in Figure 1). Then, the algorithm is unable to locate points inside

these Wx regions. The algorithm will erroneously conclude that the regions Wx are empty, and the asso-

ciated points x will be falsely classified as being inside the confidence region CR. As a consequence, the

resulting confidence region will be bigger than it actually is. Increasing the grid resolution will improve

the accuracy, but, then again, we will face the problem of slow computation. Therefore, we need a better

algorithm that is fast and more importantly accurate, even if we are using a low grid resolution.

<Figure 1 about here>

The PCD’s two-step derivative approach, unlike the derivative-free counterpart, does not utilize grid

point comparisons through the bx(w) function. Thus, the derivative approach is independent of grid

point resolution. However, since the set D used in its second step consists of infinite number of directions

d, this set D needs to be discretized as well to limit the number of computations. We note that this

second step of derivative approach affects boundary points only, thus, in general, the derivative approach

is more accurate than the derivative-free approach. The use of this PCD’s derivative approach, however,

is limited to quadratic responses that are strictly convex in a statistical sense.

3 Proposed Approach

In this section, we discuss some modifications to the PCD’s methodology that results in a faster algorithm

and improved accuracy. We first state a theorem that underlies the modifications and then the proposed

approach will be discussed.

Recall that in order to show that a point x ∈ R does not belong to the confidence region CR, we

need to show the existence of a nonempty dominating region Wx, i.e., we need to find a point w ∈ R
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such that bx(w) < 0. Obviously this search process is computationally extensive since the search space

is the entire (discretized) R. Fortunately, the bx(w) function has a special property that can be used to

improve the computational efficiency and also the accuracy of the algorithm. We state the property in

Theorem 1 and its corollaries:

Theorem 1 Let x and w be distinct points inside the constrained region R. We say w dominates x if

bx(w) < 0 and write w 7→ x. The binary relation 7→ on the set R is transitive, i.e., if w 7→ x and x 7→ y

(where y ∈ R and x 6= y 6= w), then w 7→ y.

Proof. See the Appendix.

Corollary 1 Let E be the set of points in R that are already eliminated (i.e. determined to be outside

the CR) at the current iteration process and let R\E = R − E (i.e. the set of points not eliminated so

far). Then, for discarding the remaining x ∈ R\E, we just need to consider w ∈ R\E as opposed to

considering w ∈ R.

Proof. Let x1, x2, . . . xj with j a positive integer, be points in the set E such that x1 7→ x2 7→ · · · 7→ xj

and no other points w ∈ E such that w 7→ x1. Let y be a point in the set R\E such that xj 7→ y. Since

x1 ∈ E , it implies that there exists a point w ∈ R\E such that w 7→ x1. However, Theorem 1 implies

that w 7→ y. Therefore, the points x1, x2, . . . xj are not needed for eliminating y.

Corollary 2 For all x 6∈ CR, there exists w ∈ CR such that w 7→ x.

Proof. Immediate from Corollary 1, since R\E converges to CR.

Corollary 1 has a direct impact on improving the computational speed of the algorithm. Once some

points have been determined to be outside of the confidence region, they can be discarded from the search

space. In the next iteration, we can concentrate on the points that are not yet eliminated i.e. the set R\E .

As more points are eliminated in each step of the algorithm, the size of the search space R\E shrinks

reducing the number of bx(w) computations needed. This technique can be incorporated into the second
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step of the PCD’s two-step derivative-free approach to get a significant improvement in computational

speed. However, this technique alone does not improve the accuracy of the algorithm. In subsequent

paragraphs, accuracy improvements are discussed.

As defined in the previous section, w is a dominating point of x if bx(w) < 0 and the dominating

region of x, Wx, is defined as the set of points w that dominate x. From (4), note that the value of bx(w)

when w = x is zero. If the bx(w) function in a small neighborhood around w = x is a smooth downhill

surface, then as we move along downhill, the dominating region Wx (= {w ∈ R | bx(w) < 0}) will be

reached right after passing the point w = x. Therefore, to find Wx, it is logical to search initially in the

neighborhood of x. An example of this property can be seen from Figure 1 where the dominating region

Wx̃ is located just next to x̃. In general, however, there are instances where the dominating region Wx

is distant from x. To differentiate between these two types of dominating regions, they will be referred

as adjacent dominating regions and distant dominating regions, respectively. Finding distant dominating

regions is harder since one does not have any information about its approximate location. In what follows,

the methodology for finding adjacent dominating regions is first discussed followed by a methodology for

finding distant dominating regions.

3.1 Finding Adjacent Dominating Regions

In order to find an adjacent dominating region Wx, a simple but inefficient way is to ”sweep” the neigh-

borhood of x until a dominating point w ∈ Wx is found. This can be done by finding a (minimizing)

direction d ∈ D, where D = {d : d′d = 1,x + hd ∈ R for small h > 0}, such that bx(x + hd) < 0.

However, Corollary 2 of Theorem 1 suggests that a more efficient method can be proposed. The corollary

states that for each point x 6∈ CR, there exists an associated dominating point w ∈ CR. Therefore, since

the dominating region Wx is adjacent to x (by our assumption) and it is known that Wx intersects CR

by Corollary 2, then Wx will likely reside between x and CR. Hence, the search can be concentrated in

the direction toward the CR. Figure 1 shows that Wx̃ is located between the current point of interest

9



x̃ and the true confidence region (solid dots). Of course, the CR is not known in advance. However, it

is known that the estimated optimal point x̂0 is inside the CR and thus, x̂0 can be used as a surrogate

of the direction where the unknown CR is located. In other words, one can use the direction (x̂0 − x)

as an initial search direction for finding the adjacent dominating region Wx. Figure 2 illustrates how

this search direction from x̃ to x̂0 passes through the dominating region Wx̃. Any point w in the small

neighborhood of x̃ along this search direction can be selected to make bx̃(w) < 0 and hence, the search

process will terminate in just one iteration.

<Figure 2 about here>

In general, however, the direction (x̂0 − x) does not always pass through Wx. For example, there

are situations when the resulting confidence region is scattered all over the space of R (see Figure 4

for an example). As a consequence, the estimated optimal point x̂0 is a poor surrogate of the location

of the confidence region. Another example is when the dominating region Wx is a very narrow ridge

and hence, there is only a slight chance that the direction (x̂0 − x) passes through the Wx. In such

cases, a more elaborate search algorithm is needed. Since the bx(w) function is allowed to be nonlinear

and nondifferentiable, one can resort to derivative-free nonlinear programming techniques available in

the optimization literature. One of the techniques is the Downhill Simplex method of Nelder and Mead

(1965).

The use of the Nelder-Mead simplex method has generated some debate in the optimization literature

(see Wright 1996; McKinnon 1998; Lagarias, Reeds, Wright, and Wright 1998 for recent discussions). The

critics have been wary that the convergence of this method is unpredictable. Although there have been

numerous successful applications reported in the literature (see Walters, Parker, Morgan, and Deming

1991 for references), it has been shown that the method can converge to a nonminimizing point (Woods

1985; McKinnon 1998). However, for finding adjacent dominating regions Wx, finding a (global) min-
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imizing point of the bx(w) function is not of interest. Recall that bx(w) has already a zero value at

w = x. Thus, a slight improvement in minimizing the bx(w) function is all that is needed for finding

the dominating regions. More importantly, a desirable feature of the Nelder-Mead algorithm is that it

produces significant improvement for the first few iterations (Lagarias et al. 1998, p. 114). This leads to

a very fast algorithm for finding adjacent dominating regions.

There are some modifications needed for the Nelder-Mead simplex method to work for finding adjacent

dominating regions. First, in addition to the default termination (convergence) criteria, the method

should terminate whenever it evaluates a point w ∈ R such that bx(w) < 0. Second, rather than

choosing arbitrary points to form a simplex required for initializing the Nelder-Mead search, some points

in the direction towards the estimated optimal point x̂0 should be chosen. As previously discussed, these

points are more likely to be inside the dominating region. If one of these initial points is indeed inside

the associated dominating region, then search will terminate right away. Care should be taken, however,

that the chosen points should form a nondegenerate simplex. Third, the Nelder-Mead method is usually

tailored for unconstrained optimizations whereas our interest is on the constrained region R. A common

method to convert unconstrained optimizations into constrained ones is to use Penalty Functions (Camp

1955; Fiacco and McCormick 1964). In our experiments, simply assigning a large positive functional value

whenever w is outside R (assuring w will never be in the solution set) worked well and was utilized.

3.2 Finding Distant Dominating Regions

Finding distant dominating regions is hard to deal with because the existence of distant dominating

regions implies that the bx(w) function has multiple local minima. One local minimum is at w = x since

we have bx(w) ≥ 0 in the neighborhood of x, otherwise we could find an adjacent dominating region.

Providing that the size of the dominating region is bigger than the grid resolution, an effective but slow

method is to use the ”brute-force” grid search as in the second step of PCD’s two-step derivative-free

approach (as discussed previously, the computation speed of this second step can be improved by selecting
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w only from the set R\E rather than from the entire R). All distant dominating regions that we observed

in numerical examples fell into this category. Therefore, it is our belief that this grid search is sufficient

for handling distant dominating regions in practice. However, in theory, a distant dominating region

smaller than the grid resolution could happen. One possible scenario is that when a point x 6∈ CR gets

closer to the boundary of CR, its dominating region Wx gets smaller until it disappears when x belongs

to the boundary of CR. Thus, when x 6∈ CR is sufficiently close to the boundary of CR, then it is possible

that its dominating region is smaller than the grid resolution. For a point x to be close to the boundary of

CR, however, it usually requires that the grid points are placed close to each other (high grid resolution)

and, consequently, the associated distant dominating region has to be even smaller to not be detected

by the grid search process. For experimental purposes, artificial small distant dominating regions can

be created by using a suitably low grid resolution and placing arbitrary points (in between regular grid

points) sufficiently close to the boundary of CR.

As a precaution step in preventing against small distant dominating regions, a “safety check” can

be added whenever the brute-force grid search fails to locate distant dominating regions. Once the grid

search has been performed, the values of the bx(w) function across the R\E region are known. If there

exists a small distant dominating region, it is expected that grid points adjacent to this region should

have small but positive bx(w) values. Therefore, we can use one of these points as a starting point for

the modified Nelder-Mead simplex method in a search similar to that suggested for finding the adjacent

dominating regions.

An immediate question is how the starting point for the Nelder-Mead search is chosen. Let d be a

direction from x to w, i.e. d = (w − x), and let

b′x(w;d) = lim
h→0+

bx(w + hd)− bx(w)
h

be a directional derivative of bx(w) with respect to d. Here, b′x(w;d) can be numerically approximated

by using a sufficiently small value of h. Let Dx be the set of points w ∈ R\E where the surface of bx(w)

is descending with respect to d, i.e, Dx = {w ∈ R\E : b′x(w;d) < 0, d = w − x}. A point w∗ that is
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adjacent to the small distant dominating region can be found by performing the minimization:

w∗ = arg min
w∈Dx

bx(w).

We note that, since the bx(w) values are already computed for every w ∈ R\E during the brute-force grid

search, w∗ can be found by simply sorting the bx(w) values (for w ∈ Dx) in an ascending order. This

process of finding w∗ is illustrated in Figure (3) for a one-dimensional case. The modified Nelder-Mead

search can then be started from w∗ to find the dominating region.

<Figure 3 about here>

To improve the computational efficiency of this safety check step, the search for w∗ can be limited

to points w ∈ R\E having a small value of bx(w). This can be done by imposing an upperbound δ > 0

such that the search space is limited to the set {w ∈ R\E : bx(w) < δ}. As an example, δ can be

chosen as c [maxw∈R\E bx(w)] where c ∈ (0, 1). In our experimentations, when small distant dominating

regions were artificially generated, a value c = 0.2 worked satisfactorily in eliminating all of the small

distant dominating regions while the resulting time increment was only a small fraction of the overall

computation time. It should be emphasized that in none of our numerical examples, based on actual

experiments, was the safety check necessary.

3.3 Proposed Algorithm

Based on the discussion in the previous paragraphs, the proposed algorithm consists of four steps:

Step 1: Compute the estimated optimal point x̂0. Set w = x̂0 and use bx(x̂0) as a criterion to reject as

many points in R as possible.

Step 2: For any x not rejected in Step 1, perform a local search using the modified Nelder-Mead algo-

rithm.
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Step 3: For any x not rejected in the previous steps, search for the first w ∈ R\E such that bx(w) < 0.

Step 4: For any x not rejected in the previous steps, perform a safety check.

The first step is exactly the same as the first step in the PCD’s derivative-free algorithm. The second

step is the local search for finding adjacent dominating regions. The third step is similar to the second

step of PCD, except that Corollary 1 is used for speeding up the process. The final step is a precaution

step in case the grid search in the third step fails to detect small distant dominating regions. Next we

discuss the performance of our proposed algorithm in comparison to the PCD’s algorithm.

4 Performance Comparisons

The goal of the proposed approach is to improve two performance measures in the PCD methodology:

computational speed and accuracy. An example from the literature will be used for the comparisons.

For assessing accuracy, an extensive simulation to compute the coverage probability was done and will

be reported in this section.

4.1 Computational Speed Comparison

For computational speed comparisons a mixture experiment that studies the effect of three chemical sub-

stances on the glass transition temperature (Frisbee and McGinity 1994) was used. The objective of the

study was to find the optimal factor levels associated with minimizing glass transition temperature. The

chemical substances were Pluronic F68 (x1), polyoxyethelene 40 monostearate (x2), and polyoxyethelene

sorbitan fatty acid ester NF (x3). The experimental design used was a modified McLean-Anderson design

(McLean and Anderson, 1966) with two centroid points, resulting in a sample size of eleven. The response

surface model that gave the best fit was an H1 Becker model (Becker 1968):

y = β1x1 + β2x2 + β3x3 + β12 min(x1, x2) + β13 min(x1, x3) + β23 min(x2, x3) + ε, (7)
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where y equals the observed glass transition temperature (oC). The mean squared error (MSE) associated

with this model is 1.71 which is a 53% reduction in MSE from the standard quadratic model. The

adjusted-R2 for the model is 96.4%. Note that the response model in (7) is not everywhere differentiable

and is subject to the mixture constraints. Thus use of the BH (derivative based) Step would not be

convenient to implement, requiring careful checking of each x-point to make sure that xi 6= xj or that x

is not on the boundary of mixture experimental region. Furthermore, for any mixture model, use of the

BH Step requires that the x1 + . . . + xk = 1 constraint be eliminated by reducing the model to (k − 1)

independent factors.

The confidence regions for the optimal factor levels were computed for three different grid resolutions:

3721, 10201, and 40401 grid points, respectively, inside a unit square (the constrained region for the

experiment is a simplex region which is a triangle inside a unit square). The computation times are tab-

ulated in Table 1 and the confidence regions are plotted in Figure 4. All computations were done using a

Pentium III based computer (800 MHz with 256 Mb of RAM, Windows 2000 operating system) and both

PCD (two-step derivative-free approach) and the proposed approach were implemented in Matlab. For

comparison purposes, the computation times in Table 1 are normalized by dividing by the computation

time using our proposed approach with the lowest grid resolution (the computation time is 63.2 sec-

onds). As it can be seen from the table, the proposed approach is more than three times faster than the

two-step derivative-free approach of PCD. More importantly, the resulting confidence regions provided

by the proposed approach have an accuracy that is independent of the grid resolution (see figure 4).

Higher accuracy is observed for the two-step derivative-free approach when grid resolution is increased,

but higher grid resolution will result in an unnecessarily lengthy computation time.

<Table 1 about here>

<Figure 4 about here>
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Table 2 gives a breakdown of the computation times for the proposed approach. The times are divided

into two parts: the time for performing the first two steps of the algorithm and the time for performing

the last two steps. Recall that the last two steps are needed for eliminating points that have distant

dominating regions. As can be observed from the table, most of the time is spent performing the last two

steps which eliminate only a small, if not null, portion of points. Thus, if it is known that the problem at

hand does not have any distant dominating regions, one can stop the algorithm after the first two steps.

To determine whether the problem at hand does not involve distant dominating regions, one can try the

following simple approach. Using a suitably low grid resolution, compute the confidence region of interest

twice using the first two steps and then the full four steps. If the resulting confidence regions are similar,

then there is a good indication that the last two steps are not necessary. Then, recompute the confidence

regions using only the first two steps, but with a higher grid resolution, to produce the confidence regions

with desired display quality. In the mixture example, the last two steps are necessary since the resulting

confidence regions are different (see figure 5). This technique is useful especially for high dimensional

problems where the total number of grid points is large even though a low grid resolution is used.

<Table 2 about here>

<Figure 5 about here>

4.2 Coverage Rate Simulation

It was shown in the previous discussion that the proposed approach is accurate and its accuracy is

independent of the grid resolution. To assess the accuracy in more detail, an extensive simulation similar

to that in PCD was performed. A standard quadratic model as in (1) was used with two factors along

with spherical constraint region R = {x : x′x ≤ 1}. The response surface was varied by modifying the

eigenvalues of the quadratic coefficient matrix B. Five eigenvalue pairs were used for the simulation:

(0.2 0.2), (0.2 7.0), (2.0 2.0), (2.0 7.0), and (13.0 15.0). A higher eigenvalue characterizes a more peaked
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response surface and asymmetry in an eigenvalue pair characterizes surface elongation. The locus of the

true optimum x0 was varied from the center of R, to the boundary of R, and then outside of R in order

to assess the effects on the coverage rates. For each of the simulation combinations, one thousand samples

of size 11 were simulated from a central composite design with axial points at a distance of
√

2 from the

origin and three center points. The simulated errors were from a normal distribution with mean 0 and

variance 1.

The coverage rates, with a confidence level of 95%, were computed for four methods: (i) PCD’s two-

step derivative-free approach (denoted by PCD2 ); (ii) the proposed approached described in section 3

(denoted by Sec.3 ); (iii) PCD’s two-step derivative approach (denoted by PCD1 ); (iv) PCD’s two-step

derivative approach with an addition of BH Step in between steps 1 and 2 (denoted by PCD2+). A

low grid resolution of 400 points within a unit square was used for methods Sec.3 and PCD2. This grid

resolution corresponds to, approximately, a total of 1250 grid points inside the spherical region R. Our

conjecture was that, since a low grid resolution is used, the coverage rates of PCD2 would be higher than

that of Sec.3 because the resulting confidence regions of PCD2 are larger. Since the response is quadratic

(hence differentiable), the derivative-based methods, PCD1 and PCD2+, can also be used. Note that,

however, although the true eigenvalues used in the simulation are all positive, the eigenvalue of 0.2 is

very close to zero. Thus, the resulting B is not p.d. everywhere at 95% confidence level. However, the

resulting B from the last three eigenvalue pairs of the five pairs given above are p.d. everywhere at 95%

confidence level. Thus, PCD1 would be the most accurate method for these cases. For the other cases

involving an eigenvalue equal to 0.2, high accuracy can be obtained by adding the BH Step to PCD2 (i.e.

PCD2+). This BH Step guarantees that points having a small adjacent dominating region are properly

eliminated. To protect against small distant dominating regions, a higher grid resolution of 2500 grid

points within a unit square was used for PCD2+. Thus, this PCD2+ method is expected to have a high

accuracy across the simulation combinations.

17



<Table 3 about here>

The resulting coverage rates are given in Table 3. As it was expected, PCD’s two-step derivative-free

approach (PCD2) has higher coverage rates compared to the proposed approach (Sec.3). The discrepancy

is even more pronounced when the response surface is more peaked (this also can be verified by looking

at the average coverage rates across different locus of optimal points given in the last column of Table 3).

This behavior can be explained as follows. When the underlying response is peaked, the bx(w) function

tends to be peaked as well. Consequently, when the bx(w) function is peaked, the occurrence of small

dominating regions is more likely. PCD1, PCD2+, and Sec.3 methods, on the other hand, are almost

identical across the board. Looking at the averages, PCD2+ has the lowest coverage rates for the most

”flat” surface (eigenvalues of 0.2 and 0.2), while Sec.3 is a close second and PCD1 is noticeably larger

than both PCD2+ and Sec.3. This larger average for PCD1 was expected since the resulting B is not

p.d. everywhere. When the eigenvalues are the largest, PCD1 has the lowest average coverage since

for this case (significantly convex surface) PCD1 is supposed to give accurate confidence regions. In

overall, the proposed method (Sec.3) has the lowest or a close second average coverage rates. Therefore,

in summary, this coverage rate simulation gives another strong justification that the proposed method

described in Section 3 is indeed accurate. More importantly, this accuracy is obtained even when a low

grid resolution is used and, unlike the two-step derivative approach, the proposed approach works for any

response models that are linear in the parameters.

5 Visualization of the Confidence Regions

An ubiquitous problem when computing confidence regions is how the resulting confidence regions should

be displayed, especially for high dimensional problems. By nature, we can only grasp a one-dimensional

(1D) or two-dimensional (2D) object as a whole. We can rotate a 3D object to get “snapshots” from

different angles and then reconstruct the snapshots to create an imaginary representation that can be
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discerned by our mind. It is hard, if not possible, to create an imaginary representation of kD object

where k > 3. The usual way is to create lower dimensional snapshots by projecting the object into a

2D or 3D space. Let us call such projections the unconditional confidence regions. As it is well-known,

these projections do not convey entirely the multivariate nature of the k-dimensional confidence region.

For example, for the sake of a simple illustration, suppose the confidence region is a hollow 3D ball with

an empty interior (imagine a soccer ball filled with air). If we project this confidence region into any

two-dimensional subspaces, what we see is a solid circle. Any two-dimensional projections will never

indicate that the confidence region is actually hollow. But if we “slice” this confidence region, we will see

hollow circles when we slice at certain levels. Let us call these slices the conditional confidence regions

in the sense that they display the confidence region when some of the factors are fixed (conditioned) at

certain levels. Therefore, when viewing high dimensional confidence regions, the capability of displaying

conditional confidence regions is a valuable tool in addition to the capability of displaying unconditional

confidence regions.

In order to illustrate unconditional and conditional confidence regions, we use a five factor example

from an experimental study by Richert, Morr, and Cooney (1974). The study was to investigate the effect

of heat treatments (x1), pH levels (x2), calcium concentration (x3), redox potential (x4), and sodium lauryl

sulfate (x5) upon foaming properties of whey protein concentrates (WPC). There are seven responses

that were measured in the study. For illustration purposes, one of the responses was arbitrarily selected,

the percentage of undenatured protein. The experimental design used was a central composite design

which consisted of a one-half fraction of a 25 factorial design, 10 axial points, and five center points.

A quadratic response was fitted with some insignificant terms omitted from the model. The omitted

terms are x2
4, x2

5, x1x5, x2x4, x2x5, x3x4, x4x5. The full quadratic model has a p-value of 0.0459 for

lack-of-fit test and adjusted-R2 of 89.8%, while the reduced quadratic model has a p-value of 0.1297 for

lack-of-fit test and adjusted-R2 of 92.8%. Thus, the reduced model is a better model. The estimated

stationary point of the system is {x1=0.40, x2=-1.02, x3=-0.91, x4=5.43, x5=-4.60}. It is a saddle point
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located far from the experimental region. Thus, this stationary point is useless from an optimization

point of view. Suppose that our goal was to find a minimizing factor level located inside a unit spherical

region. The estimated constrained optimal factor level was found to be {x1=0.73, x2=0.69, x3=-0.03,

x4=-0.02, x5=-0.05}. The unconditional and conditional confidence regions are given in figures 6 and 7,

respectively. For the conditional confidence regions, the undisplayed factors are fixed at the estimated

optimal point.

<Figure 6 about here>

<Figure 7 about here>

6 Conclusions and Further Work

The methodology proposed by Peterson et al. (2001) has some advantages over the existing methodology.

The method does not use Lagrangian multipliers as in Stablein et al. (1983) methodology. It works for

a wide range of response models as long as they are linear in the parameters, an attractive feature

particularly for mixture experiments where nonquadratic models often provide an improved fit over

quadratic ones. Another benefit of the method is that there is no limitation on the physical form of

the constrained region R. It can be a spherical, a cuboidal, a simplex, a convex hull that encloses the

experimental runs, or even an irregular shaped region. This allows the method to work for the more

general problems found in practice.

Given the applicability of the Peterson et al. (2001) approach for computing regions, it is necessary

that the methodology works for practical implementations. However, as it is discussed in section 2, the

methodology has some limitations due to computational efficiency and more importantly the accuracy

of the resulting confidence regions. We proposed some modifications to the methodology that result in

an improved algorithm. Discussion in section 4 shows that our proposed approach is not only faster but

more importantly it is accurate and the accuracy is independent of the grid resolution.
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Extensions of this methodology to multiresponse optimizations are possible, at least for two cases:

(i) computing the confidence region for the location of the optimal point obtained using desirability

functions (Harrington 1965; Derringer and Suich 1980); (ii) obtaining the compromised solution through

a methodology described in Del Castillo (1996). For the first case, a desirability function of m responses,

d = D(y1, . . . , ym;x), can be fit using a flexible regression model (Myers and Montgomery 1995, p. 252).

The proposed confidence region approach can then be applied on the resulting regression model. This

type of extension is possible since the proposed approach gives confidence regions for optima of arbitrary

response functions as long as they are linear in the parameters. For the second case, Del Castillo (1996)

proposed that the confidence region of the optimal point be used to “relax” the optimal point estimate

into a set of points that are statistically optimal at the specified confidence level. Therefore, if the

confidence regions for the optimal point of each response intersect, then the intersection gives a set of

points that are (statistically) optimal with respect to all of the conflicting responses. A slight modification

to this approach is a ”nested” approach, where the confidence regions for each response is computed in

a sequential manner rather than simultaneous as in Del Castillo (1996). The confidence region for the

primary response is computed first. The resulting confidence region is then used as a constrained region

for computing the confidence region for the second response. This procedure is repeated for the remaining

responses. Note that this nested approach is possible since the proposed methodology for computing the

confidence regions can be applied to irregular constrained regions (since the resulting confidence regions of

the prior step can take any shapes). However, this approach is only meaningful when there are priorities

among the responses.

An easy to use Matlab program implementing the approach in this paper is available from the second

author. The current version of the program works with spherical and simplex constrained regions.
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Appendix: Proof of Theorem 1

Let w, x, and y be distinct points in R. We need to proof that the dominance relation 7→ is transitive,

i.e.,

w 7→ x and x 7→ y ⇒ w 7→ y . (8)

Let

Qwx = [(z(w)− z(x))′V̂ (z(w)− z(x))]1/2,

then from (6),

bx(w) = (z(w)− z(x))′θ̂ + cαQwx .

Note that Qwx > 0 since V̂ is positive definite. The left-hand side of (8) implies that

(z(w)− z(x))′θ̂ + cαQwx < 0

and that

(z(x)− z(y))′θ̂ + cαQxy < 0 .

Adding these two inequalities we have that

(z(w)− z(y))′θ̂ + cα(Qwx + Qxy) < 0 . (9)

By contrapositive, let us assume that the right-hand side of (8) does not hold, i.e., w 67→ y. This implies

that

(z(w)− z(y))′θ̂ ≥ −cαQwy , (10)

and the proof is completed if we can show that (9) does not hold. This can be done by showing that

−cαQwy > −cα(Qwx + Qxy) ,

or Qwy < Qwx + Qxy. Since Qwy, Qwx, and Qxy are all positive quantities , the last inequality holds if

and only if

Q2
wy < (Qwx + Qxy)2 .
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The right-hand side equals to:

RHS = (z(w)− z(x))′V̂ (z(w)− z(x)) + 2QwxQxy + (z(x)− z(y))′V̂ (z(x)− z(y)).

Rearranging terms we have that

RHS = (z(w)− z(y))′V̂ (z(w)− z(y) + 2z(x)′V̂ z(x) + 2QwxQxy

> (z(w)− z(y)′V̂ (z(w)− z(y)) = Q2
wy.

Thus, we have that Qwy < Qwx + Qxy and therefore, from (10) we have

(z(w)− z(y))′θ̂ ≥ −cαQwy > −cα(Qwx + Qxy) ,

which implies that (9) does not hold and the proof is completed.
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Table 1: Computational speed comparison. PCD2 refers to the two-step derivative-free approach by PCD

and Sec.3 refers to our proposed approach described in section 3. The computation times are normalized

by dividing with the computation time using the proposed approach with low grid resolution.

Relative Computation Time

Grid Resolution1 PCD2 Sec.3

3271 pts 3.0 1.0

10201 pts 21.0 5.7

40401 pts 317.0 90.1

1The number of grid points inside a unit square.

Table 2: Computation times breakdowns when the confidence regions are computed using the proposed

approach described in section 3 . The ratios to the total time are given in parantheses

Computation Time (seconds)

Grid Resolution1 Step 1 + Step 2 Step 3 + Step 4

3271 pts 11.9 (18.8%) 51.3 (81.2%)

10201 pts 30.4 (8.4%) 331.5 (91.6%)

40401 pts 121.9 (2.1%) 5573.7 (97.9%)

1The number of grid points inside a unit square.
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Figure 1: Inaccuracy due to inadequate grid resolution. The gray area Wx̃ is the dominating region of

x̃. None of the grid points (both solid and hollow dots) reside inside of Wx̃. Hence, x̃ is falsely accepted

as being inside the confidence region. Solid dots are truly part of the confidence region, while the hollow

dots are not. Consequently, the resulting confidence region is bigger than it actually is.
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Table 3: Coverage rates for 95% confidence regions based upon 1000 simulations. The response surface

is varied by modifying the eigenvalues of the quadratic coefficients matrix. The locus of optimal points

is the distance of optimal point from the origin in the coded factor space. PCD1 and PCD2 refer to the

PCD’s two-step derivative and derivative-free approaches, respectively. The plus sign in PCD2+ refers

to the addition of BH Step and the fact that higher grid resolution was used. Sec.3 refers to our proposed

approach described in section 3. The average coverage rates across different locus of optimal points are

given in the last column AVG.

Locus of Optimal Points

Eigenvalues Methods 0.0 0.7 0.9 1.0 1.1 1.3 1.6 2.0 2.5 3.0 AVG

PCD2 94.3 94.9 93.1 95.5 95.9 95.7 97.6 96.4 98.3 98.4 96.01

(0.2 0.2) Sec.3 93.8 94.5 92.8 95.0 95.6 95.4 97.2 96.0 97.7 97.4 95.54

PCD1 94.8 95.3 93.1 95.2 96.1 95.9 97.6 96.1 97.7 97.5 95.93

PCD2+ 93.8 94.5 92.8 95.1 95.6 95.3 97.0 96.1 97.8 97.3 95.53

PCD2 97.8 96.1 97.6 97.7 98.1 99.2 99.9 100.0 100.0 100.0 98.64

(0.2 7.0) Sec.3 95.5 93.4 95.9 96.7 97.2 98.2 98.9 98.7 98.5 98.8 97.18

PCD1 95.8 93.6 95.9 96.8 97.3 98.3 99.0 99.0 98.6 99.0 97.33

PCD2+ 95.2 93.4 95.9 96.8 97.4 98.4 98.9 98.9 98.6 99.0 97.25

PCD2 97.2 98.0 97.2 98.0 98.6 99.4 99.6 100.0 99.7 99.9 98.76

(2.0 2.0) Sec.3 94.0 95.8 95.8 97.0 96.9 97.6 98.1 99.4 99.0 98.7 97.23

PCD1 94.0 95.7 95.8 96.9 96.9 97.6 98.2 99.4 99.1 98.8 97.24

PCD2+ 94.0 95.7 95.8 97.2 97.5 97.9 98.2 99.4 99.1 98.8 97.36

PCD2 98.3 97.8 97.3 98.9 99.1 98.7 99.9 100.0 100.0 100.0 99.00

(2.0 7.0) Sec.3 93.9 95.2 95.2 97.3 97.6 97.8 98.9 98.4 98.8 99.1 97.22

PCD1 93.9 95.2 95.2 97.3 97.5 97.8 98.9 98.4 98.8 99.1 97.21

PCD2+ 93.9 95.2 95.2 97.1 97.8 97.9 98.9 98.6 98.8 99.0 97.24

PCD2 100.0 99.3 99.0 99.2 100.0 100.0 100.0 100.0 100.0 100.0 99.75

(13.0 15.0) Sec.3 95.5 95.6 94.5 97.5 98.7 98.2 98.5 98.8 98.8 99.1 97.52

PCD1 95.1 95.6 94.5 97.3 98.7 98.1 98.4 98.9 99.0 99.1 97.47

PCD2+ 95.1 95.6 94.5 97.6 99.0 98.5 98.8 99.1 99.1 99.7 97.70
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Figure 2: The direction from x̃ to x̂0 (denoted by star symbol) is used as an initial search direction.

Solid dots are the confidence region. x̃ is the current point of interest. The gray area is the dominating

region of x̃. Note that the search direction passes through the dominating region Wx̃. Thus, any point

in the neighborhood of x̃ along this search direction can be selected for discarding x̃ from being inside

the confidence region.

Figure 3: Locating w∗, the starting point for the Nelder-Mead search. Note that points w in the vicinity of

x are likely to have small bx(w) values. However, by searching only points w that have negative b′x(w;d),

no points in the vicinity of x will get chosen. To improve computational efficiency, an upperbound δ > 0

can be chosen such that the search space is limited to the set {w ∈ R\E : bx(w) < δ}.
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Figure 4: 95% Confidence Regions for Frisbee and McGinity (1994) example. The confidence regions were

obtained using (a) PCD approach (3271); (b) Proposed approach (3271); (c) PCD approach (10201); (d)

Proposed approach (10201); (e) PCD approach (40401); (f) Proposed approach (40401). The numbers

in the parentheses are the total number of grid points inside a unit square. Note that the resulting

confidence regions of the PCD derivative-free approach (a,c,e) are inaccurate (bigger than they actually

are). This inaccuracy is decreased as the grid resolution is increased.
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Figure 5: 95% Confidence Regions for the Frisbee and McGinity (1994) example computed using: (a)

only the first two steps; (b) the full four steps of the proposed approach; both with a suitably low grid

resolution. Note that the confidence regions are different, indicating that all four steps are needed.

Figure 6: Unconditional 95% Confidence Regions for the Richert et al. (1974) example. The estimated

optimal point is x̂0 = {0.73, 0.69,−0.03,−0.02,−0.05}.
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Figure 7: Conditional 95% Confidence Regions for the Richert et al. (1974) example. Factors not shown

on each plane are at their optimal factor levels.
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