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Abstract

Stochastic perturbation methods can be applied to problems for which either
the objective function is represented analytically, or the objective function is the
result of a simulation experiment. The Simultaneous Perturbation Stochastic
Approximation (SPSA) method has the advantage over similar methods of re-
quiring only 2 measurements at each iteration of the search. This feature makes
SPSA attractive for robust parameter design problems where some factors af-
fect the variance of the response(s) of interest. In this paper, the feasibility
of SPSA as a robust parameter design optimizer is presented, first when the
objective function is known, and then when the objective function is estimated
by means of a discrete-event simulation.

Keywords: Simulation Optimization, Noise Factors, Crossed Arrays, Non-homogeneous
variance.

Introduction

The Simultaneous Perturbation Stochastic Approximation (SPSA) method, proposed

by Spall (1992), is a method for optimization of multivariate stochastic systems. It

∗To whom correspondence should be addressed.
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only needs 2 measurements for the estimation of the gradient at each iteration, re-

gardless of the dimension of the problem p. This property makes SPSA suitable

for high dimensional problems, since the total number of loss function evaluations

required to find the optimal settings θ∗ is considerably reduced compared to simi-

lar methods. This paper presents an extension of the basic SPSA algorithm to the

problem where the variance of the error depends (perhaps in an unknown way) on

some known factors, the so-called noise “factors” in the Design of Experiments litera-

ture (Del Castillo, 2007; Myers and Montgomery, 2002). The goal is to find a solution

in the space of controllable factors that is not sensitive with respect to variability in

the noise factors, which are usually uncontrollable.

The rest of this paper is organized as follows. The next section presents an

overview of the basic SPSA algorithm followed by a review of other approaches to

robust parameter design (RPD) in simulation optimization. Next, we study the be-

havior of the basic SPSA algorithm when the variance function of the errors ε in

y(x) = L(s) + ε(x) depends on the controllable factors x. This is related to the

RPD problem, since factors that affect Var(ε) can be thought of as noise factors. The

main result of our paper is presented next, where a modification of SPSA for RPD

of simulated systems is discussed. Finally, the performance of the proposed meth-

ods is illustrated with two example applications: a single stage simulated inventory

system and a more realistic simulated manufacturing system. The paper ends with

conclusions and directions for further research.

SPSA and Robust Parameter Design

We first review the basic SPSA algorithm followed by a review of RPD approaches

in simulated systems.
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The Basic SPSA Algorithm

SPSA uses the recursion θ̂k+1 = θ̂k − akĝk(θ̂k) where, ĝk(θ̂k) is the estimate of the

gradient at θ̂k calculated by randomly perturbing all the components of the θ̂k vector,

that is:

ĝk(θ̂k) =
y(θ̂k + ck∆k)− y(θ̂k − ck∆k)

2ck

[
∆−1

k1 , ∆−1
k2 , . . . , ∆−1

kp

]T
(1)

where y(·) is the observed value of the response of interest, ck is an SPSA parameter

(to be discussed below) and ∆k = [∆−1
k1 , ∆−1

k2 , . . . , ∆−1
kp ]T is a perturbation vector. For

convergence of θ̂k to θ∗, the elements of the perturbation vector ∆k are required

to be independent and symmetrically distributed about zero with finite inverse mo-

ments (Spall, 1992). Hutchison (2002) offers some empirical results supporting the

statement that no choice of the distribution of the perturbation ∆k provides better

performance in SPSA than the symmetric Bernoulli case at ±1. Other valid distri-

butions are a split uniform, an inverse split uniform or a symmetric double triangu-

lar (Spall, 2003). The fastest possible stochastic rate at which the error θ̂k − θ∗ goes

to zero is proportional to 1/k1/3 for a large number of iterations k (Spall, 2003). This

rate of convergence follows from the asymptotic distribution of the estimates, which

is kβ/2(θ̂k − θ∗) dist.−−→ N(µSD, ΣSD) as k →∞ (Spall, 1992). Chin (1997) indi-

cates that SPSA yields the smallest optimal mean square error (MSE) among similar

algorithms and shows that
number of y(θ) values in SPSA

number of y(θ) values in FDSA
→ 1

p
.

The basic SPSA algorithm and its extensions have been considered also for

solving constrained stochastic optimization problems. For this purpose Sadegh (1997)

used a projection algorithm based on SPSA. Gerencsér (1998) analyzed the SPSA

method for state-dependent noise, i.e., the error or noise depends on θ̂k. This type of

noise typically takes the form of a correlated process and its evolution obeys a stochas-

tic process with memory. Both SPSA with state-dependent noise and SPSA with

state-independent noise have been applied in many different areas. Rezayat (1994)

added a special cause control chart for quality improvement purposes. Cupertino

et al. (2006) focused on control of induction motors and Spall and Cristion (1997)
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looked at the control of a wastewater treatment facility. Other areas of application are

supply chain management (Schwartz et al., 2006; Wang, 2006), queuing systems (Fu

and Hill, 1997) and parameter optimization (Kocsis and Szepesvári, 2006). SPSA is

well suited in these types of problems because it does not require full knowledge of

the system input-output relationships.

Robust Parameter Design in simulation

Although SPSA has been recognized by Beyer and Sendhoff (2007) as an efficient ap-

proach for robust parameter design optimization, there is no published literature that

demonstrates this, at least not to the knowledge of the authors. There have been sev-

eral attempts at solving RPD problems in simulation optimization. Ittiwattana (2002)

proposed a genetic algorithm that finds application in the robust engineering design

process. Wild and Pignatiello (1991) presented a strategy for designing robust systems

based on cross arrays. They emphasized the usefulness of their approach in dynamic

environments where uncertainty exists and the demand for reliability is high. Kleijnen

et al. (2003) demonstrated the idea of robustness by simulating three different supply

chain configurations. Their methodology consisted in an initial sequential bifurcation

to identify the important factors, followed by a classification into controllable and en-

vironmental factors. Sohn (2002) used a Monte-Carlo simulation to find robust levels

of server characteristics for an M/M/1 queue. He assumed that arrival and service

rates are the noise factors, both partly random; and the response to be optimized is

MSE of the traffic intensity parameter. Mayers and Benjamin (1992) use Response

Surface Methods, but with the output of simulation experiments instead of physical

experiments, to determine the direction of search that gives a robust manufacturing

design. Approaches to simulation optimization, not necessarily for robust optimiza-

tion have been studied by numerous authors, e.g. (Ho et al., 2000; Hurrion, 1997;

Yeomans, 2002). Finally, Benjamin and Erraguntla (1995) proposed a heuristic to

solve a robust design problem based on a bi-criteria formulation. SPSA, however, has

not been fully explored in Robust Parameter Design problems, and in particular, not
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in robust design problems in simulation optimization, which is our main goal.

SPSA under non-homogeneous variance

The efficiency of SPSA as an optimization method has been proven in a large number

of simulation experiments (Spall, 1992; Chin, 1997), where only loss functions with

homogeneous variance have been considered. Since we are interested in the RPD

problem, where, by definition, the variability of an important response is affected by

certain variables (making the variance non-homogeneous), we first conducted simula-

tion experiments for loss functions with non-homogeneous error variance. The general

form of the noisy function is given by

y(x1, x2, ..., xk) = L(x1, x2, ..., xk) + ε(x1, x2, ..., xk) (2)

where L(x1, x2, ..., xk) is a deterministic function and the errors ε(x1, x2, ..., xk) follow

an i.i.d normal distribution with mean zero and variance V (x1, x2, ..., xk), that is

ε ∼ N(0, V (x1, x2, ..., xk)).

Three different functions L(x1, x2, ..., xk), taken from (Del Castillo, 2007) and

(Moré et al., 1981), were considered: a quadratic polynomial function, a modified

quadratic polynomial function, and the Freudenstein and Roth function (Moré et al.,

1981):

L(x1, x2) = (−13 + x1 + ((5− x2)x2 − 2)x2)
2 + (−29 + x1 + ((x2 + 1)x2 − 14)x2)

2.

Each of these functions was tested along with a variance function (V (x1, x2, ..., xk)),

which drives the process noise. The selection of the SPSA parameters follows Spall’s

guidelines, but in addition the cases c < σmax, and c > σmax, where σmax is given by

the square root of the maximum value of V (x1, x2, ..., xk) in the region of interest and

c is the first element of the positive sequence {ck} in eq. (1), were also tried.

The quadratic loss function L(x1, x2) = 0.066x2
1+0.076x2

2−36.77x1−23.97x2+

7741.8 has one minimum L∗ = 774.53 at x∗ = (276.08, 157.82), and is tested with

additive error that follows the next variance functions V (x1, x2):
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1. V (x1, x2) = −0.0666x2
1 − 0.0760x2

2 + 36.7740x1 + 23.9761x2 − 500

2. V (x1, x2) = −0.0666x2
1 − 0.0760x2

2 + 36.7740x1 + 23.9761x2 + 33033

3. V (x1, x2) = −0.0666x2
1 − 0.0760x2

2 + 36.7740x1 + 23.9761x2 + 10000000

These variance functions are the reflection of the quadratic function for L(x) and

differ between them only in their height determined by the intercept. This is done to

force a strong trade-off between the variance and the mean of the response.

Simulations consisting of 1000 and 5000 SPSA iterations, replicated 50 times,

were carried out. The collected statistics were the average and standard deviation of

the distance from the final estimate (x̂) to the optimum point (x∗), and the average

difference between the estimated optimal value (L̂) and the real optimal value (L∗).

The behavior of the SPSA search turned out to be very similar for the three

variance functions. However, for different values of c, changes in behavior are evident.

The performance statistics are summarized in Figure 1. From Figure 1 it can be seen

that the average distance from the final estimate to the optimum (||x̂ − x∗||) is

considerably reduced with increasing number of iterations. From this figure, it can

also be seen that the average difference L̂−L∗ goes to zero as the number of iterations

increases. All these results are independent of the variance function used, that is, for

the quadratic function studied here there is no evidence that the results are affected

by the current noise level.

INSERT Figure 1 about here.

Consider next the modified quadratic loss function L(x1, x2) = 0.066x2
1 +

0.076x2
2 +0.015x1x2−36.77x1−23.97x2 +7741.8. This has one minimum L∗ = 1356.8

at x∗ = (261.22, 131.95). The variance function considered here only depends on x1,

and is given by

V (x1) = −(x1 − 261.2208)2 + 11000 (3)
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This case, where the loss function has an interaction term of the form (x1 ·x2 · ... ·xk),

and the noise is function only of a subset of (x1, x2, ..., xk), is particularly interesting

since robust parameter design problems typically have this type of structure.

Plots of the performance statistics are shown in Figure 2. From the graphs on

the figure it is seen that the number of iterations does not have a significant impact

on the collected statistics. As opposed to experiments with the previous function,

here the statistics when 1000 iterations are performed are very close to the statistics

when 5000 iterations are performed.

INSERT Figure 2 about here.

As a last example of a non-homogeneous variance function consider the Freuden-

stein and Roth function. This function has two minima, L∗1 = 0 at x∗1 = (5, 4), and

L∗2 = 48.98 at x∗2 = (11.41...,−0.8968...). The variance function used in this case is

given by

V (x1, x2) = −x2
1 − x2

2 + 10x1 + 8x2 + 339 (4)

The results obtained for this function differ considerably from the two previous

functions. From Figure 3 it can be seen that the algorithm searches in the wrong

direction as c gets larger. Furthermore, it exceeds the distance between the initial

point and the optimal point. The immediate consequence of this is that the difference

between the estimated optimum and real optimum grows larger. This shows the

importance of choosing an adequate value of the c parameter.

INSERT Figure 3 about here.

The experimental results obtained suggest that SPSA is indeed a useful tool

for finding the optimal point of a function that has non-homogeneous variance, and

consequently, they suggest the potential of SPSA to solve RPD problems. How-

ever, it is clear that the choice of the parameters is critical for the performance of

this algorithm and further investigation about parameter selection is required. The
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guidelines provided by Spall gave good results for the quadratic functions, but not for

the Freudenstein and Roth function when a large value of c was used. This implies

that in a high noise setting selecting the parameters of the algorithm according to the

suggested guidelines might result in ineffective searches, since the algorithm might not

be able to approximate the optimum. For such settings, it is imperative to consider

other criteria. Adaptive versions of the SPSA algorithm (Spall, 2003) eliminate the

burden of finding the “correct” parameters. However, our simulation experience (Mi-

randa, 2008) indicate these methods fail to provide a good performance in the case

of non-homogeneous variance, and hence, will not be considered any further in the

remaining of this paper, where we turn to a different extension of the basic SPSA

algorithm aimed for RPD optimization.

SPSA as a simulation optimization technique for

RPD problems

Since SPSA uses only two estimates of the objective function itself, it is suitable for

optimizing a system that can be simulated. In other words, the output of a simulated

system, which typically is a performance measure, can be used as the input to the

SPSA algorithm. Thus, in this section, SPSA is utilized to solve robust parameter

design problems on simulated systems. The objective is to determine the operating

conditions for a process so that a performance measure y is as close as possible to

the desired target value and the variability around that target is minimized. For this

purpose, the mean square error (MSE) of y is chosen to be the expression to minimize:

M̂SE(y) = V̂ ar(y) + (ȳ − target)2 (5)

When minimizing this function, two MSE(y) estimates are required at each

SPSA iteration. We can obtain these estimates based on a crossed array experimental

design (Myers and Montgomery, 2002). In particular, let x = (x1, x2, ..., xp) be the

p-dimensional vector of controllable factors, {∆k} be a vector sequence of Bernoulli-

distributed perturbations, {ck} be a positive sequence converging to zero, and D be
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an experimental design used to vary the noise factors (z1, z2, ..., zp). Then, the first

MSE(y) measurement is obtained from the performance measure of interest at points

generated when (x̂k + ck∆k) is crossed with D. The second MSE(y) measurement

is obtained from the performance measure at points generated when (x̂k − ck∆k) is

crossed with D. Thus, if D is (n2 × p), one iteration of the RPD version of SPSA

requires n2 × 2 simulations (runs).

Figure 4 illustrates how SPSA is implemented via a crossed array design. In

the figure, x1 and x2 are the controllable factors, while z1 and z2 are the noise factors.

The corner points of the larger square around x̂1 form the inner array. Two of these

points are selected by the SPSA random perturbations (x̂1 + c1∆1) and (x̂1− c1∆1).

The resulting points are then crossed with the points in the outer array (smaller

squares). The two MSE(y) values are calculated at each of the smaller squares and

then the direction of movement is determined following the SPSA algorithm. The

crossed array design is repeated at x̂2, x̂3, and so on. Evidently this way of obtaining

the MSE(y) from a crossed array design can be applied to any number of controllable

and noise factors.

INSERT Figure 4 about here.

Examples

Example 1: a single stage inventory control system

As a first illustration of how SPSA can be used to determine robust operating condi-

tions (with respect to noise factor variations) of a simulated system, let us suppose

that in a single stage inventory system one wishes to determine the time between

orders (T) and the quantity to be ordered (R) of a unique type of product, in such

a way that the MSE of the total cost associated with the levels of T and R is min-

imized. This implies T and R are the controllable factors, and the total cost (y) is

the performance measure of interest. The target of y is zero. Evidently, y depends
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on both R and T, and is given by

y = h · Ī + π · F̄ + s ·N (6)

where h is the inventory carrying cost, Ī is the average inventory, π is the shortage

cost, F̄ is the average number of shortages, s is the cost of placing an order, and N

is the total number of orders (Elsayed and Boucher, 1985). Let us assume that we

wish to consider stochastic demand, a fixed ordering cost, lost sales, and a positive

delivery lead time (Elsayed and Boucher, 1985). The lead time (`) is modeled as

a U(a, b) random variable, where we can think of a and b as the noise factors that

affect R and T. These noise factors will be varied at two different levels in the outer

array. Analytical solutions for the stochastic lead time/stochastic demand case are

not available, but this is a well-known problem if the lead time is constant (Elsayed

and Boucher, 1985).

The specific values used in the discrete event simulation model are s = $200,

π = $9, and h = 0.04 per month. The system was simulated for one year. The

quantity demanded by each customer was modeled as a discrete random variable

that follows the probability mass function shown in Table 1.

INSERT Table 1 about here.

The inventory system was simulated for 1000 SPSA iterations. In each SPSA

iteration the total number of simulations required was 2 · 22. The SPSA algorithm

was started from the initial point (R0, T0): (400,100). One instance of the trajectory

followed by SPSA is shown in Figure 5 along with the MSE(y) contours. In this

example the SPSA algorithm is effective since the final estimate (R̂, T̂ ) lies in the

region of true lowest MSE(y) values. Results from three other initial points (R0, T0):

(170, 50), (500, 25), and (800, 250) lead to the same conclusion.

INSERT Figure 5 about here.
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Example 2: Simulation optimization of several buffer sizes in
a manufacturing system

As a second and more realistic example of the application of SPSA for RPD problems,

consider a small manufacturing system that uses free-path vehicles of capacity one to

transport parts through four manufacturing processes and one inspection process (see

Figure 6). A part arrives at the “get on” station. It is then taken to the input buffer

of the first manufacturing process, where it waits until it can be processed. After

that, the part visits the remaining processes in numerical sequence, with a possible

waiting time in each corresponding input buffer. There is only one machine at each

process which can operate one part at a time.

INSERT Figure 6 about here.

It is well known that unless any two machines finish each production cycle

at precisely the same moment, they will interfere with each other and production

capacity will be lost. If one machine finishes before its successor, it must wait to

dispose its finished part in order to begin a new one, that is, the machine will be

blocked. If the second machine finishes before its predecessor, it will be starved.

Hence the objective is to find the size of the input buffers (B1, B2, B3, B4, B5) that

reduces the frequency and severity of blockage and starvation, but simultaneously

minimizes the MSE of the cost given by C = L + S + J , where L is the cost of

losing production capacity, S is the cost of each input buffer spot, and J is the cost

of having an idle vehicle. J is included because it is desirable that vehicles move as

many parts as they can, so that starvation is not attributed to a materials handling

problem. This is because when a vehicle finds the input buffer full, it has to stay

still until one spot is available so that it is able to unload the part and move. In this

case the target of C is zero. It will be assumed that the five machines are subject to

failures. The time until a failure occurs in each machine was assumed i.i.d Exp(λi)

for i = 1, 2, ..., 5. The parameters λi take two different values each, 800 minutes

and 960 minutes. Since failures are uncontrollable in practice and their rates not
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known with complete certainty, the parameters λi were considered the noise factors

of the system. The five input buffers associated with the 4 operations plus inspection

(B1, B2, B3, B4, B5) are the controllable factors.

In this example, the outer array for the noise factors (D) is a 25−2 fractional

factorial. With this design, each SPSA iteration requires only 2 ·25−2 = 16 simulation

runs. Evidently a full factorial design would result in a larger number of runs required

for one SPSA iteration.

Further assumptions made in the manufacturing model are that the parts

arrive according to an Exp(4) distribution, the service time is assumed to be the

same for all 5 machines and follows an Exp(4) distribution. The number of vehicles

in the system was fixed and equal to 8. They do not accelerate or decelerate when

moving around the system. Regarding the costs, it is assumed that losing production

capacity is much more expensive than having larger buffers or having an idle vehicle.

Hence, L À J > S. Despite S being small compared to the other costs, it is not

acceptable to have very large buffers; physical space restricts their size. Therefore, in

this case, two constraints were imposed over the buffers decision variables, Bi ≤ 35

and Bi ≥ 0. These constraints were handled by means of projections into the feasible

region (Sadegh, 1997). In actual practice, the optimization of the system must be

done over discrete sets given the discrete nature of parts and buffer capacities. These

can be handled by a modification of the SPSA algorithm due to Hill et al., Hill et al.

(2004) whose modified SPSA algorithm works for functions defined on a grid of points

having integer coordinates.

Ten replicates each of 1000 SPSA iterations were conducted from 10 different

initial points. The final estimate that gives the minimum average MSE(C) was the

buffer sizes (11.55, 19, 10, 11.55, 7.66) (first row in Figure 7). However (11.44, 25.88,

12.55, 11.33, 19.55) (second row in Figure 7) could also be a good combination because

even though its average MSE(C) is higher, its standard deviation is lower. We note

that some initial points were notably better than others. For instance, from the last

point the algorithm ends up on the boundary of the feasible region, unable to get
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away from it. Hence the importance of trying several initial points.

INSERT Figure 7 about here.

For more details about the simulation programs utilized in these examples and

more extensive computational results of the SPSA algorithm see (Miranda, 2008).

Conclusions.

SPSA is an easy-to-implement optimization algorithm. It is very efficient in settings

where only noisy measurements of the objective function are available because only 2

observations are required to find the direction of search. It was observed that SPSA

is effective when the objective function has non-homogeneous variance. Simulation

results suggest that SPSA is able to find the optimal points when some of the variables

also affect the variability of the response. The latter is particularly important since

it implies that SPSA is efficient for solving RPD problems.

SPSA was extended to obtain a solution of a discrete-event simulated system

that is robust to noise factor variability. For this purpose the key tool was the use of

a crossed array design and a MSE objective function. The MSE objective accounts

for both the variance and the mean of the response of interest as a function of the

controllable factors, which are then optimized using SPSA.

Two example applications were utilized to demonstrate the modified SPSA

algorithm for RPD problems: a single stage inventory system for which the quality

of the solutions was easy to verify, and a more realistic manufacturing system. The

simulation solutions were checked graphically and compared with their analytical

counterparts when possible. In general, they showed the ability of the algorithm to

converge to a robust solution, that is, a solution that is not sensitive to variation in

the noise factors. Nonetheless, the potential of SPSA for achieving large savings in the

total number of measurements required to estimate the optimum is only realized when

the crossed array structure is not overly large. Further research is hence necessary
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for finding crossed array structures with a small number of runs that allow solving

an RPD problem, while concurrently taking advantage of the SPSA features.

The evidence in the simulations performed in this work suggests that SPSA is

indeed a useful tool for robust parameter design optimization, not only for systems

modeled analytically, but also more importantly, for systems for which only simulated

values of the objective function are available.

Acknowledgment- We thank Dr. David Mun̄oz (ITAM-México) for providing

the simulation code used in the second example.
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Kocsis L and Szepesvári C (2006). Universal parameter optimisation in games based

on SPSA. Mach Learn 63:249–286.

Mayers R J and Benjamin P (1992). Using taguchi paradigm for manufacturing

system design using simulation experiments. Comput Ind Eng 22:195–209.

Miranda A K (2008). Stochastic perturbation methods for robust optimization of

simulation experiments. MS thesis. The Pennsylvania State University.

15
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Captions and Headings

Figure 1: Left: Average distance between the final estimate and the optimal

point (||x̂ − x∗||) when the quadratic function is used; Right: Average difference

between the estimated optimal value and the real optimal value (L̂ − L∗) when the

quadratic function is used.

Figure 2: Left: Average distance between the final estimate and the optimal

point (||x̂−x∗||) when the modified quadratic function is used; Right: Average differ-

ence between the estimated optimal value and the real optimal value (L̂− L∗) when

the modified quadratic function is used

Figure 3: Left: Average distance between the final estimate and the optimal

point (||x̂− x∗||) when the Freudenstein and Roth function is used; Right: Average

difference between the estimated optimal value and the real optimum value (L̂−L∗)

when the Freudenstein and Roth function is used

Figure 4: Crossed array designs in an SPSA search

Figure 5: SPSA search trajectory from initial point (400,100), example 1

Figure 6: Manufacturing system layout, Example 2

Figure 7: Simulation results for the manufacturing system (example 2), 1000

SPSA simulations

Table 1: PMF of quantity demanded in the single stage inventory system

(example 1).
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Tables and Figures

x 1 2 3 4 5
P(X = x) 0.3 0.1 0.1 0.3 0.2

Table 1
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Figure 4
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Figure 5
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Figure 6
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