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Abstract

The “predictor-corrector” feedback controller, a process adjustment scheme pro-
posed for semiconductor manufacturing run-to-run processes that drift, is extended
to the multiple input–multiple output case. The controller is based on two coupled
multivariate exponentially-weighted-moving-average (EWMA) equations, thus its per-
formance depends on the choices of EWMA weight matrices. Stability conditions are
given for a pure gain process adjusted with a MIMO double EWMA (dEWMA) con-
troller. It is shown that the stability conditions are invariant with respect to various
realistic drift disturbance models. Recommendations on how to choose the EWMA
weight matrices are given. An analysis is conducted to assess the impact of errors
in the estimates of the process gains. The proposed MIMO dEWMA feedback con-
troller is compared to the common practice of using multiple single-input–single-ouput
dEWMA controllers running in parallel.

1 Introduction: EWMA-based feedback methods

Recent work in the area of process control, notably in semiconductor manufacturing, has con-

centrated in the application of the exponentially-weighted-moving-average (EWMA) statistic

for process adjustment purposes [17, 8]. Del Castillo [6] presents an analysis of an adjust-

ment scheme based on two coupled EWMA equations, the so-called “predictor-corrector”, or

double EWMA, feedback controller. The double EWMA (dEWMA) control scheme was first

proposed by Butler and Stefani [5], who applied it to a polysilicon gate etch process used in

semiconductor manufacturing, a process known to drift considerably as the reactor ages. In
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general, the drift is not always constant or known a priori, and a feedback controller that

compensates against different types of stochastic drift is desirable. Del Castillo [6] analyzed

the stability and robustness of dEWMA controllers under the assumption of a deterministic

trend and later extended the analysis to random walk with drift and IMA(1,1) disturbances

[7]. Adivikolanu and Zafiriou [1] analyzed a modified version of the univariate dEWMA us-

ing the internal control principle. Chen and Guo [9] modified the double EWMA equations

to obtain cleaner steady-state estimates of the state variables and applied it to a polishing

process. All these analyses were restricted to single input, single output (SISO) processes,

although it was noticed in [6] that the analysis carried over to the multiple input, single

output (MISO) case. In this paper, a multiple input, multiple output (MIMO) extension

of the dEWMA feedback controller is presented and analyzed. The use of the multivariate

EWMA statistic for monitoring a multivariate process, as opposed to process adjustment,

was discussed by Lowry et al. [11] and Prabhu et al. [13].

In the SISO case, the process model assumed by Butler and Stefani [5] in their feedback

control scheme was:

yt = α + βut−1 + δt + εt (1)

where yt is the measured quality characteristic of batch or run t, ut−1 is the level of the

controllable factor set at the end of run (t − 1), δ is the average drift per run, and {εt}∞t=1

is a white noise sequence. Model (1) assumes a deterministic trend (DT) disturbance, given

by the terms δt + εt. The parameter α models any offset or bias from target and β is the

input-output gain parameter. If an off-line estimate, b, exists for the gain, β, the dEWMA

controller is given by:

ut =
T − at −Dt

b
, (2)

where,

at = λ1(yt − but−1) + (1− λ1)at−1; 0 < λ1 ≤ 1, (3)

and

Dt = λ2(yt − but−1 − at−1) + (1− λ2)Dt−1; 0 < λ2≤1. (4)
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As shown in [6], the quantity (at + Dt) provides an asymptotically unbiased one-step-ahead

estimate of where the quality characteristic would have drifted in the absence of any control

action. In the case of the dEWMA, there are two weights, λ1 and λ2, that need to be defined

in order to use the controller.

For a considerably large family of drift disturbances (including deterministic trend), the

stability conditions for this SISO dEWMA feedback controller are ([6, 7]:

|1− 0.5ξ(λ1 + λ2) + 0.5z| < 1 (5)

|1− 0.5ξ(λ1 + λ2)− 0.5z| < 1 (6)

where z =
√

ξ2(λ1 + λ2)2 − 4λ1λ2ξ and ξ = β/b is a process-model mismatch parameter.

The dEWMA scheme is not a member of the PID family, but contains integral action

that adds robustness and compensates against shifts [7]. This scheme is close, although not

equal, to a minimum variance controller for an ARIMA(0,2,2) process, a process that models

random changes in slope and that is useful to model some processes that drift but not in a

monotonic manner [7].

In a vast majority of Quality Control applications, there are multiple quality character-

istics of interest. Frequently, there are multiple controllable factors that can be manipulated

to modify the quality characteristics. This underlines the practical relevance of finding mul-

tivariate process adjustment techniques. Usually, industrial practice with MIMO processes

is to apply several SISO feedback controllers acting in parallel. Therefore, it is of interest

to study the advantages of a multivariate approach to process adjustment over a “parallel

SISO” strategy . As in recent work in the area of process adjustment [4], the emphasis is

on simple control methods that are easy to use by process engineers yet are capable of com-

pensating against a variety of realistic disturbances and shifts in the quality characteristics.

The multivariate dEWMA approach developed in this paper has these properties.

Tseng et al. [18] have recently developed a MIMO extension of a single EWMA controller

(i.e., an extension of the controller that results from setting λ2 = 0, D0 = 0). This turns
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out to be equivalent to MIMO integral (I) control, a particular instance of the well-known

proportional-integral-derivative (PID) controllers. As in the scalar case, single EWMA feed-

back schemes may result in a considerable offset if the process drifts rapidly [10, 7]. Avoiding

such offset was the rationale behind Butler and Stefani’s dEWMA method. Evidently, the

MIMO EWMA scheme is a particular case of the MIMO dEWMA scheme developed herein.

The remainder of this paper is organized as follows. Section 2 contains the main extension

of a dEWMA feedback controller to the multivariate (MIMO) case. The stability conditions

for the MIMO dEWMA are studied in Section 3 for various drift disturbances. It is shown

that the stability conditions are invariant for a large family of drift disturbances. The effect

that the weights of the MIMO dEWMA controller have on the closed-loop performance of

the process are investigated by simulation in Section 4. The effect of estimating correctly,

underestimating, or overestimating the process gains is studied in Section 5. Throughout

sections 4 and 5, contrast is made between using a MIMO dEWMA feedback controller or

using instead multiple SISO dEWMA controllers working in parallel for individual input-

output couplings. Extensions of the control methods to the non-square case, i.e., the case

when there are more controllable factors than responses, is briefly addressed in Section 6.

The paper concludes with a summary and directions for further research.

As in previous references that discuss EWMA control, the main interest is on minimizing

the sum of squared deviations of the outputs or responses, without direct consideration for

the cost of the adjustments. Readers interested in modeling the cost of the adjustments are

referred to the book by Box and Luceño [4]. The controllers presented in Section 6, however,

consider and limit the magnitude of the control actions.

2 Extension to MIMO processes

The process model assumed is similar in form to that of the Single Input - Single Output

(SISO) case (equation 1). However, it is assumed here that there are p responses or outputs

and m inputs or controllable factors. Most of the results addressed in this paper are for the
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case where p and m are equal, or in other words, for square systems. The case when m > p

is briefly discussed in section 6 and is discussed in more detail in [15]. The assumed model

is:

Yt = α + βUt−1 + Nt, (7)

where,

Nt = δt + εt. (8)

In the above equations, Nt is assumed to be a multivariate Deterministic Trend (DT) noise

model and the MIMO dEWMA controller will be derived for this type of disturbance. How-

ever, as discussed in the following sections, the stability conditions for the MIMO dEWMA

scheme under other types of stochastic processes that model drift are identical as those for

the DT disturbance. Here, δ is a p × p diagonal matrix with the (i, i) entry equals to the

average drift rate per time unit for response i, t is a p × 1 vector with entries equal to t,

the time index, and {εt} is a multivariate white noise sequence (no assumption about its

distribution is made). The (p × 1) vector Yt contains the quality characteristics (outputs

or responses), α is a (p×1) vector containing the offset parameter of each of the responses,

Ut−1 is a (m×1) vector giving the levels of the controllable factors (or inputs), and β is

a (p×m) process gain matrix. As assumed in the univariate case, this is a “responsive”

pure-gain transfer function [4] where the dynamics come from the noise term. Such model is

applicable not only in semiconductor manufacturing but in many other batch-oriented pro-

cesses where there is drift in the quality characteristics owing to wear-out phenomena. From

equations (7-8), it can be seen that there are three sets of model parameters to be estimated,

namely, those contained in α, β, and δ, respectively. As customary in the area of run-to-run

control [8], it is assumed that an estimate, B, of the process gain, β, is obtained off-line

using methods such as Design of Experiments and linear regression techniques. Similarly

than in the univariate dEWMA scheme, the intercepts, α, and the drift, δ, will be estimated

on-line and updated after each run.

At the end of each run t, a corrective action, Ut, is chosen, which gives a prescribed set
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of inputs, or recipe, to the process engineer for use in the next run. This is done by choosing

the control action that corrects for the one-step-ahead predicted deviation from target in a

similar way as done for the univariate dEWMA. That is, ‖Ŷt+1|t −T‖2 is minimized, where

T is a (p×1) vector of targets for the responses:

Min Z = ‖Ŷt+1|t −T‖2 (9)

where,

Ŷt+1|t = α̂ + δ̂(t + 1) + BUt. (10)

In the above equation the estimate of the sum (α + δt) is denoted α̂ + δ̂t. If (At + Dt)

estimates (α + δ(t + 1)), in analogy to the univariate case, then (10) may be written as

follows:

Ŷt+1|t = At + Dt + BUt. (11)

Hence, the objective function can be written as

Min Z = ‖At + Dt + BUt −T‖2, (12)

where the minimization is with respect to Ut. Thus,

∂Z

∂Ut

= 2B′(At + Dt + BUt −T) = 0m×1 (13)

from where we obtain

(B′B)Ut = B′(T−At −Dt) (14)

or

Ut = (B′B)−1B′(T−At −Dt) (15)

which, if m = p reduces to:

Ut = B−1(T−At −Dt)

which is simply the unique solution to Ŷt+1|t = T. This evidently solves problem (9) yielding

Z = 0. If m > p, (15) should be used once the B′B matrix is regularized, as discussed in
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section 6 (see also [15]). In the case when m = p, At and Dt are obtained using two

multivariate EWMA equations:

At = Λ1(Yt −BUt−1) + (I−Λ1)At−1, (16)

and

Dt = Λ2(Yt −BUt−1 −At−1) + (I−Λ2)Dt−1 (17)

where I is a (p× p) identity matrix, and Λ1 and Λ2 are (p×p) EWMA weight matrices. It is

shown in the Appendix that when Λ1 and Λ2 are diagonal matrices, (At + Dt) provides an

asymptotically unbiased estimate of (α + δ(t + 1)). Since these are EWMA equations, the

diagonal elements of Λ1 and Λ2 usually lie in the range (0, 1] so that they can be interpreted

as weights and the resulting computations as averages, although this is not necessary for

stability. Table 1 gives a numerical illustration of the MIMO Double EWMA controller for

the case of two inputs and two outputs. In this example, α = (2.0, 2.0)′, δ = 0.1I, and

T = (0, 0)′. The errors are assumed to be multivariate standard normal variables with

variance covariance matrix σ2I. The estimated gains B are assumed equal to the true gains

β, where

B = β =

(
1.0 0.2
0.3 1.0

)
.

The matrices Λ1 and Λ2 are diagonal matrices, where

Λ1 =

(
0.2 0.0
0.0 0.2

)
,Λ2 =

(
0.3 0.0
0.0 0.3

)

were used. At the end of each run, the EWMA equations for At and Dt are calculated first,

followed by Ut computed using equation (15), which gives the prescribed input settings to

the process for the next run.

Insert Table 1 about here
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3 Stability analysis

We assume in this section that m = p (same number of controllable factors than responses),

and extend the stability conditions to the case when m > p in Section 6.

3.1 Stability conditions for a deterministic trend disturbance.

The multivariate deterministic trend model is given by equation (8). Initially, this distur-

bance model will be assumed to hold, although this is generalized to other disturbances in

the next section. A sample realization of the DT disturbance for the case of two responses

is given in Figure 1.

Insert Figure 1 about here

By substituting equation (15) into (7), the closed-loop expression for the response is ob-

tained. This is given by

Yt = α + βB−1(T−At−1 −Dt−1) + δt + εt. (18)

Following the work on univariate dEWMA schemes [6, 8], we define the system-model mis-

match matrix ξ = βB−1. Then, equation (18) may be written as

Yt = α + ξT− ξAt−1 − ξDt−1 + δt + εt (19)

Substituting equations (7) and (15) into (16), we get

At = Λ1(α + (ξ − I)T) + Λ1δt + Λ1εt + (I−Λ1ξ)At−1 + Λ1(I− ξ)Dt−1 (20)

Similarly, substituting equations (7) and (15) in (17), we get

Dt = Λ2(α + (ξ − I)T) + Λ2δt + Λ2εt + (−Λ2ξ)At−1 + (I−Λ2ξ)Dt−1 (21)

In an analogous way as in the univariate dEWMA case, state-space analysis can be performed

to obtain the stability conditions from the above three coupled difference equations. Define
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the state vector as Xt
′ = (At−1

′,Dt−1
′), a vector of dimension (2p×1). The state space

representation of equations (19-21) is:

Xt+1 = ΩXt + Wt (22)

Yt = C′Xt + Rt (23)

where, Ω is a (2p×2p) transition matrix, W is a (2p×1) vector, C is a (2p×p) matrix and

R is a (p×1) vector. These are defined as

Ω =

(
(I−Λ1ξ) Λ1(I− ξ)
−Λ2ξ (I−Λ2ξ)

)
, (24)

Wt =

(
Λ1(α + (ξ − I)T + Nt)
Λ2(α + (ξ − I)T + Nt)

)
, (25)

C′ =
(−ξ −ξ

)
, (26)

and

R =
(
α + ξT + Nt

)
. (27)

As it is well-known from state-space models [2], equation (23) is a stationary process if all

the 2p eigenvalues of Ω are less than one in magnitude. Assuming that the weight matrices

are such that Λ1 = λ1I and Λ2 = λ2I, the eigenvalues of Ω can be shown to be:

• 1
2
(2− ξjjλ1 − ξjjλ2 − (ξjj)

1/2
√

ξjjλ1
2 + 2ξjjλ1λ2 + ξjjλ2

2 − 4λ1λ2,

j = 1, 2, ..., p

• 1
2
(2− ξjjλ1 − ξjjλ2 + (ξjj)

1/2
√

ξjjλ1
2 + 2ξjjλ1λ2 + ξjjλ2

2 − 4λ1λ2,

j = 1, 2, ..., p

These are very similar to the eigenvalues of the univariate Double EWMA scheme [6]. For

this disturbance we have that E[At + Dt] → α + δ(t + 1) (see Appendix), so the dEWMA

equations will “track” the diverging disturbance. However, since C′ = (−ξ,−ξ), the di-

verging state variable cancels at the output. The stability conditions, derived from the

eigenvalues are described next.
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Stability Conditions. For the process described by equation (7) and controlled by a

MIMO Double EWMA controller (15–17) under the above mentioned conditions, the follow-

ing inequalities provide necessary and sufficient conditions for the asymptotic stability of the

controlled process:

|1− 0.5ξjj(λ1 + λ2) + 0.5z| < 1, ∀j∈{1, 2, ..., p} (28)

|1− 0.5ξjj(λ1 + λ2)− 0.5z| < 1, ∀j∈{1, 2, ...p} (29)

where, z =
√

ξ2
jj(λ1 + λ2)2 − 4λ1λ2ξjj

Remarks

• As stated, the noise terms {εt} are assumed to form a white noise sequence. This

implies that the aforementioned conditions guarantee weakly stationary only, i.e., the

first two moments of Yt will be finite. If the additional assumption of multivariate

normal white noise errors is made, then the conditions guarantee the strict stationarity

of the output.

• The stability conditions are very similar to those obtained for the univariate Double

EWMA case. It is seen here that only the main diagonal elements of the ξ matrix

play a role in the stability of the process. However, the value of these main diagonal

elements depend on both the main-diagonal as well as off-diagonal elements of the gain

matrix, β, and its estimate, B.

• As it is well-known, a system of difference equations exhibits oscillatory behavior if

its eigenvalues are complex or if a real eigenvalue is negative. Stability and oscillatory

conditions are summarized in Table 2.

• Contrary to the stability conditions in the SISO case, these conditions in the MIMO

case cannot be directly understood in terms of the accuracy in the estimation of the

gain matrix. The reason for this is that the relationship between the ξ′jjs and each
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element of the matrices, β and B, is complex. However, for the special case in which

the estimated matrix, B is diagonal, ξjj is simply βjj/Bjj. This is the case shown

in Figure 4 where a MIMO process is controlled using p univariate (SISO) controllers

acting in parallel.

Insert Table 2 about here

3.2 Stability conditions for other disturbances

The random walk with drift (RWD) noise model is defined as

Nt = Nt−1 + δ + εt. (30)

A sample realization of this process for the case of p = 2 is shown in Figure 2.

Insert Figure 2 about here

The Integrated Moving Average process of order (1,1), or IMA(1,1) noise model [3] is

described by the equation:

Nt = Nt−1 − θεt−1 + εt (31)

where θ is a (p×p) matrix, and all the eigenvalues of θ are less than 1 for invertibility [16].

A sample realization of a multivariate IMA(1,1) process is shown in Figure 3.

Insert Figure 3 about here
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It is relatively easy to show, by analogous development as in the DT disturbance case,

that the state-space representation of the controlled process under RWD and IMA(1,1) dis-

turbances is identical as long as we redefine the Nt term. In particular, the transition matrix

Ω will be identical, and this implies that the stability conditions given in Table 2 also apply

to the cases of RWD and IMA(1,1) disturbances.

4 Effects of weights on controller performance (DT dis-

turbance)

It is of relevance to study what is the effect of the selection of EWMA weights on the closed-

loop performance of the controller. In this section and in section 5, a MIMO dEWMA

controller is contrasted against the alternative of using p univariate dEWMA controllers

operating in parallel. The relevance of this comparison is that multivariate (i.e., MIMO)

feedback control schemes are not implemented frequently in industry. Instead, it is com-

mon practice that each input-output loop is controlled individually with a SISO controller.

Figures 4 and 5 depict the two different control strategies. Evidently, the performance of a

multivariate controller will be better than that of a parallel SISO scheme if the controlled

process is in fact multiple input, multiple output. It is still of interest, however, to study

where the advantages lie given the common industrial practice of using SISO controllers

acting in parallel.

Insert Figures 4 and 5 about here

The analysis was conducted under the assumption of a DT disturbance and the results

are shown in Figure 6 for the case of 2-inputs and 2-outputs (for a similar analysis for p = 3

see [14]). In this case, a MIMO dEWMA controller is used to adjust a MIMO process (see

Figure 5). In contrast, Figure 7 shows the results for two SISO dEWMA feedback controllers

applied in parallel to a process with two responses. The architecture for this approach is
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shown in Figure 4. MATLAB programs were written for the simulations. It is assumed in

this section that the process gain is estimated perfectly, i.e., B = β for the MIMO controller.

For the parallel SISO dEWMA controller, the B matrix is diagonal as the SISO controllers

are obviously decoupled.

To simplify the analysis, the two main diagonal elements of β are assumed to be equal

to 1, and the two off-diagonal elements are kept equal and their value is varied from 0 to

0.9 along the x-axis of the figures. In the case where all the off-diagonal elements are zero,

it simply means that the system is decoupled, i.e., each response is affected by only one of

the inputs. In such case, the MIMO dEWMA and the p-parallel SISO dEWMA controllers

are identical. As the value of the off-diagonal element increases, the correlation between

the responses increases because both responses are affected by changes in either of the in-

puts. Simulations were carried out with an offset of αi = 2, and a target of Ti = 0, for i = 1, 2.

Insert Figures 6 and 7 about here

The assumed DT disturbance model has δ = (0.2)I and a multivariate white noise sequence

with errors εt ∼ N(0, 1) was generated. As justified in the Appendix, the weight matrices,

Λ1 and Λ2 are diagonal. Furthermore, it is assumed that all the diagonal elements in each

of the weight matrices are equal, so we can write Λ1 = λ1I and Λ2 = λ2I.

The variability of the output was used to evaluate the performance of the different alterna-

tives. The Mean Square Error (MSE) of each response was estimated over 500 observations:

M̂SEi =
1

500

500∑
t=1

(Yti − Ti)
2 (32)

and the average of 1000 such estimated MSE’s (each obtained from independent simulations)

was computed for each response. Due to the symmetry in the assumed parameters and

models, the average MSE for the two responses is practically identical. Thus, only the

average MSE of one of the responses is plotted on the y-axis of Figures 6 and 7 for different

combinations of the weights (indicated within parenthesis). The first number in parenthesis
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gives the value of the diagonal elements in Λ1, and the second number gives those of Λ2.

The following observations can be made from the figures:

• For both parallel SISO and MIMO dEWMA structures, there is an optimal weight

combination λ1, λ2. Combinations where one weight is close to zero (e.g., when it

equals 0.05) and the other weight is large (e.g., 0.35) gave lowest average MSE for

the responses. This combination of weights seems to perform well irrespective of the

correlation between the responses as given by the off-diagonal elements of β.

• For both parallel SISO and MIMO structures, using high values for both weights results

in large values of the average MSE. For the parallel SISO case, the average MSE can

diverge when there is strong correlation between the responses. It can be seen that

when both weights are chosen equal to 0.65, the process explodes when the off-diagonal

element increases over 0.3 (Figure 7). On the contrary, the MIMO dEWMA controller

provides stable performance across a much wider range of off-diagonal elements.

• In the parallel SISO case, when very low values of the EWMA weights are chosen,

the behaviour is very strange (observe the line in Figure 7 corresponding to a value of

0.05 for both weights). This is possibly because when these weights are almost zero,

the transient is longer, as known to happen in the SISO case, and this inflates the

MSE. However, such behavior was not observed for the MIMO case (Figures 6, 7),

indicating that the transient effects are probably less pronounced than in the parallel-

SISO configuration.

• The effect of the EWMA weights matrices, Λ1 and Λ2, appears approximately sym-

metrical, i.e., interchanging the values of Λ1 = λ1I and Λ2 = λ2I does not affect the

Average MSE curve.

Choosing the EWMA weights is hence crucial for the performance of the process and it is

recommended that values between 0.05 and 0.35 are used for the EWMA weights in a MIMO
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Double EWMA controller. One of the weights should be close to zero and smaller than the

other weight. These recommendations are similar to those given by Del Castillo [6] who

proposed a “trade-off” solution to a weight determination optimization problem. In that

problem, SISO DEWMA controller weights were chosen to minimize the sum of expected

squared deviations from target (a measure of the severeness of the transient) and the asymp-

totic (long-run) variance. It was observed that the trade-off solution always results in one

small weight to ensure stability, and one larger weight to minimize the aforementioned sum.

Unfortunately, a similar analysis in the MIMO case is complicated algebraically. However,

the simulation results in this section appear to confirm the design recommendation of the

univariate dEWMA controller.

5 Effects of Errors in the Gain Estimates (DT distur-

bance)

In this section, the two control structures in Figures 4 and 5 are simulated under different

assumptions regarding the process gain estimate B. The performance is compared using the

average Mean Square Error of the response. The following assumptions were made in the

simulations of this section:

• All the diagonal elements of the two diagonal EWMA weight matrices, Λ1 and Λ2

are assumed to be equal to one another, i.e., Λ1 = λ1I = Λ2 = λ2I. Although equal

weights are not recommended based on the results of the previous section, for the

purposes of analyzing the effect of errors in the gains it is easier to vary the weights

together. The conclusions of this section will not depend on this choice of weights.

• The main diagonal elements in the gain matrix are assumed to be equal to one. The

off-diagonals are kept symmetrically equal and simulations are carried out by varying

their value from 0.0 to 0.9.

• In the case of the SISO controllers in parallel, it is assumed that the estimated gain
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matrix is a diagonal matrix. It is thus expected that in the case where the off-diagonal

elements are all zero, the performance of the parallel SISO controllers and the MIMO

controller is identical.

• The noise term used in these simulations is a multivariate DT disturbance, with δ

= (0.1)I, and the errors in the multivariate white noise sequence are N(0, 1) random

variables.

• It is assumed that the offset is 2.0, and the target is 0 for all responses.

The simulations were carried out in MATLAB. MSE estimates based on 1000 replications

of 500 runs each were conducted. In each simulation, the first 150 runs were eliminated to

avoid the transient phase. The Average MSE is then calculated over 1000 such simulations.

The Average MSE of one of the responses is then plotted on the y-axis and the EWMA

weights are plotted on the x-axis (the MSE’s for all responses is practically identical given

the symmetry of model and disturbance parameters). Each curve on Figures 8–11 represents

the average MSE plot for a particular value of off-diagonal element of the gain matrix which

is indicated next to the curve. In what follows, the case of β = B (known gains) is treated

first. Conclusions for all cases considered are found at the end of Section 5.

5.1 Known gains

In this case, the system is assumed to have three inputs and three outputs. Similar results

are obtained for other values of p ([14]). The gain estimate, B, is assumed to be equal to the

actual gain, β, while simulating the MIMO controller. In case of the parallel SISO controller

the main-diagonal elements of B are the same as that of β and the off-diagonal elements are

zero. The results are given in Figures 8 and 9 for the parallel SISO and MIMO controllers

respectively.

Insert Figures 8 and 9 about here
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When the gains are known, it was observed in the simulations that the responses were

on-target.

5.2 Gains underestimated

In this section the gain matrix is assumed to be under-estimated. The ratio of under-

estimation is assumed to be two. That is, each element of B was set to be half that of β

for the MIMO controller. For the parallel SISO controllers, the main-diagonal elements of B

are half that of β, and the off-diagonal elements are zero. The results are shown in Figures

10 for the parallel SISO case and Figure 9 for the MIMO case.

Insert Figure 10 about here

5.3 Gains overestimated

In this case, the gain matrix is assumed to be over-estimated. The ratio of over-estimation

is assumed to be two. That is, all the elements in B are twice those of β for the MIMO

controller. For the parallel SISO controllers the main-diagonal elements of B are twice that

of β and the off-diagonal elements are zero. These results are shown in Figures 11 for the

parallel SISO case and in Figure 9 for the MIMO case.

Insert Figure 11 about here

From Figures 8–11, the following observations can be made. For the case of known gains

(B = β):

• The parallel SISO case produces an envelope of MSE functions that gets steeper as
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the off-diagonal elements increase. From a stability point of view, it seems that small

weights result in pronounced transients, inflating the MSE’s.

• The MIMO DEWMA controller provides, for given weights, practically the same MSE

performance regardless of the input-output coupling. For any value of the off-diagonal

element, the performance is almost identical to that of the parallel SISO case when the

system is decoupled (compare Figures 8 and 9). The MIMO controller is thus more

consistent, and has more choices of weights for which it provides stable performance.

From the figures, it can be seen that small weights guarantee stability. However,

as in the parallel SISO case, setting both weights close to zero leads to pronounced

transients.

For the case of over/under estimation of gains:

• The evidence we show for (3×3) systems indicates that it is better, from an MSE point

of view, to over-estimate the gains, B, than to under-estimate them (similar results

for the case p = 2 can be found in [14]). Over-estimation leads to a flatter MSE

Vs. (λ1, λ2) function than when B = β in both parallel SISO and MIMO controllers,

although the superiority of the MIMO controller is evident. A flatter MSE function

implies the stability region for the controller has increased. It should be pointed out

that if the over-estimation is very severe, these nice stability properties are lost.

• Under-estimation of the gain matrix results in instability. This is true for the parallel

SISO controllers as well as the MIMO controller. The system diverges for all the values

of the off-diagonal element, even if relatively small values of the EWMA weight are

used.

• These results are quite similar to that of the scalar double EWMA case, where overes-

timation of the gain was found to be better than under-estimation [7].
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6 Extension to non-square systems

Suppose now that the number of controllable factors (m) exceeds the number of responses

(p). Then equation (15) is not applicable since the matrix B′B is not invertible. Two

common solutions to this problem are to regularize the matrix before attempting inversion,

and using a more general inverse. These give raise to two types of feedback controllers which

we will refer to as the Ridge Solution controller and the Right Inverse controller. These

controllers are explained in greater detail in [15].

The idea behind the Ridge Solution controller is to minimize (E[Yt]−T)2 with the added

constraint that (U′U) < ρ2, where ρ is the radius that bounds the values the controllable

factors can take. This is analogous to the optimization methods used in Ridge Analysis of

Response Surfaces [12]). If µ is the Lagrange multiplier of the constraint, then the control

equation obtained is of the form:

Ut = (B′B + µI)−1B′(T−At −Dt). (33)

The above solution is similar to the control equation for square systems (eq. 15). The

only change here is the µI term which when added to (B′B) makes it invertible as long as

µ 6= 0. As this is a minimization problem, µ is chosen so that the matrix (B′B + µI) is

positive definite. This will happen as long as µ > 0. It is recommended to choose very

small values of µ just enough to obtain an invertible matrix for computation purposes. All

the results for stability and the conditions for oscillations in Table 2 may be applied to this

controller by simply redifining ξ = β(B′B + µI)−1B′.

The Right pseudoinverse controller, or Right Inverse controller for short, is based on the

controller proposed by Sachs et al. [17] for systems with multiple outputs and a single input.

It is obtained by minimizing the magnitude of the adjustments to be made, i.e., (|Ut−Ut−1|),
subject to the constraint that (Yt−α− δt = T). More recently, this approach was used by

Tseng et al. [18] for extending the single EWMA to the multivariate case. The form of this
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dEWMA controller is:

Ut = (I−B′(BB′)−1B)Ut−1 + B′(BB′)−1(T−At). (34)

As mentioned in [15], the adjustments prescribed by both of these controllers was observed

to be almost identical, as long as the µ parameter of the Ridge Controller is numerically small.

7 Conclusions and further research

A MIMO extension to the univariate dEWMA feedback adjustment method was provided.

The stability condition of the closed-loop system was shown to be invariant with respect to

three practical drift disturbances, namely, a multivariate deterministic trend (DT), a multi-

variate random walk with drift (RWD), and a multivariate IMA(1,1) process. A simulation

study was conducted to investigate the effects of the EWMA weight matrices and of the gain

estimate on the mean square error of the responses. The benefits of using a MIMO dEWMA

controller over the common practice of using several SISO dEWMA controllers acting in

parallel loops were investigated.

Further work can be devoted to studying the performance of MIMO dEWMA feedback

controllers when there exist process dynamics (as opposed to the pure gain process assumed

in this paper). This might prove fruitful for the chemical industries where such dynamics

are common.
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Appendix: Justification of diagonal weight matrices

Throughout the paper, diagonal weight matrices Λ1 and Λ2 were used. This section gives

a formal justification for such choices of the weight matrices under the assumption that the

noise is a deterministic trend. Writing the process model equation (Eqn. 7) for a single
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response, i, where i∈{1, 2, ..., p}, the following equation is obtained:

Yti = αi +
m∑

j=1

βijU(t−1)j + δiit + εti. (35)

Thus,

αi + δiit = Yti −
m∑

j=1

βijU(t−1)j + εti (36)

Thus, an estimate of (αi + δiit) is given by

α̂i + δ̂iit = Yti −
m∑

j=1

BijU(t−1)j (37)

Hence,

α̂i + δ̂ii(t + 1) = Y(t+1)i −
m∑

j=1

BijUtj. (38)

Similarly, the EWMA equations for response i are given below.

Ati = Λ1,ii(Yti −
m∑

j=1

BijU(t−1)j) +

p∑

k=1,k 6=i

Λ1,ik(Ytk −
m∑

j=1

BkjU(t−1)j) + (1− Λ1,ii)A(t−1)i

+

p∑

k=1,k 6=i

(−Λ1,ik)A(t−1)k

(39)

Dti = Λ2,ii(Yti −
m∑

j=1

BijU(t−1)j − A(t−1)j) +

p∑

k=1,k 6=i

Λ2,ik(Ytk −
m∑

j=1

BkjU(t−1)j − A(t−1)i)

+(1− Λ2,ii)D(t−1)i +

p∑

k=1,k 6=i

(−Λ2,ik)D(t−1)k

(40)

If Λ1,ik = 0, i 6=k; and assuming Ati = 0 at t = 0, Eqn. (39) becomes

Ati = Λ1,ii

t∑

l=0

(1− Λ1,ii)
l(Y(t−l)i −

m∑
j=1

BijU(t−l−1),j) (41)

So, from Eqn. 37 and Eqn. 41,

E[Ati] = Λ1,ii

t∑

l=0

(1− Λ1,ii)
l(αi + δii(t− l)) (42)

If |1− Λ1,ii| < 1 (which implies 0 < Λ1,ii < 2), we get

E[Ati]→αi + δiit + δii(1− 1

Λ1,ii

) (43)
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Similarly, if Λ2,ik = 0, i 6=k; and assuming Dti = 0 at t = 0, Eqn. (40) becomes

Dti = Λ2,ii

t∑

l=0

(1− Λ2,ii)
l(Y(t−l)i −

m∑
j=1

BijU(t−l−1),j − A(t−l−1),i) (44)

From Eqn. 37, Eqn. 43 and Eqn. 44, we obtain

E[Dti] = Λ2,ii

t∑

l=0

(1− Λ2,ii)
l(αi + δii(t− l)− (αi + δii(t− 1) + δii(1− 1

Λ1,ii

))) (45)

So, if 0 < Λ2,ii < 2, we get

E[Dti]→ δii

Λ1,ii

(46)

and therefore,

E[Ati + Dti]→αi + δii(t + 1) (47)

In other words, if B = β, then (At + Dt) becomes an asymptotically unbiased estimate of

(α + δ(t + 1)), if the weight matrices are diagonal. This condition is essential so that the

recipe, Ut, given at the end of each run corrects for the one-step-ahead predicted deviation

from target.
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run, t Yt At Dt Ut

0

(
0.0
0.0

) (
0.0
0.0

) (
0.0
0.0

)

1

(
1.813
3.216

) (
0.363
0.643

) (
0.544
0.965

) (−0.622
−1.421

)

2

(
1.047
1.453

) (
0.681
1.127

) (
0.858
1.401

) (−1.099
−2.198

)

3

(
0.714
−1.381

) (
0.995
1.131

) (
1.072
0.987

) (−1.749
−1.593

)

4

(−0.816
1.753

) (
1.047
1.679

) (
0.828
1.513

) (−1.315
−2.797

)

...
...

...
...

...

Table 1: Numerical Example to Illustrate a MIMO Double EWMA Controller, Λ1 =
(0.2)I,Λ2 = (0.3)I.

Range of ξjj∀j = 1, 2, ...p System Behavior
(-∞,0] Unstable and Oscillates

(0, 4λ1λ2

(λ1+λ2)2
) Stable but Oscillates

[ 4λ1λ2

(λ1+λ2)2
, 1

λ1+λ2−λ1λ2
] Stable, No Oscillations

( 1
λ1+λ2−λ1λ2

, 2
λ1+λ2

] Stable but Oscillates

( 2
λ1+λ2

, +∞) Unstable and Oscillates

Table 2: Stability and Oscillation conditions for MIMO DEWMA controller
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Figure 1: Time series plot of a multivariate (p = 2) Deterministic Trend disturbance, δii =
0.1, σi = 1; i = 1, 2.
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Figure 2: Time Series Plot of a multivariate (p = 2) Random Walk with Drift disturbance,
δii = 0.1, σi = 1; i = 1, 2.
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Figure 3: Time Series Plot of a multivariate (p = 2) IMA(1,1) disturbance, θii = 0.3, σi =
1; i = 1, 2.

28



Univariate
dEWMA

Univariate
dEWMA

MIMO PROCESS

X1

X2

Y1

Y2

Figure 4: A Parallel SISO dEWMA Controller applied to a 2 Input, 2 Output system. Here,
the matrix of estimated gains B is necessarily diagonal.
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Figure 5: A MIMO dEWMA Controller applied to a 2 Input, 2 Output system. Here, the
matrix of estimated gains B is not necessarily diagonal.
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Figure 6: Effect of changing the EWMA weights on the estimated MSE of the responses
(β = B,Λ1 = λ1I,Λ2 = λ2I, 2 Input - 2 Output MIMO case). Labels give (λ1, λ2).
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Figure 7: Effect of changing the EWMA weights on the estimated MSE of the responses
(β = B,Λ1 = λ1I,Λ2 = λ2I, 2 Input - 2 Output parallel SISO case). Labels give (λ1, λ2).
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Figure 8: Estimated MSE of the responses for a 3 Input, 3 Output Parallel SISO dEWMA
controllers, known gains. Labels give off-diagonal elements of β.
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Figure 9: Estimated MSE of the responses for a 3 Input, 3 Output MIMO dEWMA con-
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diagonal elements of β.
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Figure 10: Estimated MSE of the responses for a 3 Input, 3 Output Parallel SISO System
with Under-estimated Gain. Labels give off-diagonal elements of β.
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Figure 11: Estimated MSE of the responses for a 3 Input, 3 Output Parallel SISO System
with Over-estimated Gain. Labels give off-diagonal elements of β.
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