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Abstract

An extension to the Dual Response approach to Robust Parameter Design for the case of multiple
responses is proposed. The methodology provides unbiased estimates of the process covariance matrix
and of the vector of expected values using parameter estimates from a multivariate regression fit. There
are no restrictions on the types of experimental designs that can be used, apart from their ability to
fit the parameter estimates. Conditions for zeroing-out the variance contribution of the noise factors
on the responses are also given for an unconstrained problem. For the more practical constrained case
a discussion of the possible scalar optimization criteria of the covariance matrix is also given together
with two illustrative examples taken from the literature.

1 Introduction

Robust Parameter Design (RPD) has been successfully used to improve the quality of products
since the mid eighties (see Taguchi (1986, 1987) and Taguchi and Wu (1985); for a detailed
discussion see Nair et al. (1992)). The technique consists in determining the levels of some set
of controllable factors that reduces the sensitivity of the process to variations in another set of
uncontrollable or noise factors, thus increasing the robustness of the process. The applicability
of the technique relies completely in the existence of interactions between elements of both sets
and in the ability to control the noise factors during experimentation.

The use of Response Surface Methodology (RSM) for RPD can be traced back to the early
nineties (e.g. Box and Jones (1990) Vining and Myers (1990)) when it was proposed as an
alternative to Taguchi’s crossed array methods and the use of signal-to-noise ratios (see Wu
& Hamada (2000) for a recent discussion on RPD and RSM). Since then a great number of
articles have been published regarding their use to model the response variance. Perhaps the
more frequently used model is the one initially proposed by Box and Jones (1990):

Y |z = β0 + x′β + x′Bx + z′γ + x′∆z + ε (1)

where: Y |z is the value of the response variable for a fixed value of the noise variables z, x is
the vector of controllable factors, ε is a normally distributed random variable with zero mean
and variance σε and β0, β, B, γ and ∆ are the model parameters.
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Although the model in equation (1) does not consider second order effects and interactions
due to the noise factors, Box and Jones (1990) showed that any effect due to these terms is
irrelevant for RPD purposes.

One of the main advantages of the model in equation (1) is the ease with which the uncon-
ditional variance is obtained:

V ar(Y ) = (γ + ∆′x)′Σz(γ + ∆′x) + σ2
ε (2)

where Σz is the covariance matrix of the noise variables, which is assumed known, possibly, from
historic data of the process. Notice that this assumes that the noise factors are measurable.
Furthermore, it is frequently assumed that Σz is a diagonal matrix. A useful analysis based
on model (2) consists of finding the operating conditions of zero variance contribution from the
noise factors, i.e. find x such that V ar(Y ) = σ2

ε . The vector γ + ∆′x is the partial derivative
of Y with respect to the noise factors, ∂Y

∂z . Therefore, to minimize the variance contribution of
the noise factors we seek values of the controllable factors where these “slopes” are zero or as
flat as possible (Myers and Montgomery, 2002).

Despite all the attention that RPD has received in the literature, very little effort has been
made in applying the RPD concept to processes with multiple responses. Chiao and Hamada
(2001) propose an interesting and simple methodology where they estimate all the parameters
present in a multivariate normal distribution and then use it to find which of the combination
of controllable factors maximizes the probability that the vector of responses Y is in some
pre-specified region, possible an acceptance region. However, their methodology assumes the
use of a crossed-array replicated design, since the standard deviations are calculated from these
replications. See Myers et al. (1997) and Lucas (1994) for other comparisons between response
surface and Taguchi methods.

This lack of interest contrasts with the overwhelming attention that the topic of Multivariate
Statistical Process Control has received. In this context a suitable set of Multivariate RPD
(MRPD) methods could be of great interest as a tool to optimize the same processes for which
the Multivariate SPC tools are designed to monitor while they are still at the design stage.

The purpose of this paper is to extend the application of RSM techniques to the MRPD
case. In section 2 we develop the basic model for MRPD in conjunction with the models for
predicting the mean and variance of the process. In section 3 unbiased estimators of the mean
and variance are obtained. Section 4 contains a derivation for the unconstrained minimization
of the process variance and some correspondences between the univariate and multivariate
models. The application of the models developed for MRPD is proposed in section 5 and
section 6 contains examples of actual applications of the proposed methodology. The paper
concludes with a discussion of possible extensions of the basic approach in section 7.

2 Basic Model

Let us define a regression model with q responses, k controllable factors and r noise variables
in the following way:
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Y︸︷︷︸
q×1

= Θ′
︸︷︷︸
q×p

x(m)
︸ ︷︷ ︸

p×1

+ ∆′
︸︷︷︸

q×r(k+1)

z(m)
︸ ︷︷ ︸

r(k+1)×1

+ ε︸︷︷︸
q×1

(3)

where:

- Θ is a p × q matrix of coefficients for the controllable factors (each column contains all
the coefficients for one response);

- x(m) is a p× 1 vector containing the regressors for the controllable factors in model form
(there are p = (k+1)(k+2)

2 such factors for a full quadratic model; (m) stands for x in
“model form”):

x
(m)

=




1

x1

x2

.

.

.

xk

x1x2

x1x3

.

.

.

xk−1xk

x2
1

x2
2

.

.

.

x2
k




(4)

- ∆ is a r(k +1)× q matrix containing first order coefficients for the noise factors as well as
coefficients for the controllable factor-noise interactions. These were combined in a single
matrix to avoid obtaining a cross-covariance term when applying the variance operator:

∆ =




βy1z1 βy2z1 . . . βyqz1

βy1z1x1 βy2z1x1 . . . βyqz1x1

βy1z1x2 βy2z1x2 . . . βyqz1x2

...
...

. . .
...

βy1z1xk
βy2z2xk

. . . βyqz2xk

βy1z2 βy2z2 . . . βyqz2

βy1z2x1 βy2z2x1 . . . βyqz2x1

βy1z2x2 βy2z2x2 . . . βyqz2x2

...
...

. . .
...

βy1z2xk
βy2z2xk

. . . βyqz2xk

...
...

. . .
...

βy1zr βy2zr . . . βyqzr

βy1zrx1 βy2zrx1 . . . βyqzrx1

βy1zrx2 βy2zrx2 . . . βyqzrx2

...
...

. . .
...

βy1zrxk
βy2zrxk

. . . βyqzrxk




(5)
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where βyixjzk
is the coefficient for the interaction between xj and zk for the ith response.

The first order coefficients for the noise factors are the βyizk
, hence the matrix is r(k+1)×q

and compatible with the definition of z(m) that follows next.

- z(m) is the r(k + 1)× 1 vector containing the noise factors and their interactions with the
controllable factors:

z(m) =




z1

z1x1

z1x2
...

z1xk

z2

z2x1

z2x2
...

z2xk
...
zr

zrx1

zrx2
...

zrxk




(6)

note that z(m) is a function of the controllable factors (i.e. z(m) = f(x)) but we write z(m)

only for notational simplicity.

- ε is a q × 1 normally distributed random vector with mean 0 and covariance matrix Σε:

ε =




ε1
ε2
...
εq



∼ Nq(0,Σε)

Notice that in equation (3) we are assuming that all the responses can be appropriately
modelled by functions of the same form, that is by functions containing the same significant
parameters. Since in practice this will seldom occur, some type of approximation would typically
be required (we discuss this assumption further in the last section of the paper).

In the remaining of this paper we assume that:

z =




z1

z2
...
zr



∼ Nr(0,Σz)
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where it is assumed that Σz is known, possibly from historical data, similarly as in the univariate
RPD problem.

Using the previous assumption we can take expectation and variance operators in equation
(3):

E(Y) = Θ′x(m). (7)

A multivariate approach equivalent to the one used by Box-Jones (1990) and Myers (1991)
for the univariate case would be to take the variance operator in equation (3) to obtain an
equation useful to predict the variance of the responses once the noise factors are not tightly
controlled as they were during the experiments. In other words we would get the q× q matrix:

V ar(Y) = ∆′Cov(z(m))∆ + Σε (8)

where Cov(z(m)) is a [(k + 1)r × (k + 1)r] matrix given by:

Cov(z(m)) =




σ2
z1

x1σ2
z1

. . . xkσ2
z1

σz1z2 x1σz1z2 . . . xkσz1z2 . . . σz1zr x1σz1zr . . . xkσz1zr

x1σ2
z1

x2
1σ2

z1 . . . x1xkσ2
z1

x1σz1z2 x2
1σz1z2 . . . x1xkσz1z2 . . . x1σz1zr x2

1σz1zr . . . x1xkσz1zr

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

xkσ2
z1

x1xkσ2
z1 . . . x2

kσ2
z1

xkσz1z2 x1xkσz1z2 . . . x2
kσz1z2 . . . xkσz1zr x1xkσz1zr . . . x2

kσz1zr

σz1z2 x1σz1z2 . . . xkσz1z2 σ2
z2

x1σ2
z2

. . . xkσ2
z2

. . . σz2zr x1σz2zr . . . xkσz2zr

x1σz1z2 x2
1σz1z2 . . . x1xkσz1z2 x1σ2

z2
x2
1σ2

z2
. . . x1xkσ2

z2
. . . x1σz2zr x2

1σz2zr . . . x1xkσz2zr

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.
. . .

.

.

.

xkσz1z2 x1xkσz1z2 . . . x2
kσz1z2 xkσ2

z2
x1xkσ2

z2
. . . x2

kσ2
z2

. . . xkσz2zr x1xkσz2zr . . . x2
kσz2zr

.

.

.
.
.
.

. . .
.
.
.

.

.

.
.
.
.

. . .
.
.
.

. . .
.
.
.

.

.

.
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σz1zr x1σz1zr . . . xkσz1zr σz1z2 x1σz1z2 . . . xkσz1z2 . . . σ2
zr

x1σ2
zr

. . . xkσ2
zr

x1σz1zr x2
1σz1zr . . . x1xkσz1zr x1σz1z2 x2

1σz1z2 . . . x1xkσz1z2 . . . x1σ2
zr

x2
1σ2

zr
. . . x1xkσ2
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kσ2

zr




where σzizj denotes the covariance between zi and zj for i 6= j and σ2
zi

denotes the variance of
zi. The lines are simply visual aids to help noticing the patterns in the matrix. Note how if
the noise factors are uncorrelated, Cov(z(m)) is block diagonal.

The matrix Cov(z(m)) can be written as:

Cov(z(m)) = Σz ⊗
[
x(l)x′(l)

]
(9)

where x(l) is formed by the first k+1 elements of x(m), Σz is the covariance matrix of the noise
factors and ⊗ denotes the Kronecker or direct product. Unfortunately, the following property
of the direct product operation:

(A⊗B)(C⊗ F) = AC⊗BF

cannot be used to simplify equation (9) since the resulting matrices are non-conformable. There-
fore, the most simplified expression for V ar(Y) found is:

V ar(Y) = ∆′
[
Σz ⊗

(
x(l)x′(l)

)]
∆ + Σε (10)

which can be contrasted with its univariate counterpart given by equation (2). In the remainder
of the paper the r(k + 1) × r(k + 1) matrix Cov(z(m)) = Σz ⊗

(
x(l)x′(l)

)
will be denoted by

Σ⊗
z .
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3 Estimation of the Mean and Variance Models

By simply substituting ∆,Θ and Σε by their respective unbiased estimators, ∆̂, Θ̂ and Σ̂ε in
equation (7), we obtain an unbiased estimator for E(Y). To see this let:

Ê(Y) = Θ̂′x

Then, we have that:

E(Ê(Y)) = Θ′x = E(Y) .

The estimator of the variance-covariance matrix of the response, V̂ ar(Y), that would be
obtained from equation (10):

V̂ ar(Y) = ∆̂′Σ⊗
z ∆̂ + Σ̂ε , (11)

is not an unbiased estimator of V ar(Y). To find an unbiased estimator of V ar(Y), one common
approach is to find the expected value of the “naive” estimator in equation (11) and then, if
possible, correct it by an unbiased estimator of the bias. To do this, let δ̂.j be the jth column
of ∆̂ and let σ̂ij be the (ij)th element of V ar(Y). We then have that:

σ̂ij = δ̂′.iΣ⊗
z δ̂.j + σ̂εij

Expectation can be easily taken yielding:

E(σ̂ij) = δ′.iΣ
⊗
z δ.j + trace

(
Σ⊗

z Σ
δ̂.iδ̂.j

)
+ σεij (12)

where Σ
δ̂.iδ̂.j

is the cross-covariance matrix between the vectors δ̂.i and δ̂.j .
From Press (1982, p. 233-234) it can be seen that this cross-covariance is just:

Σ
δ̂.iδ̂.j

= σεij (X
′
∆X∆)−1

where X∆ is a matrix formed by the columns of the design matrix X corresponding to the
regressors in z(m). Hence (X′

∆X∆)−1 is just the scaled covariance matrix of any of the columns
of ∆̂. These two matrices are better illustrated numerically in Example 1 below. Note that
every column of ∆̂ has the same “scaled” covariance matrix, they just differ by a constant, i.e.
σεij .

Substituting Σ
δ̂.iδ̂.j

in (12) we get:

E(σ̂ij) = δ′.iΣ
⊗
z δ.j + σεij trace

(
Σ⊗

z (X′
∆X∆)−1

)
+ σεij (13)

Since the argument of the trace operator does not depend on i or j the result presented in
equation (13) can be extended to matrix form in the following way:

E(V̂ ar(Y)) = ∆′Σ⊗
z ∆ +

(
1 + trace

(
Σ⊗

z (X′
∆X∆)−1

))
Σε

Finally, an unbiased estimator of V ar(Y) is given by:

V̂ ar(Y) = ∆̂′Σ⊗
z ∆̂ +

(
1− trace

(
Σ⊗

z (X′
∆X∆)−1

))
Σ̂ε (14)
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In the remaining of this paper we will refer to 1−trace
(
Σ⊗

z (X′
∆X∆)−1

)
as the bias correction

factor.
Notice that if trace

(
Σ⊗

z (X′
∆X∆)−1

)
> 1, then the bias correction factor will be negative

and if the elements in this matrix are sufficiently large, then the unbiased estimator will be
given by a non-positive definite matrix. An equivalent problem is also present in the univariate
case where a similar correction is made (see Myers and Montgomery (2002), p. 576).

The possible non-positive definiteness of V̂ ar(Y) arises from the fact that equation (10)
only takes into account the variance due to the noise factors and the residual noise.

The term trace
(
Σ⊗

z (X′
∆X∆)−1

)
Σ̂ε can be considered as the variance component due to the

error in the estimation of ∆, hence it is subtracted in equation (14) in order to estimate only
the variance due to the noise factors and the residual noise. Then, the non-positive definiteness
occurs when the estimate of this variance component is greater than the estimated variance due
to the noise factors and residual noise. When this occurs it means that the predictive properties
of the model are not appropriate, since the variance component that we are trying to minimize
may be negligible with respect to the variance in estimating the model.

One way of preventing this problem at the design phase is to code the noise factors so as
to be centered at their mean, µzj with the ±1 levels at µzj ± σzj . Then the coded version
of Σz will be in correlation form, i.e. it will have ones in the diagonal and the correlations
coefficients between the noise variables in the off-diagonals. Using this coding scheme will help
in maintaining the second term of the bias correction factor small, avoiding negative values.

However, if the problem does occur a remedial measure could be to perform new experiments
at the ±2 level of the noise factors in order to reduce the entries in (X′

∆X∆)−1, that is to
decrease the variance due to the estimation of ∆.

Another situation when an unbiased estimator of a variance component is obtained by taking
the difference of other variance components is in the random effects and mixed ANOVA models
(see for example Arnold (1981) or Searle et al. (1992)), where the possibility of negative variance
component estimates has been discussed extensively.

4 Unconstrained Minimization of V ar(Y)

Similarly as in the univariate RPD problem, it may be of interest in some applications to
determine under which conditions the variability due to the noise factors can be made equal to
zero. Ideally, the user would desire to make all the elements in ∆′Σ⊗

z ∆ equal to zero. Since
this matrix is at least positive semi-definite, to achieve such a goal it should be enough to make
all the diagonal elements zero. That is, for this type of matrices, since |aij | ≤ √

aiiajj , hence if
aii = 0, then aij = 0 ∀j. Therefore, we should be concerned with the variances of the individual
responses, for which it is simpler to work with q univariate noise models (see equation 2):

V ar(Yi) = (γi + ∆′
ix)′Σz(γi + ∆′

ix) + σ2
i

where ∆i and γi are constructed using elements of ∆ (as defined in equation 5) in the following
manner:
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∆i =




βyiz1x1 βyiz2x1 . . . βyizrx1

βyiz1x2 βyiz2x2 . . . βyizrx2

...
...

. . .
...

βyiz1xk
βyiz2xk

. . . βyizrxk




γi =




βyiz1

βyiz2

...
βyizr




Then, to make one individual variance equal to zero we need to solve the following system
of r equations:

γi + ∆′
ix = 0r×1 (15)

for each of the q response variables. In matrix notation the complete system can be expressed
as:




γ1

γ2
...

γq




+




∆′
1

∆′
2

...
∆′

q




x ≡ γM + ∆′
Mx = 0rq×1 (16)

where γM and ∆′
M are constructed by vertically stacking the individual γi and ∆′

i. To solve
the system in equation (16) we need that ∆′

M be a full rank square matrix. Although the full
rank condition could easily be assumed, for a square matrix we need k = rq controllable factors.
If this is true, ∆M is invertible and the solution to the system can easily be obtained as:

x∗ = − (
∆′

M

)−1
γM (17)

Now, it is also of interest to determine if solving the system in equation (16) is the only
way of obtaining zero variance contribution from the noise factors, especially considering the
great number of controllable factors required for doing this. Towards this goal, notice that if
x∗ solves (17) then it also solves each of the individual systems in (15) and therefore we can
state that:

γi + ∆′
ix
∗ = 0r×1 ⇔

[
γi ∆′

i

]
[

1
x∗

]
= 0r×1

and, since Σz is positive definite:

⇔ V ar(Yi)− σ2
i =

(
[
γi ∆′

i

]
[

1
x∗

])′
Σz

(
[
γi ∆′

i

]
[

1
x∗

])
= 01×1 (18)

By comparing the elements of ∆, ∆i and γi, it can be seen that :
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vec
([

γi ∆′
i

]′) = δ.i

where recall that δ.i is the ith column of matrix ∆. Applying Proposition 1 in the Appendix
to the scalar in equation (18) we get:

V ar(Yi)− σ2
i =

[
1 x∗

] [
γ ′i
∆i

]
Σz

[
γ ′i
∆i

]′ [
1
x∗

]
= 0 ⇔

δ′.i
(
Σz ⊗ x(l)∗x′(l)∗

)
δ.i = 0 (19)

where [ 1 x∗ ]′ = x(l)∗ as defined earlier in equation (9).
Therefore, it has been proved that a zero covariance matrix for the responses can only be

obtained by making all the individual variances zero and that for doing this we may as well solve
the q univariate cases, since these are easier to solve linear equations. However, this requires
the availability of rq controllable factors, which could be a large number in many practical
situations. Even if such a number of controllable factors exist, the inclusion of all of them in
a single experimental design will probably represent too many experiments. In addition, the
solution x∗ may lie outside the experimental region or could imply levels of the controllable
factors that are unattainable in practice.

Since the argument stated before is completely reversible, it is straightforward to see that:

Cov(Yi, Yj) = (γi + ∆′
ix)′Σz(γj + ∆′

jx) + σij (20)

The first term in the right-hand side of equation (20) may be made equal to zero without
having to make either the pre-multiplying or post-multiplying vectors equal to zero as in the
case of equation (18). Now a possibly more interesting application would be to make the off-
diagonal elements δ′·iΣ⊗

z δ.j = −σεij for some i 6= j, so that, from equation (10), Cov(Yi, Yj) = 0
and therefore, the ith and jth will be uncorrelated. Since the normality of the noise variables is
also being assumed and the basic model in equation (3) implies a linear relationship between
the response and the noise variables, Y is normally distributed even after taking into account
the randomness of the noise variables and, hence, zero correlation implies independence. In
practice, when δ′·iΣ⊗

z δ.j = −σεij the correlation introduced by the noise variables is being used
to cancel the correlation in the residual noise. Notice that having control over the correlations
in the multivariate case is the logical extension to having control over the variance in the
univariate case. An example in which using this control to induce independent responses could
be beneficial is for the implementation of Multivariate SPC, since in this case each response
could be monitored independently, making the process easier to monitor.

In addition, notice that even when Σz and Σε are diagonal matrices, i.e. when the noise
factors (z) and the residual noise (ε) are each formed by independent random vectors, the
correlation between two responses will not be zero if they happen to interact with at least one
common noise variable. Therefore, for the multivariate case, an additional covariance structure
will be generated by the noise factors.
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5 Robust Parameter Design for the Multivariate Case

The models described in the preceding sections can be used to extend the work by Myers (1991)
and Box and Jones (1990) to the case where there is more than one response. In the univariate
case the dual response approach to the RPD problem is usually specified as follows:

min V ar(Y )
subject to :

a ≤ E(Y ) ≤ b

x ∈ X

where a and b are bounds on the predicted expected value, x represents the set of controllable
factors and X is the region of experimentation where the regression model is valid. The case
when the expected response is restricted to only one value, i.e. the case of equality constraints
is the special case when a = b. Now, the logical extension of this approach to the multivariate
case would call for the minimization of some scalar function of the covariance matrix.

Scalar functions of matrices are common for the generation of Optimal Designs according
to various criteria. D-optimality minimizes the determinant of the scaled covariance matrix
(sometimes called the generalized variance) while A-optimality minimizes the trace. Press
(1982) mentions that other common scalar measures of internal scatter are (trace V ar(Y)2)1/2

and the difference between the highest and smallest eigenvalue of V ar(Y). As it is well-known,
the determinant is proportional to the volume of a joint confidence ellipsoid for Y (Khuri &
Cornell, 1987).

With the exception of the determinant, which is discussed later in this section, the mini-
mization of either of the aforementioned scalar objectives would be significantly impacted by
the scaling of V ar(Y). From equation (10) we can see that a proper scaled covariance matrix of
the responses can be obtained by scaling the regression coefficients in ∆, which in turn can be
obtained by scaling the values of the responses used to fit the regression model. Using Lp norms
is a common technique used in multi-criteria optimization to tackle this kind of problems, see
for example Steuer (1989) for a discussion on this issue.

Finally we can state the optimization problem in the following way:

min f (V ar(Y))
subject to :

l ≤ E(Y) ≤ u
x ∈ X

where u and l are q × 1 vectors containing lower and upper bounds for the response, f(·) is a
suitable scalar function and V ar(Y) and E(Y) are given by equations (10) and (7) respectively.

For the case of the determinant we can use the following result to state that the optimization
problem defined previously is invariant to the scaling of the responses. Let the subscripts u

and s refer to the un-scaled and scaled versions of the associated matrices, then:
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∣∣∣V̂ ars(Y)
∣∣∣ =

∣∣∣∆̂′
sΣz

⊗∆̂s +
(
1− trace

(
Σ⊗

z (X′
∆X∆)−1

))
Σ̂ε,s

∣∣∣

=
∣∣∣N′∆̂′

uΣz
⊗∆̂uN +

(
1− trace

(
Σ⊗

z (X′
∆X∆)−1

))
N′Σ̂ε,uN

∣∣∣

= |N′|
∣∣∣V̂ aru(Y)

∣∣∣ |N| = |N′N|
∣∣∣V̂ aru(Y)

∣∣∣

where N is a diagonal matrix containing the normalizing constants used for each response. For
the case of the L2 norm this is given by:

N =




1
‖Y.1‖ 0 . . . 0
0 1

‖Y.2‖ . . . 0
...

...
. . .

...
0 0 . . . 1

‖Y.q‖




Being invariant to the type of scaling is a strong advantage since it avoids the possibility
of having scale-dependent solutions. Therefore, using the determinant as the scalar function
has the advantages that it does not requires any type of scaling, it considers the covariance
structure in the responses, and it has the practical interpretation of being proportional to the
joint confidence ellipsoid of the vector of responses. However, it requires the estimation of the
complete covariance matrix as stated in equation (14).

In contrast, using the trace has the advantage that it only requires the diagonal elements of
V ar(Y), which can be estimated from the univariate models. However, it does not consider the
covariance structure and its interpretation depends on the normalizing method used to bring
the individual variances to a common scale.

The other two aforementioned objectives, (trace V ar(Y)2)1/2 and the difference between
the largest and smallest eigenvalues, require the estimation of the complete covariance matrix
and they lack the simplicity of the trace without having the advantages of the determinant.
However, they will be included in the first example for completeness.

6 Examples

The examples presented in this section are based on experiments that were taken from the
literature and, therefore, were not designed to be analyzed using the proposed methodology.
To use the data sets, therefore, two assumptions need to be made. The first one corresponds to
what factors should be considered as noise factors. This decision was made based on the number
of significant interactions with the controllable factors, since these interactions are fundamental
for the applicability of the method. The second assumption made was regarding the variance-
covariance matrix of the factors that were assigned as noise factors, since no historic data were
available to estimate it. The approaches taken in this respect will be justified in each example
in order to study some interesting behavior.

The first example illustrates the different optimization criterions based on V̂ ar(Y). The
second example illustrates the potential advantages of the multivariate approach over optimizing
V̂ ar(Yi) for each response i.
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Table 1: Factor and Response Data for the HPLC Example

Controllable Factors Responses
%IPA Temp. pH Rs Run Time S/N ratio Tailing

65 30 0.175 2.14 22 172 0.76
65 50 0.175 1.73 12 311 0.88
65 40 0.050 1.93 16 251 0.80
65 40 0.300 1.95 16 241 0.80
70 40 0.175 2.17 14 278 0.79
70 50 0.050 1.97 11 371 0.86
70 30 0.300 2.38 19 194 0.74
70 50 0.300 1.98 11 360 0.86
70 30 0.050 2.37 18 204 0.74
70 40 0.175 2.20 14 280 0.78
75 40 0.300 2.42 13 314 0.78
75 30 0.175 2.61 17 223 0.73
75 50 0.175 2.14 10 410 0.85
75 40 0.050 2.42 12 324 0.78
70 40 0.175 2.20 14 281 0.79

6.1 HPLC Optimization

The following example was taken from Peterson (2000). It involves the optimization of a high
performance liquid chromatography (HPLC) system to detect mixtures of impurities. The
performance of the assay was based upon four quantitative response variables, the critical
resolution (Rs), total run time, signal-to-noise ratio of the last peak and the tailing factor of
the major peak. Three controllable factors affecting the HPLC assay were included: %IPA,
temperature and pH. A Box-Behnken design with three center points was used. The data are
presented in Table 1.

The steps required for the minimization of the trace of the variance-covariance matrix will
be shown in detail. From this the steps required for the other optimization criteria are straight-
forward and will not be shown in detail.

Initially, a full quadratic model in all the controllable factors was fitted using ordinary least
squares. Suppose %IPA is the only noise factor in the process (this was assumed to illustrate
the methodology given the interactions of this factor with other factors for the Run Time and
S/N ratio responses). No significant interactions were found for the Rs and Tailing responses.
Nonetheless, this does not imply that they should be taken out of the problem, since bounds
to their predicted expected values are also present in the problem as constraints.

The following matrix contains the L2 normalized values for the responses (unless otherwise
stated, all the intermediate results shown are based on the normalized values of the responses.
In addition, the titles of the columns or rows are included in the following matrices to ease the
understanding of their contents):
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Y =




Rs Time S/N Tailing

0.2528 0.3797 0.1538 0.2461
0.2043 0.2071 0.2782 0.285
0.228 0.2761 0.2245 0.2591
0.2303 0.2761 0.2156 0.2591
0.2563 0.2416 0.2487 0.2558
0.2327 0.1899 0.3318 0.2785
0.2811 0.3279 0.1735 0.2396
0.2339 0.1899 0.322 0.2785
0.2799 0.3107 0.1825 0.2396
0.2599 0.2416 0.2504 0.2526
0.2858 0.2244 0.2809 0.2526
0.3083 0.2934 0.1995 0.2364
0.2528 0.1726 0.3667 0.2753
0.2858 0.2071 0.2898 0.2526
0.2599 0.2416 0.2513 0.2558




The methodology developed in previous sections requires that the response functions be
of the same form. To satisfy this requirement all the elements in the respective ∆̂ and Θ̂
matrices must be included. Since in practice some of these estimates will be statistically non-
significant, some type of approximation needs to me made. This approximation could be either
leaving non-statistically significant estimates in the models or setting their respective values
to zero. Since both of them are approximations to the more rigorous approach of considering
different functional relationships between the responses, we will use the approach of setting
the non-significant terms to zero. This approach is preferred because the models will only
consider significant terms and the solution from the optimization problem will be more realistic,
especially for the case of the interactions between the noise and controllable factors on which
any reduction in variance depends.

After fitting regression models to all the responses with factors coded in the (−1, 1) range,
testing for significance and setting all non-significant coefficients to zero, the following ∆̂ matrix
was constructed as described by equation (5):

∆̂ =




Rs Time S/N Tailing

IPA 0.0272 −0.0302 0.0331 −0.0040
IPA× Temp 0 0.0129 0.0107 0
IPA× pH 0 0 0 0




The matrix of estimates for the coefficients of the controllable factors is as follows (this
corresponds to equation (4)):
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Θ̂ =




Rs Time S/N Tailing

Constant 0.2576 0.2456 0.2500 0.2556
Temp −0.0248 −0.0690 0.0737 0.0194
pH 0 0 −0.0046 0
Temp× pH 0 0 0 0
Temp2 0 0.0146 0 0.0045
pH2 0 0 0.0027 0




We point out that for the case when there is only one noise variable, with variance denoted
by σ2

z , if the objective is to minimize trace
(
V̂ ar(Y)

)
, then the objective function can be

simplified to:

trace
(
V̂ ar(Y)

)
= trace

(
∆̂′ [x(l)x′(l) ⊗ σ2

z

]
∆̂

)
+

(
1− trace

([
x(l)x′(l) ⊗ σ2

z

]
(X′

∆X∆)−1
))

trace
(
Σ̂ε

)

= σ2
z

(
∆̂′x(l)

)′ (
∆̂′x(l)

)
+

(
1− σ2

zx
′(l) (X′

∆X∆)−1 x(l)
)

trace
(
Σ̂ε

)

and the problem is sensitive to the value of σ2
z only through the bias correction factor. This is

because the trace is a linear operator and the value of σ2
z is just a multiplying positive scalar

that can be factored from all the terms that contain controllable factors in the first term of
equation (14). However, this is not the case for the other scalar functions mentioned in section
5, since they are non-linear functions of V̂ ar(Y), and therefore the actual value of Σ̂ε has an
effect on the objective value, even when there is only one noise factor. The consideration of this
effect by the methodology, however, can be considered as a positive feature since the user may
be interested in further reducing the variances of the responses for which the corresponding
residual variance is large.

Suppose it is known that σ2
z = 0.01 (this value was assumed to demonstrate the methodology

since it makes the elements of ∆̂′Σz
⊗∆̂ of similar magnitude than the elements of Σε). The

next step is to calculate the variance contribution of the noise factors:

∆̂′ [(x(l)x′(l)
)⊗ 0.01

]
∆̂ =

10−2




0.0272 0 0
−0.0302 0.0129 0

0.0331 0.0107 0
−0.0040 0 0


×




1 x1 x2

x1 x2
1 x1x2

x2 x1x2 x2
2


×




0.0272 −0.0302 0.0331 −0.0040
0 0.0129 0.0107 0
0 0 0 0


 =

10−6




7.40 −8.21 + 3.51x1 9.00 + 2.91x1 −1.08
−8.21 + 3.51x1 9.12− 7.80x1 + 1.66x2

1 −10.00 + 1.04x1 + 1.38x2
1 1.21− 0.52x1

9.00 + 2.91x1 −10.00 + 1.04x1 + 1.38x2
1 10.95 + 7.08x1 + 1.15x2

1 −1.32− 0.43x1

−1.08 1.21− 0.52x1 −1.32− 0.43x1 0.16




(21)
In this case we have that
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X∆ =




IPA IPA×Temp IPA×pH

−1 1 0
−1 −1 0
−1 0 1
−1 0 −1

0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
0 0 0
1 0 1
1 −1 0
1 1 0
1 0 −1
0 0 0




, (X′
∆X∆)−1 =




0.125 0.000 0.000
0.000 0.250 0.000
0.000 0.000 0.250




and the bias correction factor is given by:

1− trace
(
Σ⊗

z (X′
∆X∆)−1

)
= 0.99875− 0.0025(x2

1 + x2
2) .

Since the value of this correction factor is close to 1 for −1 ≤ xi ≤ 1, its effect on the overall
value of V̂ ar(Y) will be small, and therefore, for the trace objective, the actual choice of Σz

will have a small effect on the solution, as discussed previously.
Finally, we need an estimate of the residual covariance matrix, Σ̂ε. This was calculated from

the matrix of residuals in the following form (see for example Press(1982)):

Σ̂ε =
1

N − p
U′U = 10−4




0.1499 0.0280 0.0259 −0.0064
0.0280 1.0965 0.0510 0.0670
0.0259 0.0510 0.0199 −0.0070

−0.0064 0.0670 −0.0070 0.0335




where U is the matrix of residuals from the multivariate regression fit, N is the number of
experimental observations (N = 15, for our current example) and p is the number of parameters
fitted (p = 9 in this example). With these computations the objective function equals to:

trace
(
V̂ ar(Y)

)
=

10−6 × trace







7.40 −8.21 + 3.51x1 9.00 + 2.91x1 −1.08
−8.21 + 3.51x1 9.12− 7.80x1 + 1.66x2

1 −10.00 + 1.04x1 + 1.38x2
1 1.21− 0.52x1

9.00 + 2.91x1 −10.00 + 1.04x1 + 1.38x2
1 10.95 + 7.08x1 + 1.15x2

1 −1.32− 0.43x1

−1.08 1.21− 0.52x1 −1.32− 0.43x1 0.16







+10−4
(
0.99875− 0.0025(x2

1 + x2
2)

)× trace







0.1499 0.0280 0.0259 −0.0064
0.0280 1.0965 0.0510 0.0670
0.0259 0.0510 0.0199 −0.0070

−0.0064 0.0670 −0.0070 0.0335







= 10−6 × (157.4− .7082x1 + 2.484x2
1 − 0.3250x2

2)
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Peterson (2000) mentions the following as a region of desirable operating conditions for this
problem:

l = [1.8 −∞ 300 0.75]′

u = [∞ 15 ∞ 0.85]′
. (22)

The set of constraints, after normalizing the bounds is:




0.2126
−∞

0.2683
0.2429


 ≤




0.2576 −0.0248 0 0 0 0
0.2456 −0.0690 0 0 0.0146 0
0.2500 0.0737 −0.0046 0 0 0.0027
0.2556 0.0194 0 0 0.0045 0







1
x1

x2

x1x2

x2
1

x2
2




≤




∞
0.2589
∞

0.2753




−1 ≤ x1 ≤ 1 − 1 ≤ x2 ≤ 1

The trace of V̂ ar(Y) was minimized subject to the constraints above using MATLAB’s
fmincon nonlinear optimization routine. The algorithm was started at 100 different locations
inside the experimental region (−1 ≤ x1 ≤ 1 ; −1 ≤ x2 ≤ 1). There were only two convergence
points and the one with the smallest objective was selected as the optimum. The problem was
solved in less than 0.5 minutes using a Pentium 4 processor.

The solution obtained was x1 = 0.1491 and x2 = −1.0000, with a value of trace
(
V̂ ar(Y)

)
=

15.76× 10−5. The expected vector of responses, after reversing the normalization, is:

ÊYu =




2.1495
13.6534

300.0000
0.7985




where it can be seen that the lower bound on the S/N ratio response is a binding constraint.
After undoing the L2 normalization, the resulting covariance matrix is given by:

V̂ ar(Yu) = 10−3




0.529 −3.77 89.2 −0.0288
−3.77 26.8 −635.4 0.205

89.2 −635.4 15046 −4.85
−0.0288 0.205 −4.85 0.00156


 + 0.99× 10−3




1.07 1.38 24.6 −0.0168
1.38 368.1 330.6 1.20
24.6 330.6 2482 −2.42

−0.0168 1.20 −2.42 0.0319




= 10−3




1.60 −2.39 113.8 −0.0455
−2.39 394.9 −304.8 1.40
113.8 −304.8 17528 −7.26

−0.0455 1.40 −7.26 0.0335




where the first term is the covariance contributed by the noise factor and the second term is
the estimated covariance from the multivariate regression fit.

It is also interesting to explore the effect of changing the type of scalar function used for
the optimization. Table 2 gives the results for the four types of optimization criteria mentioned
in section 5. The results presented were calculated from the normalized matrices, in order to
preserve optimality for each criterion.
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Table 2: Comparison of Scalar Objectives, Example 1.

Value of the other Functions at Optimality
Scalar fun. Opt. Sol. (x∗) trace(V̂ ar(Y)) |V̂ ar(Y)| trace(V̂ ar(Y)2) λmax − λmin

trace(V̂ ar(Y)) [0.1491 -1.0000]’ 15.76e-5 5.41e-20 1.51e-8 1.16e-4
|V̂ ar(Y)| [0.1491 -1.0000]’ 15.76e-5 5.41e-20 1.51e-8 1.16e-4
trace(V̂ ar(Y)2) [0.8472 1.0000]’ 15.90e-5 7.66e-20 1.42e-8 1.11e-4
λmax − λmin [0.8472 1.0000]’ 15.90e-5 7.66e-20 1.42e-8 1.11e-4

It can be seen that the results can vary significantly between different scalar functions. In
addition, it is important to mention that for the trace(V̂ ar(Y)2) and λmax − λmin, the vector
of expected responses at optimality is given by:

ÊYu =




2.0029
11.4508

347.2584
0.8500




which indicates that in this case the upper bound in the Tailing response (and not the bound on
the S/N response) is a binding constraint. As in many instances of multi-criteria optimization,
the final decision as to which is the most desirable solution should be made using knowledge
about the actual process under study.

6.2 Whey Protein Concentrates

Khuri & Cornell (1987) report an experiment performed to investigate the effects of heating
temperature (x1), pH level (x2), redox potential (x3), sodium oxalate (x4) and sodium lauryl
sulfate (x5) on foaming properties of whey protein concentrates. Measurements were made on
three responses, the whipping time (Y1), the maximum overrun (Y2) and percent soluble protein
(Y3). Table 3 contains the experimental design and the multi-response data.

The ∆̂ and Θ̂ matrices were obtained after normalizing each response by its corresponding
L2 norm, choosing x1 and x3 as the noise variables, and setting to zero any non-significant
parameter that would not make any response model non-hierarchical. Significance tests used
the pure error from the replicated center points. The matrices are as follows:
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Table 3: Factor and Response Data for the Whey Protein Example

Controllable Factors Responses
x1 x2 x3 x4 x5 Y1 Y2 Y3

-1 -1 -1 -1 1 4.75 1082 81.4
1 -1 -1 -1 -1 4.00 824 69.6
-1 1 -1 -1 -1 5.00 953 105.0
1 1 -1 -1 1 9.50 759 81.2
-1 -1 1 -1 -1 4.00 1163 80.8
1 -1 1 -1 1 5.00 839 76.3
-1 1 1 -1 1 3.00 1343 103.0
1 1 1 -1 -1 7.00 736 76.9
-1 -1 -1 1 -1 5.25 1027 87.2
1 -1 -1 1 1 5.00 836 74.0
-1 1 -1 1 1 3.00 1272 98.5
1 1 -1 1 -1 6.50 825 94.1
-1 -1 1 1 1 3.25 1363 95.9
1 -1 1 1 -1 5.00 855 76.8
-1 1 1 1 -1 2.75 1284 100.0
1 1 1 1 1 5.00 851 104.0
-2 0 0 0 0 3.75 1283 100.0
2 0 0 0 0 11.00 651 50.5
0 -2 0 0 0 4.50 1217 71.2
0 2 0 0 0 4.00 982 101.0
0 0 -2 0 0 5.00 884 85.8
0 0 2 0 0 3.75 1147 103.0
0 0 0 -2 0 3.75 1081 104.0
0 0 0 2 0 4.75 1036 89.4
0 0 0 0 -2 4.00 1213 105.0
0 0 0 0 2 3.50 1103 113.0
0 0 0 0 0 3.50 1179 104.0
0 0 0 0 0 3.50 1183 107.0
0 0 0 0 0 4.00 1120 104.0
0 0 0 0 0 3.50 1180 101.0
0 0 0 0 0 3.00 1195 103.0
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Θ̂ =




Y1 Y2 Y3

I 0.1692 0.1812 0.1813
x2 0.0068 −0.0031 0.0145
x4 −0.0068 0.0037 0.0022
x5 −0.0030 0.0032 0.0032
x2x4 −0.0181 0 0
x2x5 0 0 0
x4x5 −0.0125 0 0
x2

2 0 −0.0022 −0.0071
x2

4 0 −0.0039 −0.0019
x2

5 0 0 0.0040




∆̂ =




Y1 Y2 Y3

x1 0.0460 −0.0297 −0.0159
x1x2 0.0283 −0.0042 0
x1x4 0 0 0.004
x1x5 0.0113 −0.0062 0
x3 −0.0159 0.0097 0.0046
x2x3 −0.0102 0 0
x3x4 0 0 0
x3x5 −0.0091 0 0.0079




The normalized estimated covariance matrix for the residual noise from the complete fitted
models is given by:

Σ̂ε = 10−3




3.2580 −0.7132 −1.3049
−0.7132 0.5304 0.3697
−1.3049 0.3697 0.6347




Since in this example we are considering 2 noise variables, we need to specify a 2 × 2
covariance matrix. Suppose this equals to:

Σz =

[
1.00 −0.25

−0.25 1.00

]

The bias correction factor is given by:

1− trace
(
Σ⊗

z (X′
∆X∆)−1

)
=

11
12
− 1

8

(
x2

2 + x2
4 + x2

5

)

We note that the bias correction factor will be negative for any point in the controllable
factor space that is at a distance greater than

√
22/3 ≈ 2.71 from the center. The estimate of

the covariance matrix of the responses is given by:
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V̂ ar(Y) =

∆̂′
[[

1.00 −0.25
−0.25 1.00

]
⊗ (

x(l)x′(l)
)]

∆̂ +
(

11
12 − 1

8

(
x2

2 + x2
4 + x2

5

))
Σ̂ε =

10−3




2.73 + 3.39x2 + 1.63x5

+1.05x2
2 + 1.01x2x5 + 0.26x2

5

−1.75− 1.29x2 − 0.83x5

−0.13x2
2 − 0.25x2x5 − 0.084x2

5

−0.92 + 0.20x4 − 0.48x5

−0.56x2 + 0.12x2x4 − 0.13x2x5

+0.054x4x5 − 0.094x2
5

−1.75− 1.29x2 − 0.83x5

−0.13x2
2 − 0.25x2x5 − 0.084x2

5

1.12 + 0.27x2 + 0.40x5

+0.018x2
2 + 0.052x2x5 + 0.038x2

5

0.59− 0.13x4 + 0.24x5

+0.07x2 − 0.017x2x4 + 0.008x2x5

−0.025x4x5 + 0.012x2
5

−0.92 + 0.20x4 − 0.48x5

−0.56x2 + 0.12x2x4 − 0.13x2x5

+0.054x4x5 − 0.094x2
5

0.59− 0.13x4 + 0.24x5

+0.07x2 − 0.017x2x4 + 0.008x2x5

−0.025x4x5 + 0.012x2
5

0.31− 0.14x4 + 0.13x5

+0.016x2
4 − 0.016x4x5 + 0.062x2

5




+10−3
(

11
12 − 1

8

(
x2

2 + x2
4 + x2

5

))



3.2580 −0.7132 −1.3049
−0.7132 0.5304 0.3697
−1.3049 0.3697 0.6347




(23)
Comparing equation (23) with equation (21), it can be observed that in this example there

is more control over the covariance matrix, since the controllable factors are present in all the
elements of the matrix.

The set of bounds selected for the expected responses were:

l = [−∞ 800 100]

u = [5.0 1100 ∞]

That is, the expected value of the first response is restricted to be less that 5.0 minutes,
the expected second response between 800% and 1100% and the the third response should be
higher than 100%. We chose a spherical region of radius 2 for controllable factors, that is we
added the following constraint:

√
x2

2 + x2
4 + x2

5 ≤ 2

In this case the scalar objective functions were the determinant, trace and each of the
individual variances, i.e. the diagonal elements of V̂ ar(Y). We used the same optimization
technique as in example 1. The CPU time to perform 100 runs of the optimization of each
objective using random initial points was less than 0.5 minutes on a Pentium 4 computer. The
results are summarized in Table 4. We included the normalized results, except for the individual
variances for which the results are after reversing the normalization.

Note that the results using the trace are substantially different to the ones obtained with
the determinant. In fact, the corresponding x∗ points are separated by a distance of 0.91 coded
units which is quite significant. The values of the objectives are also substantially different.
The trace of the covariance matrix obtained when the determinant is minimized is about 58%
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Table 4: Comparison of Scalar Objectives for Whey Protein Example.

Value of the other Functions at Optimality

Scalar fun. x∗ = [x∗2 x∗4 x∗5] Ê(Y∗) |V̂ ar(Y)| tr(V̂ ar(Y)) V̂ ar(Y1,u) V̂ ar(Y2,u) V̂ ar(Y3,u)
tr(V̂ ar(Y)) [ 0.17 0.23 -1.98]’ [4.9 1036.8 100]’ 0.38e-10 0.0024 1.12 2.12e4 103.8
|V̂ ar(Y)| [0.59 0.97 -1.65]’ [ 5.0 1026.8 100]’ 0.32e-10 0.0038 2.14 2.73e4 73.4
V̂ ar(Y1) [0.17 0.17 -1.98]’ [4.9 1035.9 100]’ 0.40e-10 0.0024 1.11 2.11e4 106
V̂ ar(Y2) [ 0.17 0.12 -1.99]’ [4.9 1035.1 100]’ 0.41e-10 0.0024 1.11 2.11e4 108
V̂ ar(Y3) [ 0.77 0.99 -1.55]’ [4.9 1021.4 100]’ 0.37e-10 0.0046 2.69 2.96e4 72.0

larger than the one obtained when the trace is minimized. Similarly, the determinant obtained
when the trace is minimized is about 18% larger than when the determinant is minimized.

Furthermore, notice that the solution obtained using the trace and the variances of the
first and second responses are significantly close to each other. Therefore, using the trace as
objective may not capture the overall variability of the vector of responses and could be affected
by individual responses, especially if more than one of them is minimized close to the same
point.

A more interesting result in this example is that the individual variances for the first two
responses obtained when minimizing the determinant are higher to the corresponding variances
obtained when minimizing the trace. Therefore, the determinant solution could hardly be
obtained from considering only the individual variances.

The above observations underscores the advantages of considering the complete covariance
matrix instead of the individual variances only, and demonstrates the benefits of the proposed
multivariate approach over using the univariate approach (equation 2) q times in parallel.

The following are the resulting optimal covariance matrices for each criterion (after reversing
the normalization):

V̂ ar(Yu)
tr(V̂ ar(Y))

=




1.1195 −117.05 −8.9489
−117.05 21231 732.87
−8.9489 732.87 103.79




V̂ ar(Yu)|V̂ ar(Y)| =




2.1418 −215.72 −10.277
−215.72 27306 874.04
−10.277 874.04 73.486




V̂ ar(Y)
V̂ ar(Y1)

=




1.117 −116.62 −9.0185
−116.62 21183 737.23
−9.0185 737.23 106.08




V̂ ar(Yu)
V̂ ar(Y2)

=




1.1188 −116.72 −9.0897
−116.72 21170 742.13
−9.0897 742.13 108




V̂ ar(Yu)
V̂ ar(Y3)

=




2.6984 −259.37 −11.31
−259.37 29692 948.7
−11.31 948.7 72.032
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7 Discussion

The proposed methodology requires that all the response functions have the same form and
be estimated from the same experimental design. Since in practice some coefficients will be
statistically non-significant and the true functional relationships will be different, a method-
ology that allows for the responses to have different functional relationships would avoid the
approximation of either setting non-significant terms to zero or including them in the respective
models. Extensions of this type have been done for other multiple response methodologies (e.g.
Khuri and Valeroso, 1999) without incurring in significant extra complexity. Their approach
consisted in modelling the multivariate response using a seemingly unrelated regressions-type
of model of the following form (note that Khuri and Valeroso’s methodology is not intended for
modelling noise variables):

Ỹ = X̃β + ε (24)

where :

• Ỹ = [Y′
1, · · ·Y′

q]
′, Yj is data for jth response.

• X̃ =




X1 0 . . . 0
0 X2 . . . 0
...

...
. . .

...
0 0 . . . Xq



, Xj is design matrix for jth response.

• β is p× 1, p =
∑q

j=1 pj , pj is number of parameters in model for jth response.

• ε ∼ Nq(0,Σ).

The estimation of β and Σ is usually done using a two stage Aitken estimator (Zellner,
1962, Khuri and Cornell, 1987). However, these estimators are not unbiased and their distribu-
tional properties are not very well understood. Therefore, the development of unbiased efficient
estimators for this case is much more complicated than the one presented in this paper.

Although the objective of conducting an RPD study is generally to minimize the variance
due to the noise factors, for which the estimator developed in section 3 is unbiased, the re-
sulting estimate can be negative. Probably a more sensible approach would be to minimize
the estimated prediction variance V̂ ar(Ŷ) which includes the variance of the model parameters
estimates. If this is done, the prediction properties of the model used will also be considered
together with the variance of the process.

The proposed methodology does not demand the use of a specific type of experimental
design, besides having the ability of estimating all the parameters. However, the type of mixed
resolution designs (Borkowski and Lucas, 1997, Borror and Montgomery, 2000, Borkowski and
Lucas, 1997), that has been developed for the univariate case (equation, 1) will be a suitable
choice in most situations because the current methodology assumes that all the responses will
be modelled using the same model form. These designs give special attention to estimating the
noise×control interactions which are crucial in the RPD problem.

The topic of experimental designs for multiple response has received some attention in the
literature (Draper and Hunter, 1966, Fedorov, 1972, and Khuri and Cornell, 1987). However,
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very little of this work has been used in practical situations. Even when the model form is
the same, most of the techniques require previous knowledge of the covariance matrix of the
responses and hence are useful for augmenting a previous design.
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Appendix

The following is a modification of a result due to Neudecker (1969).
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Proposition 1 Let a.j denote the jth column of the matrix A. Define the (mn × 1) column
vector vec(A) of the m× n matrix A as:

vec(A) =




a.1

a.2
...

a.n




.

Let X1, X2, Z1, Z2 and B be matrices such that the product X1Z1BZ2
′X2 is conformable.

Then we have that:

trace
(
X1Z1BZ2

′X2
)

= (vec(Z2))′(B′ ⊗X1
′X2

′)vec(Z1)

First we need to prove that (Hamilton, 1994, p. 289):

vec (ABC) =
(
C′ ⊗A

)
vec(B)

ABC = A
[

b1 b2 . . . br

]



c11 c12 . . . c1q

c21 c22 . . . c2q
...

...
. . .

...
c11 c12 . . . c1q




=

[{Ab·1c11 + Ab·2c21 + . . . + Ab·rcr1} {Ab·1c12 + Ab·2c22 + . . . + Ab·rcr2} . . .

{Ab·1c1q + Ab·2c2q + . . . + Ab·rcrq}]

Then, since all of the elements inside the curly brackets are column vectors, applying the
vec(·) operator gives:

vec(ABC) =




Ab·1c11 + Ab·2c21 + . . . + Ab·rcr1

Ab·1c12 + Ab·2c22 + . . . + Ab·rcr2
...

Ab·1c1q + Ab·2c2q + . . . + Ab·rcrq




=




c11A + c21A + . . . + cr1A
c12A + c22A + . . . + cr2A

...
c1qA + c2qA + . . . + crqA







b·1
b·2
...

b·r




= (C′ ⊗A) · vec(B)
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We also need the following result due to Neudecker (1969):

trace(AB) = vec(A′)′vec(B)

where A is m× n and B is n× p.

vec(A′)′vec(B) =
[

a1· a2· . . . an·
]



b·1
b·2
...

b·n




=
∑p

i=1 ai·b·i

= trace(AB)

Using these two results, the proof of the proposition is trivial:

trace (X1Z1BZ2
′X2) = trace (Z2

′X2X1Z1B)
= vec(Z2)′vec(X2X1Z1B)
= vec(Z2)′(B′ ⊗X1

′X2
′)vec(Z1)
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