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Abstract

Adjusting a drifting process to minimize the expected sum of quadratic off-target and fixed adjustment costs is

considered under unknown process parameters. A Bayesian approach based on sequential Monte Carlo methods is

presented. The benefits of the resulting ‘‘deadband’’ adjustment policy are studied.

r 2007 Elsevier B.V. All rights reserved.
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1. Introduction

Consider a production process that drifts randomly if left uncontrolled. The process means can be observed
only under measurement error at a sequence of stages. There exists a chance to adjust the process mean back
to target at each stage by manipulating a controllable variable. It is assumed that a fixed adjustment cost,
independent of the magnitude of the adjustment, exists. In addition, there is a symmetric quadratic off-target
cost.

This problem has been considered by Box and Jenkins (1963) and Crowder (1992) based on the assumption
that the variance parameters, i.e. the variance of the random drift from stage to stage and the variance of the
observation errors, are known. In particular, Box and Jenkins (1963) solved the infinite-horizon version of this
problem by minimizing the long-run expected cost. The solution to the finite-horizon version of the problem
was given by Crowder (1992) through a dynamic programming formulation. Both solutions are of the form of
a deadband, where the process is adjusted only if the response is predicted to be far enough from target, with
the deadband width denoting the ‘‘adjustment limits’’ that depend on the costs involved.

In this paper, we reconsider the adjustment problem studied by Box and Jenkins (1963) and Crowder (1992)
for the case that the parameters are unknown. The proposed adjustment method is based on the Bayesian
estimates of the process parameters and also has a deadband form. Since no conjugate prior distribution is
available, dynamic programming cannot be formulated in this case. Therefore, an adaptive method is
e front matter r 2007 Elsevier B.V. All rights reserved.
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proposed, in which the action limits are obtained by substituting the Bayesian estimates into Box and Jenkins’
(1963) solution.

Due to the complexity of this problem, the Bayesian computation has to be carried out by numerical
methods. Such computation is required to be done between stages to allow for an on-line adjustment
operation. Some computational methods such as Markov chain Monte Carlo (MCMC) methods are too time-
consuming for this purpose (Lian et al., 2006). In this paper we investigate the use of sequential Monte Carlo
(SMC) methods. A detailed description about the development and the advantages of the SMC method in
Bayesian inference can be found in Doucet et al. (2001), see also Lian and del Castillo (2006).

The remainder of this paper is organized as follows. Section 2 introduces the process model and the
Bayesian estimation method based on the SMC technique. In Section 3, an adaptive deadband adjustment
method is proposed to control the process under a fixed adjustment cost, and an example is given for
illustration. More simulation results are given in Section 4. Finally, conclusions and a summary are given in
Section 5.

2. Process model and parameter estimation

The assumed process is

yi ¼ yi�1 þUi�1 þ ni, (1)

Y i ¼ yi þ �i; i ¼ 1; 2; . . . ;N, (2)

where ni�
iid
Nð0;s2nÞ, �i�

iid
Nð0;s2� Þ are two random sequences that are independent of each other. yi is the

process mean at stage i, which follows a random walk if the process is not adjusted (i.e., if Ui ¼ 0 for
i ¼ 1; 2; 3; . . . ;N). The process mean can be linearly adjusted by Ui units at each stage to keep it close to its
target, where the target can be assumed to be 0 without loss of generality. The process is assumed to start on
target, i.e. y0 ¼ 0. If the process is not adjusted, the observations are a random walk with observational noise,
a stochastic process with autocorrelation structure equivalent to the ARIMAð0; 1; 1Þ ¼ IMAð1; 1Þ process,
popular in the industrial time series literature (Box et al., 1994).

We first consider a symmetric quadratic loss function

Lq ¼
XN

i¼1

y2i . (3)

We will discuss the addition of fixed adjustment costs in the next section. To minimize the total loss in (3), an
adjustment needs to be made at each stage by the amount

Ui ¼ �ŷi, (4)

where ŷi is an estimate of yi obtained at stage i after Y i is observed. When the adjustments are carried out at
every stage, the loss function in (3) not only evaluates the performance of an adjustment rule but also reflects
the accuracy of the process mean estimate. Traditionally, this estimate is calculated through a Kalman filter
(KF). Given the observations from the beginning until stage i, yi ¼ fY 1;Y 2; . . . ;Y ig, the estimate of yi at stage
i is given by

ŷi ¼ ŷi�1 þUi�1 þ o½Y i � ðŷi�1 þUi�1Þ�

¼ ð1� oÞðŷi�1 þUi�1Þ þ oY i, ð5Þ

where ŷ0 ¼ 0 and

o ¼
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2� =s2n

p
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4s2� =s2n

p
þ 2s2� =s2n

. (6)

Notice that the KF estimate is a weighted average of the old estimate yi�1 þUi�1 and the new observation Y i

(Duncan and Horn, 1972). The weight o is uniquely determined by the ratio of two variances s2� =s
2
n . In the

case that s2� =s
2
n is large, which implies relatively large observation errors, a small weight o will be assigned to
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the new observation. When observations are more precise, i.e. when s2� =s
2
n is small, the weight for the new

observation will be larger. Duncan and Horn (1972) show how the Kalman filter estimate provides the
minimum mean square error estimator of yi. This assumes the error distributions are normal with the ratio
s2� =s

2
n known.

In the case when s2� and s2n are unknown, KF estimation cannot be applied. If biased estimates of s2� and s2n
are used, KF estimation may lead to a poor performance of the adjustment methods based on it. In the case
that these two process parameters are unknown, a new adjustment method is proposed in this paper, which
also has the same form as in (4). However the estimates of yi are obtained based on a different Bayesian model
in which the process parameters s2� and s2n are unknown. In this model, specifications of the prior distributions
of s2� and s2n are needed before the process starts. At each stage when a new observation is obtained, the
posterior distribution of the process mean and of the parameters s2� and s2n can be computed, according to
which the adjustment can be made. The steps to update the posterior distributions and adjust the process can
be summarized as follows:
�
 Start with prior distributions

s2��LNðm1; s
2
1Þ

s2n�LNðm2; s
2
2Þ, ð7Þ

where LN represents a log-normal distribution (a justification of these priors is given below). The predictive
distribution of y1 is

y1js2n ; y0�Nðy0;s
2
nÞ, (8)

where y0 ¼ 0 is assumed. The joint distribution of s2� , s
2
n and y1 before the first observation is obtained is

denoted as pðs2� ;s
2
n ; y1jy

0Þ, where y0 is an empty data set.

�
 At stage i, i ¼ 1; 2; 3; . . . ;N, when the new observation Y i is obtained,

� Update the posterior distribution:

pðs2� ;s
2
n ; yijy

iÞ / pðs2� ;s
2
n ; yijy

ði�1ÞÞ � likelihood ðs2� ;s
2
n ; yijY iÞ

/ pðs2� ;s
2
n ; yijy

ði�1ÞÞ �
1

s�
exp �

ðY i � yiÞ
2

2s2�

� �
. ð9Þ

� Adjust the process by

Ui ¼ �ŷi ¼ �Eðyijy
iÞ. (10)

� Compute the new predictive distribution

pðs2� ;s
2
n ; yðiþ1Þjy

iÞ ¼

Z
pðs2� ;s

2
n ; yijy

iÞ � pðyðiþ1Þjs2n ; yiÞdyi

¼

Z
pðs2� ;s

2
n ; yijy

iÞ �
1ffiffiffiffiffiffiffiffiffiffi
2ps2n

p exp �
ðyðiþ1Þ � yiÞ

2

2s2n

" #
, ð11Þ

where pð�jyiÞ is the posterior distribution computed in (9).
� Iterate on i.
The posterior distribution computation is carried out by a SMC method, specifically, the one-pass particle
filter (1PFS) algorithm (Balakrishnan and Madigan, 2004). The ‘‘1PFS’’ algorithm was modified in this
research for computing the posterior distributions of those parameters that have a bounded domain (i.e.,
variance parameters). Details about the 1PFS algorithm are shown in Appendix A.

SMC methods do not require conjugate priors, so various forms of priors can be applied. The log-normal
distribution was chosen in this paper because its convenience in incorporating the prior information.
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Table 1

Top: Scenarios with different prior information; Bottom: processes with different parameters

Scenario b� bn

1 0.5 0.5

2 0.5 1

3 0.5 1

4 1 0.5

5 1 1

6 1 2

7 2 0.5

8 2 1

9 2 2

Case s� sn

1 2 4

2 2 2

3 4 2
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In contrast, the inverse gamma distribution, which is conjugate in simple normal data problems, is actually
difficult to setup as a ‘‘non-informative’’ prior, a fact that has not been recognized until recently (Spiegelhalter
et al., 2004, Section 5.7.3.).

We now compare the performance of the adaptive SMC method with that of a fixed-estimates KF for a
quadratic off-target cost. This allows to study the advantages in estimation resulting from the ability to adapt
bad priors on the parameters. Evidently, if the KF is provided with the true parameters, it is optimal for a
quadratic cost function like (3), see Duncan and Horn (1972).

To compare numerically the proposed adjustment method (SMC method) and the adjustment method
based on KF method, the nine scenarios with different prior information shown on the top of Table 1 were
investigated. In each scenario, suppose the prior estimates of the parameters s� and sn are available, and they
are b�s� and bnsn, respectively. These estimates may be accurate (b�; bn ¼ 1) or biased (b�; bn ¼ 0:5; 2). The
estimates on the ratio s2� =s

2
n are given by b2

� =b2
n � s2� =s

2
n , which may also be biased. If the KF method is

applied, these estimates are plugged into Eqs. (5)–(6) to estimate the process mean. In the SMC method, on the
other hand, these estimates are only used as the means of the corresponding prior distributions. To represent
little confidence on them, we set the variances to be equal to 4 times of the square of their distribution means
(4b4

�s
4
� and 4b4

ns
4
n , respectively).

Three cases of process parameters were considered as shown on the botton of Table 1. Each case was
studied for 500 stages or time units. For each case on the right of Table 1, common random numbers were
used to simulate the adjusted process under each of the two adjustment methods (the KF method and the
SMC method). All combinations of scenarios and process parameters on Table 1 were tried. The total
quadratic losses were calculated for both methods, and the performance was evaluated by the percentage
savings induced by the SMC method over the KF method:

Sq ¼
L

q
k � Lq

s

L
q
k

, (12)

where L
q
k is the loss under the KF adjustments and Lq

s is the loss under the SMC adjustments.
For each combination of case and scenario (Table 1), 20 replications were made, based on which the average

savings and the frequentist 95% confidence interval were computed. The results are shown in Fig. 1.
As it can be seen, in scenarios 1, 5 and 9, where the ratios used in the KF method happen to be equal to the

true values (i.e., b�=bn ¼ 1, the KF method provides the best estimates, as expected. However, a more
surprising result is that the negative savings incurred by the SMC method are only slightly below 0. Thus,
when the SMC estimation starts from unbiased priors, the performance compared to the optimal KF
approach is only slightly worse, even when started with relatively flat priors.
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Fig. 1. Average savings induced by SMCmethod vs. the KF method for each combination of a prior scenario and a process case, and their

95% confidence intervals (no fixed adjustment cost).
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In other scenarios, where an incorrect ratio was used in the KF method, the advantage of using the SMC
method turns out to be very significant. In particular, the ratios are underestimated in scenarios 2, 3 and 6,
such that the KF method gives too much weight to new observations that have considerable observation error.
In scenarios 4, 7 and 8, overestimated ratios are used in the KF method so that the errors in the new
observations are exaggerated and too little weight is assigned to the new observations. In these cases, although
the SMC method also starts with biased prior information, the effect of the prior distributions decays very
soon as more data is available, given that the priors are not very informative. Thus, in a situation where the
prior information is likely to be biased, the SMC method can achieve a more robust estimation and hence
better adjustment performance if started with a relatively flat prior.

We now turn to the case when fixed adjustment costs need to be considered.

3. Fixed adjustment cost and adaptive deadband adjustment method

Consider now the following total loss function:

Lt ¼
XN

i¼1

y2i þ c
XN

i¼1

dðUiÞ, (13)

where the function dðxÞ ¼ 1 if xa0 and dðxÞ ¼ 0 otherwise. This loss function includes the total quadratic loss
in (3) and the sum of fixed adjustment costs. Constant c is the relative cost of adjusting to the cost of a unit
deviation from target. The presence of a fixed adjustment cost generally implies an adjustment policy with a
‘‘deadband’’ form (Box and Jenkins, 1963; Crowder, 1992; Jensen and Vardeman, 1993), i.e. instead of
adjusting at each step as in (4), adjustments are carried out only when the magnitude of the predicted process
mean is large enough to justify economically the adjustment:

Ui ¼
�ŷi if jŷij4ai

0 if jŷijpai;

(
(14)

where ai is the adjustment limit or the half width of the ‘‘deadband’’ at stage i. Adjustment methods with such
form have been proposed for the known parameters case, to control the process described in (1)–(2) under the
loss function in (13) based on a KF estimator (Crowder, 1992). Box and Jenkins (1963) considered the case
when the length of the process is infinite (N ¼ 1). In their solution, ai is constant for all stages and is uniquely
determined by sn for a fixed adjustment cost c, according to

ai ¼ a ¼ ½ð6c=s2nÞ
1=4
� 0:63�sn. (15)

We will refer to this method as the constant deadband adjustment method. Crowder (1992) gave an optimal
solution to the known-parameters problem for the finite horizon case using dynamic programming, in which
the optimal ai is nondecreasing with i. Specifically, when ðN � iÞ ! 1, ai will converge to the constant
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adjustment limit given by (15). When the process is approaching the end, i.e. when i! N � 1, the action limit
ai will become larger until it reaches

ffiffiffi
c
p

at the last stage N � 1. As shown by Crowder (1992), this ‘‘funneling
effect’’ is significant only for very short run processes or for an extremely large adjustment cost. For a
moderately long process, the optimal adjustment limits at most stages can be well approximated by Eq. (15).
Hence, the constant deadband adjustment method works well in most finite-horizon, known-parameters
problems.

Both the finite and infinite horizon solution to this problem require the prior knowledge of s2� and s2n , which
is used in the KF estimates and in determining the adjustment limits. When such knowledge is unavailable, the
SMC method described in Section 2 can be utilized to estimate the process mean. The question that remains is
how to determine the adjustment limits. When s2� and s2n are unknown, the optimal adjustment limits should
depend on the posterior distributions of yi, s2� and s2n , in both the infinite-horizon and finite-horizon problem.
It is very difficult to find such optimal limits for this problem, in which the posterior distributions can only be
numerically computed based on a Monte-Carlo method.

As a practical solution to this problem, we propose an adaptive deadband adjustment method, in which the
adjustment limits are approximated based on the sequential Bayesian estimate of the process parameter s2n . In
particular, at each stage the SMC method gives the estimates of yi and s2n , which are the means of their
posterior distributions. The estimate of s2n can be substituted into (15) to calculate the adjustment limit for the
current stage. This limit, together with the estimate of the process mean, can be used in (14) to determine if an
adjustment is needed. When more observations are available, the limits calculated in this way converge to the
optimal constant limit for the infinite-horizon problem. An example is shown next to illustrate the calculation
of the adaptive deadband.

Example. Consider a process that will operate for 500 stages or time units and process parameters equal to
s� ¼ 4 and sn ¼ 2. The fixed adjustment cost is assumed to be c ¼ 100. Suppose the process can be adjusted
under the following three methods: (1) constant deadband adjustment method with the true values of the
process parameters known (this will give optimal control); (2) constant deadband adjustment method with
biased process parameters s0� ¼ 1 and s0n ¼ 4; and (3) adaptive deadband adjustment method with prior
information also biased such that the means of the prior distributions of s2� and s2n equal to s02� and s

02
n ,

respectively. To reflect little a priori information, the variances of the prior distributions of both parameters
were set at 4 times the square of the means.

The gains obtained because of a better estimation of the process parameters using the SMC method, which
is used in the adaptive deadband method, were shown in the previous section. Now we investigate what
additional benefits are obtained due to better (adaptive) adjustment limits. The calculated adjustment limits/
half widths are shown in Fig. 2.

Since the adaptive deadband method was started with biased prior distributions, the calculated adjustment
limits at the beginning are close to those in the constant deadband method where the same biased information
was used. As the process continues, better estimates of s2n are obtained through the SMC method and they are
used in the adaptive deadband method. The adjustment limits converge to the constant adjustment limit using
the true process parameters. The total costs are calculated for each method by simulating the process using
common random numbers. The total cost for method (1), which should be the best method in this case, is
13 347; the total cost for method (2) is 15 127; and the total cost for method (3) is only 13 605.

It is remarkable that the adaptive deadband adjustment method with biased prior information induces a
cost only slightly larger than the cost caused by the best method. This is evidently due to the relative non-
informative priors that were used, but the proximity to optimality is notable. When it is compared to the
constant deadband method with the same biased prior information, the savings are significant, as expected.
We know present a more exhaustive simulation study of the performance of the proposed adaptive SMC
method.

4. Performance analysis

In order to investigate the performance of the proposed adjustment method, more cases were investigated in
this section. For the different processes in Table 1, each prior information scenario was solved using both the
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Fig. 3. Average savings induced by the adaptive deadband method vs. the constant deadband method for each combination of a prior

scenario and a process case, and their 95% confidence intervals, when c ¼ 100.
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Fig. 2. The adjustment limits/half widths for the (1) constant deadband method with the true process parameters, (2) constant deadband

method with the wrong process parameters, (3) adaptive deadband method with biased prior information.
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constant deadband method and the adaptive deadband method. The fixed adjustment cost was assumed to be
c ¼ 100 in all cases. The variances of the prior distributions of the process parameters were always equal to 4
times of the square of their means. The relative savings induced by the adaptive deadband method were
calculated with respect to the constant deadband method with the same prior information scenario
using common random numbers. Twenty replications were made to calculate the average savings and their
95% confidence intervals for each combination of a process case and a prior scenario. The results are shown
in Fig. 3.

The only prior information scenario that has negative average savings is scenario 5, where the true values
of the parameters were used in the constant deadband method and hence it is the best method for both
estimation and determination of the adjustment limits. However, the difference between the best adjustment
method and the adaptive deadband method is not significant. For scenarios 1 and 9, where the Kalman
filter estimates are accurate since the ratios s2� =s

2
n that were used happened to be equal to the true values,
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the positive savings are mainly due to the improved adjustment limits obtained in the adaptive deadband
method. For scenarios 2 and 8, where the constant adjustment limits used in the constant deadband method
are optimal since the true value of s2n was used to determine the limits, the savings made by the adaptive
deadband method are mainly due to the better process mean estimates obtained in the SMC method. For
other scenarios, the savings can be considered to be due to a combination of better adjustment limits and
better process mean estimation.

In general, when the adjustment cost c is large, the adjustment limits will be wide and there will be fewer
adjustments. Hence having good process mean estimates becomes less important, as adjustments are based on
such estimates. Contrarily, when c is small, having good process mean estimates becomes more critical
compared to the effect of having very precise adjustment limits (which depend in turn on the s2n estimate only,
see Eq. (15)).

Fig. 4 shows the average savings and their 95% confidence intervals induced by the adaptive deadband
method versus the constant deadband method for the same scenarios and cases when a smaller adjustment
cost c ¼ 16 was considered. The savings for c ¼ 16 are closer to those in Fig. 1, where the savings are purely
due to the process mean estimation. Specifically, for the scenarios when the Kalman filter estimates are more
accurate (e.g., scenarios 1 and 9), the savings for c ¼ 16 drop compared to those for c ¼ 100. For the scenarios
when the Kalman filter estimates are not accurate (e.g. scenarios 3 and 7), the savings for c ¼ 16 are more
significant than those for c ¼ 100.

5. Conclusion

As demonstrated in Section 2, the Bayesian method using a SMC technique provides better estimates of the
process means than the Kalman filter (KM) estimates do, in the cases when the prior information of the
variance ratio s2� =s

2
n is not available or is biased. Such advantage in estimation exists in the process adjustment

problems regardless of whether or not the adjustment cost is considered.
An adaptive deadband adjustment method was proposed in Section 3 based on the Bayesian estimation

method. In contrast to the constant deadband method, the adaptive deadband method calculates the
deadband limits at each step based on the on-line Bayesian estimate of the variance of the state equation s2n .
The main value of the proposed method is its ability to ‘‘recover’’ from an initially biased prior on s2n and
obtain more adequate adjustment limits that result in significant savings. Compared to the optimal KF
solution obtained when the parameters are known, the proposed approach, which assumes unknown
parameters, has a surprisingly close performance.

A MATLAB computer program that implements the adaptive deadband adjustment method developed in
this research can be downloaded from: http://www2.ie.psu.edu/Castillo/research/EngineeringStatistics/.

With this program, at each stage i, the observed values of the quality characteristic, Y i, need to be entered.
The program sequentially updates the parameters estimates with the algorithm described in Appendix A, and
computes the adjustment using expression (14). Before starting a control session, the total number of stages

http://www2.ie.psu.edu/Castillo/research/EngineeringStatistics/
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ðNÞ and the relative fixed adjustment cost (c) need to be specified at the beginning of the
AdaptiveAdjust.m program.

Appendix A. Algorithm for estimating the process parameters yi, s2n and s2�

At the beginning of the process:

Draw M random numbers yðmÞ0 from the prior distribution of y0 (in this paper, yðmÞ0 ¼ 0), m ¼ 1; 2; . . . ;M;
Draw M random numbers s2ðmÞ� from the prior distribution of s2� , m ¼ 1; 2 . . . ;M;
Draw M random numbers s2ðmÞn from the prior distribution of s2n , m ¼ 1; 2 . . . ;M;
Create an initial weight vector ðw1;w2;w3; . . . ;wM Þ, where wm ¼ 1=M for all m.

For n ¼ 1; 2; 3; . . . ;N (i.e., iterating over all stages):

Observe Y n

Generate 1 random number yðmÞn from the distribution NðyðmÞn�1;s
2ðmÞ
n Þ for each m ¼ 1; . . . ;M.

Calculate the likelihood of the mth ‘‘particle’’ (i.e., a combination (yðmÞi , s2ðmÞ� ,s2ðmÞn )):

Let Lm ¼ ð1=

ffiffiffiffiffiffiffiffiffiffi
s2ðmÞ�

q
Þ expf�ðY i � yðmÞi Þ

2=2s2ðmÞ� g

Update the new weight vector and normalize it

wm  wm � Lm then wm  wm

XM

m¼1
wm

.
.

Obtain the new parameter estimators:

ŷnjDn ¼
XM

m¼1
wmy

ðmÞ
n ,

ŝ2� jDij ¼
XM

m¼1
wms2ðmÞ� ,

ŝ2n jDij ¼
XM

m¼1
wms

2ðmÞ
y .

Calculate the effective sample size (ESS) factor:

ESS ¼
M

1þM2varðwmÞ
.

If ESSopM, where p is a specified level between 0 and 1 (p ¼ 0:5 was used in our computations), rejuvenate
M particles using the ‘‘1PFS’’ algorithm (Balakrishnan and Madigan, 2004).
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