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Abstract

In the design of run to run controllers one is usually faced with the problem of selecting

a model structure that best explains the variability in the data. The variable selection

problem often becomes more complex when there are large numbers of candidate variables

and the usual regression modeling assumptions are not satisfied. This paper proposes a

model selection approach that uses ideas from the statistical linear models and stepwise

regression literature to identify the context variables that contribute most to the auto-

correlation and to the offsets in the data. A simulation example and an application on

lithography alignment control are presented to illustrate the approach.

Keywords: Run to run control, analysis of variance, ARIMA time series models, context

selection.

1 Introduction

In semiconductor manufacturing, it is often common to find the same tool processing different

types of products and operations. The particular combination of different factors related to
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the batch, such as the product, operation, chamber and machine, is defined as the “context” of

a batch, and the factors that define the context of the batch are called the context variables.

Very often, run to run control has to account for this variation by using context-dependent

models. The aim of this paper is to present a programmatic approach for identifying the

context variables that best express process data for modeling purposes.

In production, different products and operations are processed in a random order and the

batches which often have dissimilar contexts causes the parameters of the process model to be

non-homogeneous across different contexts. Run to run control (see e.g. [8]), a class of control

schemes developed for semiconductor manufacturing, takes into account this variability in the

process parameters by defining a different process model for each context for calculating the

recommended process settings from run to run.

Consider a single input single output process model

zt = gut + yt (1)

which is a pure-gain transfer function model, where z is the output and u is the input of the pro-

cess. The constant process gain g is assumed to be known. yt is the stochastic disturbance which

models the remaining variability not modeled by the transfer function. The input is observable,

thus, the disturbance can be written as yt = zt−gut. Autoregressive-integrated-moving average

(ARIMA) time series models [1] are commonly used to model stochastic disturbances.

Suppose that there are k different context variables that define the process model. Context

variables are categorical, therefore, the disturbance can be represented using a k-way analysis

of variance (ANOVA) model. The full model which contains the main effects and the two factor

interactions is:

yij...l,t = µ + τi + βj + . . . + γl + (τβ)ij + ... + (τγ)il + eij...l,t (2)

where, τi is the effect of the ith level, or component, of the first variable, βj is the effect of the

jth level of the second variable, and so on, and γl is the effect of l-th level of the kth variable.

The terms (τβ)ij + ... + (τγ)il represent the effects of the k(k−1)
2

two factor interactions. The
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model error eij...l,t may be autocorrelated and may also be non-stationary, both of which are in

violation of the ANOVA assumption that the errors are independently distributed.

The subscript ij...l indicates the context of the process model and the subscript t denotes the

time index of the observations collected in this context. Denoting the number of observations

in this context by nij...l we have that t = 1, 2, ..., nij...l. Further, if we denote the number of

levels of each variable by ri(i = 1, 2, ..., k) we have that i = 1, 2..., r1, j = 1, 2..., r2, and so on

up to l = 1, 2..., rk.

The full model contains d = k + k(k−1)
2

variables. While for illustration purposes of this

report we consider the model (2) that contain up to two factor interactions, the method also

works with models that include higher order interactions. Our objective is to find a subset

of the d variables which best explains the variability in the disturbance data. In particular,

we want to obtain a subset of variables that contribute most to the autocorrelation and the

non-stationarity of the data and another subset of variables that contribute most to the mean

shifts, or the offsets, in the data. Figure 1 illustrates a typical case where data from different

contexts can be represented by drifting or non-stationary time series and offset terms.

To model the autocorrelations we employ integrated autoregressive (AR) processes which

we represent as regression models. Provided that the full regression model is general enough, a

variable selection approach would allow one to determine, according to the data, the appropriate

orders of the AR models that should be used for different variables. To model the offsets we

employ ANOVA models.

The remainder of the paper is organized as follows. We introduce the proposed model

selection approach in Section 2 using a simple example. The variable selection criterion and the

stopping rule used in the approach are reviewed in Section 3. In Section 4, the implementation

of the approach for the general case is discussed. Sections 5 and 6 contain the main results of

the paper; in Section 5 the approach is applied on a simulated process data, and in Section 6

on lithography alignment control.
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2 Proposed Approach

The model selection algorithm starts from an initial ANOVA model that is provided by the

user. We usually use yt = µ + et as the initial ANOVA model. To the residuals of this model

it successively fits a set of regression models, each model being fitted to the residuals of the

previous model, until a stopping rule is violated. The variables in each model are selected

according to a variable selection criterion. We explain the variable selection criterion and the

stopping rule used in the algorithm in Section 3.

The basic idea in sequentially fitting regression models is illustrated in Figure 2 using an

example where a response y is regressed on the variables x1 and x2. This figure shows that a

first order model (i.e. no x1x2 interaction) can be decomposed in to two regressions, first that

regresses y on x1 where the prediction is yp1 and the residual is e1; and second, that regresses

the residuals e1 of the first regression on x2 where the prediction is yp2 and the residual is

e2. It can be seen that yp = yp1 + yp2 and e = e1 + e2. It will be explained below that in

the autoregressive models that we employ in the model selection algorithm we use only linear

functions of the regressors and this condition is satisfied.

After the regression step, an ANOVA model is fitted to the residuals of the regression model,

where the variables are selected according to the variable selection criterion. The variables are

entered until the stopping rule is violated at which point an iteration is completed. At the end

of each iteration a convergence criterion is checked; if it is satisfied the algorithm stops and

reports the model as the final model; otherwise the algorithm continues with a new iteration

using the residuals of the ANOVA model of the previous iteration.

As the convergence criterion, we compare the variables selected (for the regression and the

ANOVA models) in the current iteration to those in the previous iteration. If they are the same

we conclude that the algorithm has reached convergence.

To illustrate the proposed approach we consider a simple process where the tool type and the

product type are the two context variables and the interactions are not important. A two-way
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ANOVA model to represent the disturbance is:

yij,t = µ + τi + βj + eij,t (3)

where τi is the effect of the ith tool and βj is the effect of the jth product. Suppose that there

are 2 tools and 2 products and during production, the levels of the context variables are varied

according to a 22 full factorial design and in each combination 3 observations are collected. The

disturbance and model error values and the context variable levels for this example are given

in Table 1.

The proposed regression model approach to model the autocorrelations in the error terms

and the ANOVA model approach to model the offsets proceed as follows.

2.1 Regression model

Suppose that the time effects of the tools and the products are given, respectively, by the sets

of time series ui,t1 and vj,t2 . Here, t1 is the time index of the observations on the ith tool (i.e.

t1 = 1, ..., ni) and t2 is the time index of the observations on the jth product (i.e. t2 = 1, ..., nj).

The model error is, thus, the summation of the two series:

eij,t = ui,t1 + vj,t2 . (4)

It is noted that, since the offsets are modeled by the parameters µ, τi and βj in (3), all of

the time series ui,t1 and vj,t2 have zero means. Suppose, without loss of generality, that each of

the time series can be represented by an AR(2) process, that is:

ui,t1 = φ
(i)
1 ui,t1−1 + φ

(i)
2 ui,t1−2 + εi,t1 (5)

and

vj,t2 = ϕ
(j)
1 vj,t2−1 + ϕ

(j)
2 vj,t2−2 + εj,t2 (6)

where φ
(i)
1 , φ

(i)
2 , ϕ

(j)
1 and ϕ

(j)
2 are the autoregressive parameters and εi,t1 and εj,t2 are white noise

processes.

It can be shown that, if we fit a regression model to eij,t where the regressors are the lagged

values of eij,t defined over the tools, the regression will be significant and the residuals of this
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model will still have autocorrelation left due to the products. To show this, we rewrite (4) by

renumbering the errors according to the tools as eij,t ≡ ei,t1 and by substituting (5) for ui,t1 :

ei,t1 = φ
(i)
1 ui,t1−1 + φ

(i)
2 ui,t1−2 + εi,t1 + vj,t2 . (7)

In this expression, we can substitute ei,t1−1 and ei,t1−2 for ui,t1−1 and ui,t1−2 by using (4):

ei,t1 = φ
(i)
1 ei,t1−1 + φ

(i)
2 ei,t1−2 + εi,t1 + vj,t2 + c (8)

where the term c contains the past values of vj,t2 which comes from the use of equation (4).

It is clear that, the residuals of the estimated regression model (8) are autocorrelated over the

products because vj,t2 and c are autocorrelated over the products. Therefore, the procedure

can be repeated using the residuals of (8) and defining the lagged values of these residuals over

the products as the regressors.

It should also be noted that in (8) the model error of the regression is εi,t1 + vj,t2 + c and

it is assumed to be independently distributed for different t1 on tool i. In order to satisfy this

assumption, a randomly selected product number j must be used with tool i, because otherwise,

according to (6), the errors will be correlated. This assumption is satisfied in production,

because during production the levels of the context variables are usually randomized.

These two regression models are explained next. In the first step, we fit the regression model

where the regressors are the lagged values of eij defined over the tools. The observations can

be written according to this model as:

e = Z1g1 + a (9)

where Z1 is the regressor matrix, g1 is the vector of parameters and a is the vector of errors
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and they are defined as

e =




e1

e2

e3

e4

e5

e6

e7

e8

e9

e10

e11

e12




,Z1 =




γ0 γ−1 0 0
e1 γ0 0 0
e2 e1 0 0
0 0 η0 η−1

0 0 e4 η0

0 0 e5 e4

e3 e2 0 0
e7 e3 0 0
e8 e7 0 0
0 0 e6 e5

0 0 e10 e6

0 0 e11 e10




, g1 =




φ
(1)
1

φ
(1)
2

φ
(2)
1

φ
(2)
2


 , and a =




a1

a2
...

a12


 . (10)

γ0 and γ−1 denote the two pre-sample values of e on tool 1 and η0 and η−1 denote those

on tool 2. The pre-sample values are unknown, and a common estimation approach, known as

the conditional maximum likelihood estimation in time series literature (see [1], pg. 226), is

to substitute suitable values for the pre-sample values and compute the estimates conditional

on these values. When the sample size is sufficiently large, this assumption on the starting

values of the series is expected to have negligible impact on the final results. In this study we

assume that the pre-sample values are equal to the starting value of each series, that is, we set

γ0 = γ−1 = e1 and η0 = η−1 = e4. Provided that the time series is long enough, this assumption

on the starting values of the series would have negligible impact on the final results.

The ordinary least squares (OLS) estimates of the parameters are given by ĝ1 = (Z ′
1Z1)

−1Z ′
1e

and the residuals of the fitted model are

â = e−Z1ĝ1. (11)

In the second step, we fit the regression model to the residuals â where the regressors are

the lagged values of â defined over the products. The observations according to this model are

written as:

â = Z2g2 + s (12)

where Z2 is the regressor matrix, g2 is the vector of parameters and s is the vector of errors
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and they are defined as

â =




â1

â2

â3

â4

â5

â6

â7

â8

â9

â10

â11

â12




,Z2 =




γ′0 γ′−1 0 0
â1 γ′0 0 0
â2 â1 0 0
â3 â2 0 0
â4 â3 0 0
â5 â4 0 0
0 0 η′0 η′−1

0 0 â7 η′0
0 0 â8 â7

0 0 â9 â8

0 0 â10 â9

0 0 â11 â10




, g2 =




ϕ
(1)
1

ϕ
(1)
2

ϕ
(2)
1

ϕ
(2)
2


 , and s =




s1

s2
...

s12


 . (13)

γ′0 and γ′−1 denote the pre-sample values of â on product 1 and η′0 and η′−1 denote those on

product 2. Similarly to (10) we set γ′0 = γ′−1 = â1 and η′0 = η′−1 = â7.

The OLS estimates are ĝ2 = (Z ′
2Z2)

−1Z ′
2â and the residuals of the fitted model are

ŝ = â−Z2ĝ2. (14)

Since the autocorrelations due to the tools and the products are now modeled, the compo-

nents of the residual vector ŝ are uncorrelated. From (11) and (14) it can be seen that

e = ê + ŝ (15)

where ê = Z1ĝ1 + Z2ĝ2 is the vector of predictions of the two regression models.

2.2 ANOVA model

After modeling the autocorrelations in the error term by the fitted regression model, we model

the offsets in the data by an ANOVA model. We can write the model (3) by using (15) as

yij,t = µ + τi + βj + êij,t + ŝij,t. (16)

Defining ỹij,t = yij,t − êij,t we can see that the model

ỹij,t = µ + τi + βj + ŝij,t (17)
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satisfies the ANOVA model assumptions because ŝij,t are independently distributed. The ob-

servations ỹij,t can be written according to this model as:

ỹ = X b + ŝ
or




ỹ1
...

ỹ12


 =




1 1 0 1 0
1 0 1 1 0
1 1 0 0 1
1 0 1 0 1







µ
τ1

τ2

β1

β2




+




ŝ1
...

ŝ12




(18)

where 1 is a 3× 1 vector of ones and 0 is a 3× 1 vector of zeros. The columns of the regressor

matrix X are linearly dependent, thus X ′X is less than full rank and hence is not invertible.

This also implies that a unique solution for b does not exist, however, a solution that satisfies the

normal equations can be obtained by using a generalized inverse. We use the Moore-Penrose

generalized inverse [7] which gives the unique minimum norm solution. Let X− denote the

Moore-Penrose generalized inverse of X. Thus, the unique minimum norm solution of (18)

can directly be obtained as b̂ = X−ỹ (If (X ′X)−1 exists, the Moore-Penrose inverse satisfies

X− = (X ′X)−1X ′).

It can be shown that (see e.g. [9], pg. 170) the predictions and consequently the sum of

squared errors of the fitted model are invariant to the choice of the generalized inverse. The

variable selection, as will be explained next, is made on the basis of the sum of squared errors,

and thus, the selected models are not affected by this choice as well.

3 Variable Selection Criterion and the Stopping Rule

Variable selection in regression, that is obtaining a subset of a larger set of regressor variables,

has attracted considerable attention in the statistics literature. The most commonly used

methods are the best subsets analysis, which enumerates all subsets (in the case of the model

(2) there are 2d subsets) to select the subset according to an optimality criterion, and the class

of methods that includes the forward selection, backward elimination and stepwise regression,

which utilize a search method to enumerate some of the subsets. Miller ([6]) gives a review of

some of the widely used variable selection algorithms.
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In this study we adopt a forward-selection approach and as the variable selection criterion

we use the Cp statistic suggested by Mallows [5]. The Cp statistic of a model with p parameters

is defined as:

Cp =
SSE(p)

σ̂2
+ 2p− n (19)

where SSE is the sum of squared errors of the fitted model and σ̂2 is the estimated error

variance. In variable selection problems σ̂2 is usually computed as the mean square error of the

full model. The variable to be entered to the model is selected as the one that minimizes Cp.

According to (19) a variable that minimizes Cp provides the smallest SSE with fewest possible

parameters.

It is noted that, in an ANOVA model, when a variable is entered to the model, the param-

eters associated with all the different levels of this variable are entered. For example, if τi is

being entered, then all the parameters {τ1, ..., τr1} are entered. Thus, in this case p = r1.

If there are no variables already in the model, the selected variable is entered to the model if

the fitted model is significant. If the model already contains p parameters, then a new variable

is selected as the one that minimizes Cp+q, where q is the number of parameters in the new

variable. The selected variable is entered to the model if it satisfies

Cp ≥ Cp+q (20)

which is also the stopping rule of our algorithm, because we stop entering more variables once

it is violated. It can be shown that this condition is equivalent to

SSE(p)− SSE(p + q) ≥ 2qσ̂2. (21)

4 Algorithm

In this section we explain how the model selection algorithm is applied for the general case of

k context variables. Let y denote the n × 1 vector of disturbance observations and X denote

the regressor matrix for all dummy variables including the overall mean µ, the main effects and

the two factor interactions, that is X is n× d′ where d′ = 1 + d.
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Let X0 denote the columns of X that correspond to the variables in the user provided

initial ANOVA model. Therefore, the residuals of the initial model are e = y −X0b̂0 where

b̂0 = X−
0 y. The remaining of the algorithm consists of two parts.

4.1 Regression Model Selection

The regression model selection algorithm can be given as follows.

0. Set variable counter count = 0; set the flag that indicates that the main effects have been

checked to flagme = 0; Let e0 = e denote the original residual vector

1. If flagme = 0 then go to (1.a) otherwise go to (1.b)

1.a Main effects: Create the regressor matrices Zi1 and Zi2 from the lagged values of e

for the main effects i = 1, 2, ..., k, where Zi1 and Zi2 correspond, respectively to the

AR(1) and AR(2) models on the variable i.

1.b Two-factor interactions: Create the regressor matrices Zi1 and Zi2 from the lagged

values of e for the two factor interaction effects i = 1, 2, ..., k(k−1)
2

, where Zi1 and

Zi2 correspond, respectively to the AR(1) and AR(2) models on the interaction i

2. Calculate the Cp value of the AR(1) and AR(2) models of each effect i that is not already

in the model. Let C∗
p denote the minimum Cp value, let i∗ denote the corresponding effect

number, and let Z∗ denote the corresponding regressor matrix

3. Estimate the selected regression model. If count = 0 then test the significance of the

estimated model, otherwise check the stopping rule Cp,model ≥ C∗
p .

4. If the estimated model is significant or if the stopping rule is not violated then enter the

variable

• Set count := count + 1

• Test for unit autoregressive roots

• Set Cp,model = C∗
p
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• Compute the residuals of this model â = e−Z∗ĝ where ĝ = (Z∗′Z∗)−1Z∗′e

• Set e := â

• If flagme = 0 and if all main effects are checked then set flagme = 1 and go to (1).

If flagme = 1 and if all two factor interactions are checked then go to (6)

5. If flagme = 0 then set flagme = 1 and go to (1)

6. Compute the residuals ỹ = y − ê of the regression model where ê = e0 − e is the vector

of predictions of the residuals. Go to ANOVA Model Selection.

Remark: (Sample size). In estimation of ARMA models, it is recommended to have a sample

size of at least 100 observations (see e.g. [2]). In this study we are considering a large number

of variable combinations and this may result in a considerably large sample size requirement.

Furthermore, we are estimating low order linear AR models and, thus, a relatively small sample

size would provide satisfactory estimates. According to this, we set the minimum sample size

for AR models to 20 observations. When fitting an AR model to a variable, the number of

observations in each level of this variable is checked. The levels that do not satisfy this condition

are not considered in the estimation.

4.1.1 Tests for significance

In the test for significance of the regression models, we test, for an AR(1) model, the null

hypothesis H0 : all φ
(j)
1 = 0 against the alternative hypothesis H1 : at least one φ

(j)
1 6= 0 and

for an AR(2) model H0 : all φ
(j)
1 = 0 and φ

(j)
2 = 0 against H1 : at least one φ

(j)
1 6= 0 or φ

(j)
2 6= 0

where j = 1, 2, ...,m and m is the number of columns in Z∗. We reject the null hypothesis if

F0 ≥ Fα,m,n−m where F0 = SSR/m
SSE/(n−m)

, SSR = ĝ′Z∗′e, SSE = e′e− ĝ′Z∗′e and Fα,m,n−m is the

upper 100α percentile point of an F distribution with m and n−m degrees of freedom.

4.1.2 Test for unit autoregressive roots

For all selected regression models we test for the significance of unit autoregressive roots. An

AR process with unit root is non-stationary and it drifts if the constant term is non-zero (see

12



[1]). In order to detect the variables that drift, the non-stationary context variables are given

priority in the ANOVA model by starting from these variables in the tests for significance.

For an AR(1) model where the parameter estimates are ĝ = (φ̂
(1)
1 , ..., φ̂

(m)
1 )′ we test the null

hypothesis H
(j)
0 : φ

(j)
1 = 1 for each j = 1, 2, ..., m. We use the test statistic F0 =

(φ̂
(j)
1 −1)2

var(φ̂
(j)
1 )

and

compare it to Fα,1,n−m. Here, var(φ̂
(j)
1 ) is the jth diagonal of the parameter covariance matrix

var(ĝ) = s2(Z∗′Z∗)−1 (22)

where s2 is the model mean square error

s2 =
1

n−m
(e′e− e′Z∗ĝ). (23)

If we fail to reject the null hypothesis for at least one j then we conclude that there is evidence

of at least one unit root in the sets of time series that correspond to this effect.

For an AR(2) model where the parameter estimates are ĝ = (φ̂
(1)
1 , ..., φ̂

(m)
1 , φ̂

(1)
2 , ..., φ̂

(m)
2 )′ we

test the null hypothesis H
(j)
0,1 : φ

(j)
2 − φ

(j)
1 = 1 and H

(j)
0,2 : φ

(j)
2 + φ

(j)
1 = 1 for each j = 1, 2, ...,m.

We use the test statistics

F0,i =
(Ciĝ − 1)2

s2Ci(Z
∗′Z∗)−1C ′

i

for the hypotheses i = 1 and 2. Here, s2 is obtained using (23) by replacing the denominator

with n− 2m. C1 is a 1× 2m vector with jth entry equal to −1 and (j + m)th entry equal to

1 and all other entries equal to 0. C2 is a 1× 2m vector with jth and (j + m)th entries equal

to 1 and all other entries equal to 0. We compare the test statistics to F1,n−2m,α. If we fail to

reject the null hypothesis H
(j)
0,1 or H

(j)
0,2 for at least one j then we conclude that there is evidence

of at least one unit root.

4.1.3 Exponential weighting of the past data

One major assumption made in formulating the AR models as in (9) and (12) is that the

sampling interval is uniform for all observations. As it is clear from (10) and (13) the sampling

interval is changing at the time instants where the components of the context variables are

switching; for example for tool 1, the observation vector is (e1, e2, e3, e7, e8, e9), and the sampling

interval changes from 1 to 4 time steps at the fourth observation.
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Non-uniform sampling intervals would cause inaccuracy in modeling the autocorrelations

using a regression model as this model assumes that the past data are separated by an equal

time interval. We propose to use an exponential weighting approach to discount the effect of

the past data by how much it is separated from the current observation when using the past

data as a regressor. Consider, for example e8. When regressing this point on e7 and e3 we

weigh e7 by λ and e3 by λ8−3, where λ is the exponential weight. We recommend a relatively

high value for λ, such as 0.8.

4.2 ANOVA Model Selection

The ANOVA model selection algorithm can be given as follows.

0. Set count = 0. Test the significance of the overall mean µ̂; if it is significant then enter it

into the model, that is Xr = 1 where 1 is n× 1 vector of ones otherwise Xr = ∅

1. Test the significance of the variables that have unit autoregressive roots in the regression

model. If they are significant then enter the variables and

• set count := count + 1

• Update the regressor matrix: Let Xs denote the columns of X that correspond to

the variables with unit roots and set Xr := [Xr Xs]

2. Calculate the Cp value for each of the main effects and two factor interactions i =

1, 2, ..., k + k(k−1)
2

that is not already in the model. Let C∗
p denote the minimum Cp

value and let i∗ denote the corresponding variable number

3. Estimate the selected ANOVA model. If count = 0 then test the significance of the

estimated model, otherwise check the stopping rule Cp,model ≥ C∗
p .

4. If the estimated model is significant or if the stopping rule is not violated then enter the

variable and

• Set count := count + 1

14



• Set Cp,model = C∗
p

• Update the regressor matrix: let Xs denote the columns of X that correspond to

variables i∗ and set Xr := [Xr Xs]

• Go to (2)

otherwise check the convergence criterion. If it is not satisfied calculate the vector of

residuals e = y −Xrb̂r where b̂r = X−
r y and go to Regression Model Selection. If it is

satisfied, stop and report the variables selected in the regression model ( along with the

order of the AR filter) and the variables selected in the ANOVA model as the final model.

Remark: (Checking for nested factors). In both the ANOVA and the regression models, in

order to define an interaction effect, we check the variables for nestedness. In linear models,

if the levels of one variable are nested under the levels of another factor, then the interaction

between these two variables is not defined (see e.g. [9], pg. 155-159).

4.2.1 Tests for significance

In the test for significance of the ANOVA models, we test, for example for the effects τi, i =

1, 2, ..., r1, the null hypothesis H0 : all τi = 0 against the alternative hypothesis H1 : at least one

τi 6= 0. We reject the null hypothesis if F0 ≥ Fα,m,n−m where F0 = SSR/m
SSE/(n−m)

, SSR = b̂
′
rX

′
rỹ,

SSE = ỹ′ỹ − b̂
′
rX

′
rỹ, b̂r = X−

r ỹ. Xr denote the columns of X that correspond to τi (and µ,

if it is significant) and Fα,m,n−m is the upper 100α percentile point of an F distribution with m

and n−m degrees of freedom where m = rank(Xr).

5 Simulation Example

In this example, we consider tool, product and operation as the context variables, and assume

that the effects of the tools and products are significant, but the effects of the operations are

not significant.

We consider two different scenarios. In the first one, the disturbance due to the tools and

the products follow independent ARIMA(1,1,0) processes. If we denote the time effect due to
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the tool i by u′i,t1 , this can be expressed as (see e.g. [1])

u′i,t1 =
1

(1− φB)(1− B)
εi,t1 +

δ(i)

1− B

where B is the back shift operator (i.e. Bui,t1 = ui,t1−1) and δ(i) is the drift rate of the ith tool.

A constant AR parameter φ is assumed for all tools. We can rewrite this as

u′i,t1 = (φ + 1)u′i,t1−1 − φu′i,t1−2 + δ(i)(1− φ) + εi,t1 .

Similarly, for the products a constant AR parameter ϕ is assumed. If we denote the time

effect due to product j by v′j,t2 and the drift rate by ξ(j) we have that

v′j,t2 = (ϕ + 1)v′j,t2−1 − ϕv′j,t2−2 + ξ(j)(1− ϕ) + εj,t2 .

It can be shown that the process output can be represented as shown in (3) and the model

error as shown in (4), where the constant terms are µ = 0, τi = δ(i)(1−φ), βj = ξ(j)(1−ϕ) and

the individual error terms are ui,t1 = u′i,t1 − δ(i) and vj,t2 = v′j,t2 − ξ(j).

The disturbance process is simulated with 5 tools, 5 products and 5 operations by assuming

equal proportions for the levels of each context variable (i.e. the probability of occurrence

of each level of each variable is 0.2). We used {0.1, 0.3, 0.5, 0.7, 0.9} as the tool drift rates

δ(i), i = 1, ..., 5, and {−0.1,−0.3,−0.5,−0.7,−0.9} as the product drift rates ξ(j), j = 1, ..., 5,

and φ = 0.4 and ϕ = −0.4 as the AR parameters. Furthermore, the white noise processes are

assumed to be normally distributed with mean 0 and variance 1.

In the second scenario, the disturbance follows a different ARIMA(1,1,0) process in each

tool-product combination. If we denote the time effect due to tool i and product j by eij,t and

represent it as

eij,t = (φ + 1)eij,t−1 − φeij,t−2 + δ(ij)(1− φ) + εij,t

then the disturbance model (3) can be written as yij,t = (τβ)ij +eij,t where (τβ)ij = δ(ij)(1−φ).

The process is simulated by assuming the drift rates δ(ij) given in Table 2, and a constant

AR parameter φ = 0.4. The same white noise properties and the context variable proportions

as in the first scenario are assumed. For both scenarios, 1000 lots were simulated.
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Tables 3 and 4 show the iterations of the algorithm for the first and second scenarios,

respectively. The symbols T and P are used to represent the effects of the tools and the

products, respectively. For both scenarios we used yt = µ + et as the initial ANOVA model.

As it can be seen, in both of the scenarios, the algorithm converged to the true model of the

process. In the first scenario, we obtained the ANOVA model yij,t = τi + βj + eij,t where eij,t

follow AR processes due to the tools and the products, and in the second scenario we obtained

the ANOVA model yij,t = µ + (τβ)ij + eij,t where eij,t follow AR processes due to products,

tools and tool-product interactions. Since the interaction can model the effects due to the main

effects, we can simplify the regression model of the second scenario as an AR process due to

the tool-product interactions.

Figure 3 shows the comparison of the actual data to the residuals after fitting each model,

and the comparison of the actual data to the predictions computed by the selected models.

6 Industrial Application

In this section we apply the proposed model selection algorithm to a well studied problem in

semiconductor manufacturing, the alignment control for lithography process. [4] illustrates an

application and explain the outputs and the inputs of the process and [10] presents a run to

run control algorithm for alignment control.

In this study we consider 3 response variables in a lithography process: yshift, xscale and

yscale, which are the displacement in the y direction, the elongation in the x direction and the

elongation in the y direction of the pattern in the current layer measured with respect to the

pattern in the previous layer. The context variables of this process are scanner, prior scanner,

operation, product, recipe and reticle. See [10] for definitions of these variables.

We use a data set that contains 10000 disturbance observations for these responses. Dis-

turbance data is obtained from the input-output data of the process by assuming that the

responses are not correlated and that the each process has unit gain. Table 5 shows the number

of levels of each context variable and figure 4 shows the pairwise plots of the levels of the context

variables under which the data is collected. It is also noted that, in this data the levels of the
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recipe and reticle are nested under the levels of operation.

From figure 4, we can see that the levels of product and reticle, product and reticle, and

recipe and reticle are highly correlated (The sample correlation coefficients between these pairs

are 0.991, 0.679 and 0.699, respectively); that is, the levels of the regressors product, recipe

and reticle “move together”. Highly correlated variables in general cause the variable selection

algorithm to perform poorly because it is not possible to distinguish the effects of each variable.

To remedy this problem, we removed recipe and product from the list of variables and considered

scanner, prior scanner, operation and reticle (and their interactions) as potential variables.

Table 5 shows the symbols used for these variables.

We run the model selection algorithm on the disturbance data of each of the response

variables. To validate the models selected, we split the data into two, and use the first 5000

observations for model selection and estimation and the second 5000 rows to compare the

predictions made by the estimated model (here the row order is by time).

As shown in Table 6 using the first 5000 rows of the yshift response data the algorithm

converged in 3 iterations to the ANOVA model yt = S ×R + P ×O + et where et follow AR(2)

processes due to the scanners. The initial ANOVA model in this case was yt = µ + et. The φ1

and φ2 estimates, their standard errors and the results of the unit autoregressive root tests are

shown in Table 7. The summary of the regression and the ANOVA models fitted to the yshift

response data are given in Table 8; as it can be seen both models are highly significant. The

same ANOVA and regression models were obtained using the second 5000 rows of the data.

For the xscale response we obtained the ANOVA model yt = S × R + P × O + et where

et follow AR(1) processes due to the scanners and for the yscale response we obtained the

ANOVA model yt = S ×R + P ×R + et where et follow AR(2) processes due to the scanners.

The same model was obtained for each response using the first and second 5000 rows of the

data.

Figure 5 shows the residuals ỹt of the selected regression model for yshift. The residuals are

plotted for the different levels of scanner, prior scanner and the different levels of reticle on

the first level of scanner. These plots show that an ANOVA model that contains only scanner
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or only reticles would not adequately represent the mean shifts in the data, but, as also selected

by the algorithm, it must at least contain a scanner − reticle interaction.

Figure 6 shows the disturbance values for yshift on different scanner−reticle combinations

after removing the offsets due to prior scanner−reticle. It illustrates that the disturbance data

wanders in similar patterns on the same scanner and the separation of the time series reflects

the offsets due the reticles. The autocorrelations due to the scanners and those of the operations

and reticles were also compared by applying Fisher’s white noise test [3]. This procedure tests

the null hypothesis that the series is a normal white noise against the alternative that it has a

periodic component, where the null is rejected if the test statistic κ is large. The κ values and

the corresponding p-values are reported in Table 9. This indicates that the autocorrelations

due to the scanners are more significant than those due to operations and reticles.

Figure 7 gives the predictions and the actual data of the second 5000 rows of yshift for

different scanner−reticle combinations. Here, the predictions are the one-step-ahead forecasts

and are computed using the parameter estimates obtained from the first half of the data set.

As it can be seen, there is a good fit between the predictions and the actual data.

7 Conclusions

This paper presented an algorithmic approach for context based model selection for run to run

control. In addition the algorithm explicitly differentiates between the contexts that experience

autocorrelation and those that can be represented by offsets. This has direct bearings on the

controller design. One assumption used in this work is that the context variables are sufficiently

randomized during production so that the white noise assumption is satisfied at each step in

the algorithm. Extensions to this procedure would involve inclusion of additional operational

events (such as preventive maintenance) to context variables to further improve accuracy.
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8 Figures and Tables
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Figure 1: This figure illustrates how data from different contexts can be represented with drift
and offset terms. Square marker: context 1, Triangle marker: context 2, Solid line: context 3

Disturbance Model error Tool Product
y1 e1 1 1
y2 e2 1 1
y3 e3 1 1
y4 e4 2 1
y5 e5 2 1
y6 e6 2 1
y7 e7 1 2
y8 e8 1 2
y9 e9 1 2

y10 e10 2 2
y11 e11 2 2
y12 e12 2 2

Table 1: Disturbance data, model error and context variable levels for the 2 tool 2 product
example
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Figure 2: Sequential regression: This figure illustrates how a regression of y on x1 and x2 can
be decomposed in to two regressions, first that regresses y on x1 and second, that regresses the
residuals e1 of the first regression on x2

1 2 3 4 5
1 -0.005 -0.003 -0.001 0.001 0.003
2 -0.003 -0.001 0.001 0.003 0.005
3 -0.001 0.001 0.003 0.005 0.007
4 0.001 0.003 0.005 0.007 0.009
5 0.003 0.005 0.007 0.009 0.011

Table 2: Drift rates, δ(ij). Rows are for tools(i = 1, ..., 5), columns are for products (j = 1, ..., 5)

Iteration Regression model ANOVA model Convergence ?
1 AR(2) on T , AR(2) on P T + P No
2 AR(2) on T , AR(2) on P T + P Yes

Table 3: Simulation example: iterations in the first scenario. The algorithm converged to the
true solution
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Figure 3: Simulation example. The actual simulated data (solid line), the residuals of the
ANOVA model (dash line with asterisk), the residuals of the ANOVA and the regression models
(dash line with diamond) and the predictions (dash line) are shown for the two scenarios. Top:
First scenario, Tool 1 and Product 5, Bottom: Second scenario, Tool 2 and Product 3.

Iteration Regression model ANOVA model Convergence ?
1 AR(2) on P , AR(1) on T , AR(1) T × P µ + T × P No
2 AR(2) on P , AR(2) on T , AR(1) T × P µ + T × P No
3 AR(2) on P , AR(2) on T , AR(1) T × P µ + T × P Yes

Table 4: Simulation example: iterations in the second scenario. The algorithm converged to
the true solution

Variable Number of levels Symbol
scanner 17 S

prior scanner 21 P
operation 11 O
product 25 n.a.
recipe 116 n.a.
reticle 107 R

Table 5: Context variables. The variables product and recipe are not considered in the selection
algorithm.
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Figure 4: Pairwise plots of the context variables

Iteration No Regression model ANOVA model Convergence ?
1 AR(2) on S × P , on S ×O S ×O + P ×R + P ×O + S ×R No

on P ×R, on P ×O
2 AR(2) on S S ×R + P ×O No
3 AR(2) on S S ×R + P ×O Yes

Table 6: Iterations of the variable selection algorithm using the first 5000 rows of the yshift
response data
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φ1 φ2

scanner estimate s.e. scanner estimate s.e. Unit Root ?
1 0.27 0.174 1 0.83 0.41 1
2 0.37 0.09 2 0.39 0.17 1
3 0.31 0.09 3 0.27 0.16 0
4 0.18 0.09 4 0.33 0.18 0
5 0.36 0.09 5 0.39 0.16 1
6 0.38 0.09 6 0.48 0.17 1
7 0.47 0.08 7 0.72 0.13 1
8 0.26 0.13 8 0.34 0.27 1
9 0.24 0.11 9 0.65 0.22 1

10 0.33 0.13 10 0.56 0.26 1
11 -0.74 0.77 11 0.00 1.37 1
12 -0.03 0.16 12 0.10 0.37 0
13 0.27 0.18 13 0.28 0.42 1
14 0.14 0.13 14 0.70 0.26 1
15 0.26 0.09 15 0.31 0.20 0
16 0.15 0.11 16 0.72 0.23 1

Table 7: Autoregressive parameter estimates using yshift as the response (1st 5000 rows)

Regression model
Source d.f. SS MS F Prob > F

Model 32 0.013 4.0E-04 9.74 > 0.0001
Error 4966 0.205 4.1E-05
Total 4998 0.218

ANOVA model
Source d.f. SS MS F Prob > F

Model 312 3.001 9.6E-03 220.34 > 0.0001
Error 4686 0.205 4.4E-05
Total 4998 3.206

Effects Test
Source no of prms d.f. SS F Prob > F

S ×R 1545 247 9.8E-01 91.16 > 0.0001
P ×O 171 55 4.0E-02 16.48 > 0.0001

Table 8: Summary of the estimated model using the first 5000 rows of the yshift response data
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Figure 5: Residuals of the regression model on different scanners, reticles and scanner-reticle
combinations (1st 5000 rows of yshift). As can be seen scanner only (top) or reticle only
(middle) models are not able to account for the mean shifts in the data adequately. scanner×
reticle model (bottom) accounts for the mean shifts adequately.
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Figure 6: Disturbance values for different scanner − reticle combinations from the 1st 5000
rows of yshift after removing the offsets due to P × O. Left panel: On scanner 5 and with
reticle 65 (diamond marker) and reticle 12 (asterisk marker). Right panel: On scanner 16 and
with reticle 11 (diamond marker) and reticle 71 (asterisk marker)
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κ Prob > κ

scanner 5 14.21 1.2E-04
scanner 6 9.23 0.019
scanner 7 15.50 2.7E-05

operation 3 6.34 0.333
operation 4 13.91 1.732E-04
operation 5 7.04 0.220

reticle 10 5.34 0.105
reticle 11 3.07 0.753
reticle 12 8.69 0.031

Table 9: Fisher’s white noise test results on the residuals of the ANOVA model on scanners,
operations and reticles. The 1st 5000 rows of the yshift response data was used.
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Figure 7: Predictions (dash line with asterisk marker) and the actual measurements (solid line)
of the 2nd 5000 rows of the yshift data on different scanner−reticle (top) and prior scanner−
operation (bottom) combinations. The predictions are computed using the parameter estimates
obtained from the 1st 5000 rows. Due to the classified nature of the data the y- axis labels are
not given.
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