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Abstract

Experiments where the response of interest is a curve or “profile” arise in a variety of
applications in engineering practice. In a recent paper (Journal of Quality Technology,
44, 2, pp. 117-135, 2012) a mixed effects, bayesian approach was proposed for the
bayesian optimization of profile response systems, where a particular shape of the profile
response defines desired properties of the product or process. This paper proposes an
alternative spatio-temporal Gaussian Random Function process model for such profile
response systems, which is more flexible with respect to the types of desired profiles shapes
that can be modeled, and allows to model profile-to-profile correlation, if this exists. The
method is illustrated with real examples taken from the literature, and practical aspects
related to model building and diagnostics are discussed.

Keywords: Functional Responses, Gaussian Random Function Processes, Separability, Robust

Parameter Design.

1. Introduction

In many areas of manufacturing and engineering design, the response of interest in an

experiment does not consist simply of a single observation measured at each of the experimental
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conditions. Instead, at each experimental run a curve is measured at different locations, or

values, of an independent variable and the goal is to model the observed curve. This kind of

response variable is known as a “profile response” in the Statistical Process Control literature

(Kang and Albin, 2000) or a functional response in the Statistics literature (Ramsay and

Silverman, 2005).

More precisely, consider an experiment where the response of interest {yj}Jj=1 is observed at

J locations s = {s1, s2, ..., sJ}, every time an experimental run is conducted. The locations sj

can refer to instances in time when the profile response is observed, or in general, they can refer

to some other scalar variable the observed profiles depend on. Assume the process performance

depends on the shape of the sampled profile, where a given target profile shape is desired. The

shape of the sampled profile is modifiable through a set of control factors xc and is also affected

by noise factors xn. Similarly to classical Robust Parameter Design (RPD) experiments, noise

factors are assumed to be controllable in a carefully designed experiment but are uncontrollable

once the product or process under study is in regular use. The goal is to find the best settings

of xc that make the process achieve a desired target profile shape with maximum probability.

An example of a profile response experiment is given by Nair et al. (2002) where the design

of an electric alternator was studied. The response of interest in the experiment was the electric

current generated at different rotational speeds (in RPM’s) at which the alternator operates. A

designed experiment was run that consisted of 8 controllable factors and 2 noise factors. Thus,

we have xc = (x1, x2, ..., x8)
′ and xn = (x9, x10)

′. The experimental design used was a Taguchi

L18 orthogonal array replicated 6 times. At each of the 108 (= N) runs, 7 (= J) electrical

current measurements were recorded at different RPM’s. Figure 1 shows the observed profiles

for each of the 18 control factor combinations in the design. Based on the DOE data, the goal

is to find the controllable factor settings that lead to a specified shape of the electric current

profile with high probability. We will return to this example in sections 2 and 3.

The structure of the data just described is similar to what in the Spatial Statistics literature

is referred to as spatio-temporal data (see e.g., Banerjee et al., 2004, section 8.1). In our case,

the ’spatial’ and ’temporal’ spaces correspond to the design factor space and the measurement

locations space, respectively. In Spatial Statistics, this kind of data is usually modeled using a

Gaussian Random Function (GRF) process (Lifshit, 1995). In this paper, a GRF process model

is adopted to model and optimize profile responses.

A recent review of the RPD problem for profile responses was given by Del Castillo et al.

(2012) where a full Bayesian two-stage mixed effects regression model was proposed. Their

approach allows to estimate the probability of meeting given specifications for the profile

response. However, this model assumes no profile-to-profile correlation, and this might not

be true specially if profiles are observed at similar design factor settings. Also, their methods
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Figure 1: Observed profiles for the electric alternator example at each of the 18 control factors combinations
(H=high, M=medium, L=low), after Nair et al. (2002). Each factor combination was replicated six times. The
assumed specification limits are shown in dashed lines.

require a linear statistical model in the sj’s for the mean profile that fits the data well, otherwise,

model predictions may not be accurate. As an alternative, we propose a more flexible Bayesian

modeling approach to model and optimize profile response systems based on a spatio-temporal

GRF process.

The rest of the paper is organized as follows. The proposed model is explained in section 2.

Section 3 discusses model robustness and validation. A summary and a discussion of areas for

further research conclude the paper in section 4. Technical details about the particular Markov

Chain Monte Carlo methods utilized are shown in the Appendix.

2. Description of the proposed model

Following common convention in GRF modeling, we assume that the process that generates

the observed profiles follows an infinite dimensional normal distribution. Due to the properties

of the normal distribution, any finite set of observations will also be normally distributed (see

e.g., Mardia and Goodall, 1993). It is also assumed that all N profiles are measured (sampled)

at the same J locations. Let yij be the observed response value of profile i at location j. Also,
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let x = (xc,xn) and define f(xi, sj) to be a function of the design factor settings x under

which the jth location in the ith profile was observed. Then the observed response values can

be modeled as

yij = µ(xi, sj) + ϵij, ϵij ∼ N(0, σ2(xi, sj))

= f(xi, sj)
′β + ϵij (1)

We note that both the mean and the variance are functions of the design factor settings and of

the measurement locations. Let ϵi be the vector of errors ϵij observed along the ith profile, i.e.,

ϵi = [ϵi1, ϵi2, ..., ϵiJ ]
′ and let

F i(xi, s) =


f(xi, s1)

′

f(xi, s2)
′

...

f(xi, sJ)
′

 .

Then the ith profile, yi, can be expressed as

yi(xi) = F iβ + ϵi, ϵi ∼ NJ(0,Σs(xi, s)) (2)

where Σs is the within-profile covariance matrix. If we define the matrices

Y =


y11 y12 · · · y1J

y21 y22 · · · y2J

...
...

...
...

yN1 yN2 · · · yNJ

 , F =


F 1

F 2

...

FN

 , and ϵ =


ϵ1

ϵ2

...

ϵN

 , (3)

then Y , the matrix of all N profiles, can be represented as:

vec(Y ′) = Fβ + ϵ, ϵ ∼ NNJ(0,Σ(x, s)) or

vec(Y ′) ∼ NNJ (Fβ,Σ) (4)

where F is of size NJ × q, β is a q × 1 vector containing regression parameters, and vec(·) is

the operator that concatenates matrix columns into one vector.

The covariance structure, Σ, must capture both the within- and the between-profile

correlations. In order to reduce the number of covariance parameters to be estimated one

could assume a spatial covariance model over both x and s. However, the design factor space
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(the x-space) and the measurement location space (the s-space) are usually measured using

different scales and hence a single spatial covariance model would be inadequate (Wikle and

Berliner, 2005). Therefore, we assume instead two separate spatial covariance models, one for

the x-space and another for the s-space, in such a way that:

Σ = Σx ⊗ Σs (5)

where the N × N matrix Σx models the between-profile correlations due to the similarity in

control factor settings, the J × J matrix Σs models the within-profile correlations due to the

proximity of any two locations in s, and ⊗ denotes the Kronecker product. Assumption (5)

is referred to as separability in the Spatial Statistics literature (Genton, 2007). The rationale

is that if operating conditions x1 and x2 are close in x-space, then they will tend to result in

similar profile responses. Likewise, if responses yij and yik are such that j and k are close in s-

space, then they will tend to be similar. To illustrate, Figure 2 shows a schematic representation

of a profile response experiment in a two dimensional x-space. The two points x1 and x2 are

relatively close to each other in the x-space, and it is reasonable to expect they generate two

profiles y1 and y2 in the s-space that are correlated. In contrast, point x3 is relatively farther

away (in the x-space) from x1 and x2 and should generate a profile response y3 that is not that

correlated with y1 and y2. The Kronecker product decomposition of Σ makes the model more

attractive computationally for large size problems (Genton, 2007), since one deals with separate

N × N and J × J covariance matrices Σx and Σs, respectively, instead of a single NJ × NJ

covariance matrix, Σ. Another reason behind the wide use of separable covariance structures

is that they provide an easy way for generating positive definite covariance matrices (Genton,

2007; Gneiting, 2002). We note that this Kronecker product decomposition is not unique since

for any scalar c,

Σx ⊗ Σs = (cΣx) ⊗
(

1

c
Σs

)
. (6)

which results in a non-identifiability problem. To further reduce the number of parameters in

the separable covariance structure and to eliminate the non-identifiability problem, we assume

the following exponential covariance functions:

Σs = exp{−Ds/ϕs} (7)

Σx = κ exp{−Dx/ϕx} + ψxI. (8)

where Ds is the J × J matrix of Euclidean distances between the locations {sj} and Dx is
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an N × N matrix of distances between the design factor settings. Notice that we have only

four parameters to determine, (ϕs, κ, ϕx, ψx). The covariance functions (7-8) set the diagonal

elements of Σs to one, restricting the constant c to be equal to one in (6).

Figure 2: A schematic representation of the spatio-temporal data structure. Points x1 and x2 are close in the
x-space and hence they are expected to generate similar profiles, y1 and y2. In contrast, a point x3 in x-space
that is farther away from x1 and x2 is expected to generate a profile response y3 that is not that correlated
with y1 and y2. These between-profile correlations are modeled in Σx. Within profile correlations are modeled
in matrix Σs.

Letting θ = (ϕs, ψx, ϕx, κ) and assuming the priors π(θ) and π(β) are available, the joint

posterior density is:

π(θ,β | Y ,F ) ∝ π(θ)π(β)|Σx ⊗ Σs|−
1
2 (9)

exp{−1

2
(vec(Y ′) − Fβ)′(Σx ⊗ Σs)

−1(vec(Y ′) − Fβ)}

For this model, full conditionals of the parameters are usually hard or even impossible to

derive in a closed form (see Banerjee et al., 2004, section 5.1.1), and hence Gibbs sampling is

not possible in general. Therefore, a Metropolis-Hastings Markov Chain Monte Carlo (MCMC)

algorithm was used to draw samples from the posterior distribution in (9). Full Bayesian

estimation of a GRF model is complicated due to convergence problems (see Besag and Green,

1993). We have achieved good convergence behavior with the parametrization (7-8) and the

adaptive Metropolis method of Appendix A where the adaptation method of Haario et al.

(2001) was used.

If z is a new observed profile at factor settings x∗ then, due to the GRF process assumption
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we have:([
vec(Y ′)

z′

]
| θ,β,F ,x∗

)
∼ N(N+1)J

([
Fβ

F z(x
∗, s)β

]
,

[
Σ11 Σ12

Σ21 Σ22

])
(10)

where Σ11 = Σx⊗Σs, Σ22 = (ψx + κ)Σs and Σ12 is an NJ × J matrix such that the ith J × J

block is [ψx + κ exp(−d(xi,x∗)/ϕx)]Σs for i = 1, ..., N . The distribution of z | Y ,F ,x∗,θ,β

is easily derived using basic results from Multivariate Normal Theory (see, e.g., Johnson and

Wichern, 1998) and is equal to:

z′ | Y ,F ,x∗,θ,β ∼ N
(
F z(x∗, s)β + Σ21Σ−1

11 (vec(Y ′) − Fβ),Σ22 − Σ21Σ−1
11 Σ12

)
(11)

Using the composition rule (see, e.g., Gelman et al., 2004) we can integrate numerically the

posterior predictive density π(z | Y ,F ,x∗):

π(z | Y ,F ,x∗) ∝
∫ ∫

π(z|x∗,β,θ)π(β,θ | Y ,F )dβdθ (12)

The integration in (12) needs to be carried out by first generating samples for β and θ from their

joint posterior density (9). Appendix A provides an adaptive MCMC algorithm to generate

β and θ samples from the posterior distribution in (9). The prior distributions shown in

expressions (14-18) in Appendix A were used for the model parameters in all examples in this

paper. The generated β and θ samples are then used in turn to generate as many samples as

needed from the density π(z | Y ,F ,x∗,θ,β).

To find the optimal control factor settings that make the process robust to variability in the

noise factors, we maximize the “probability of conformance” to the given specification limits,

p(xc)RPD, with respect to xc, where

p(xc)RPD = Exn [P (z ∈ T | Y ,F ,xc,xn)] =

∫
P (z ∈ T | Y ,F ,xc,xn)π(xn)dxn

Here, T is a given set of specifications for the desired values for the response (e.g., low

and high values of y at each location sj), and π(xn) is the probability density of the noise

factors which we assume known following standard RPD assumptions. This is the Bayesian

predictive optimization approach of Peterson (2004) extended to the RPD case by Miro et

al. (2004), applied to functional or profile responses, where p(xc)RPD is estimated by Monte

Carlo integration. It is related to the approach in Del Castillo et al. (2012) but with a more

flexible GRF model substituting the mixed effects model of that paper. The Bayesian predictive
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approach has the advantage of considering the correlation structure of the data, the variability

of the noise factors, and the uncertainty in the model parameters.

If the observed data has a trend in the x-space, the s-space or both, then this is modeled via

the mean µ(x, s). Noise×control factor interactions for the mean may be needed in a Robust

Parameter Design problem (Myers and Montgomery, 1995) and should be included in µ(x, s).

Example 1, no noise factors: metal injection moulding process. Govaerts and

Noel (2005) report an experiment where 25 profiles of the elastic modulus (y) of ‘green’ parts

(products before a sintering operation) were observed in a metal injection moulding process.

The elastic modulus was measured at 701 values (locations) of the debinding temperature which

ranged from 10 to 80 0C. The experiment consisted of two controllable factors in the ingredients

of the binder, namely, Xanthan concentration (denoted by x1 and varied at 5 levels from 1 to

5) and Chromium/Xanthan concentration ratio (denoted by x2 and varied at 4 levels from 1:1

to 4:1). To speed up computations, the number of locations was reduced to 78 locations by

sampling every 9th observed value. It was reported by the authors that one of the profiles

was a clear outlier, so it was excluded from the analysis. The objective of the experiment

as discussed by the authors is to obtain a large elastic modulus at low temperature values

while using low Chromium concentration, given it is a pollutant. The specification limits were

therefore set considering the range of the observed profiles and the conditions above. Figure 3

shows the observed 24 profiles (after removing the outlier profile) along the 14 distinct design

factor settings used.

We assume that the mean structure has a first order form in design factors and locations,

i.e., µ(xi, sj) = β0+β1xi1+β2xi2+β3sj, i = 1, ..., 24 and j = 1, ..., 78. One million samples from

the posterior distribution were generated and thinned by keeping every 10th sample resulting

in 100,000 samples. The thinned samples were checked for convergence through the following

plots of the four covariance parameters: a trace plot, an autocorrelation function plot (ACF), a

plot for the expected value vs. the sample number, a plot of the MCMC standard error of the

posterior mean estimate calculated using the batch means method (see e.g., Flegal et al., 2008),

and a plot for the posterior variance vs. the sample number. As it can be seen from Figure 4,

the trace plots show convergence to a steady state behavior. In addition, the expected value

and variance plots also converge, and the MCMC standard error approaches zero as the sample

number increases. The generated MCMC samples were used together with the MATLAB’s ga

genetic optimization algorithm to maximize p(xc)RPD. The optimization was constrained to

1 ≤ x1 ≤ 5 and 1 ≤ x2 ≤ 4. The optimal solution found was at x∗1 = 4.995 and x∗2 = 2.006 with

probability of conformance of 0.574. This solution can be verified by looking at the surface plot

of p(xc)RPD shown in Figure 5(a). In more general multi-factor experiments, either using an

algorithm which attempts to find a global optimum (like ga does) or using a local non-linear
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Figure 3: Observed elastic modulus profiles at each of the 14 control factor settings in the metal injection
moulding process. The lower and upper specification limits are shown by dashed lines.

optimizer started from a large number of initial points is necessary given p(xc)RPD is a complex

function and not concave in general.

Figure 5(b) shows the mean, 10th and 90th percentiles of the posterior predictive density

at the optimal solution found. Luckily, this optimal solution satisfies the criteria for a low

Chromium requirement, otherwise, the upper bound for x2 would need to be lowered. The

optimal solution found coincides with that found by Del Castillo et al. (2012), but they report

higher conformance probability since they used wider specification limits. It is important to

mention that the fitted model needs to be validated before it is used for process optimization,

otherwise, optimization results may not be accurate. Model validation is discussed in section

3. We first present an example where noise factors are considered in the experiment. For more

examples see Alshraideh (2011).

Example 2. Robust parameter design of an electric alternator. In the electric

alternator design example by Nair et al. (2002), presented in the introduction, suppose the

goal is to find the controllable factor settings that maximize the probability the electric current

profile lies within the specified limits U and L given in Table 1. We assume model (4-8) has a

mean model with an intercept, all main effects and all control × noise interaction terms, i.e.,

µ(xi, sj) = β0 +
∑10

k=1 βkxik +
∑8

k=1 βik9xikxi9 +
∑8

k=1 βik10xikxi10 + β28sj, i = 1, ..., 108 and

j = 1, ..., 7 (an additive model in x and s). Again, one million samples from the posterior

distribution were generated using the MCMC algorithm in Appendix A which were thinned
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Figure 4: MCMC convergence plots, metal injection moulding example. From top to bottom: posterior
densities, trace plots, autocorrelation functions (ACF), expected value plots, MCMC standard error of the
estimated posterior mean, and posterior variance plots of the generated covariance parameters (ϕx, ψx/κ, ϕx)
(one column of plots per parameter). Plots for the ratio ψx/κ are shown since it is known in the Spatial Statistics
literature (see e.g., Banerjee et al., 2004) that the ratio of these two parameters converges to its true distribution
even if the two parameters do not converge separately.
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Figure 5: Metal injection moulding example: (a) Probability of conformance to specifications as a function of
the design factors. (b) Predicted profiles at the optimal design factor settings found. The mean of the posterior
predictive density is shown with thick solid line. The other two solid lines are the 10th and 90th percentiles of
the posterior predictive density. Upper and lower specification limits are shown as dashed lines.

s1 s2 s3 s4 s5 s6 s7

U(sj) 190 210 215 220 225 230 230
L(sj) 120 140 155 170 185 200 200

Table 1: Assumed specification limits at each of the 7 RPM locations for the electric alternator example.
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to 100,000 samples by keeping every 10th sample. The posterior densities for the covariance

parameters along with the plots used to check for convergence of the MCMC algorithm are

shown in Figure 6. The MCMC samples were used with MATLAB’s ga optimization routine to

maximize p(xc)RPD. The optimization was constrained to −1 ≤ xk ≤ 1 for k = 1, ..., 8 and the

noise factors were assumed to be independent U(−1, 1) random variables. Joint and marginal

probabilities of conformance of the optimal solution found are shown in Table 2. The mean,

10th and 90th percentiles of the posterior predictive density at the optimal solution found are

shown in Figure 7. The optimal solution found is similar to that given by Nair et al. (2002) for

a robust process. It is noticeable in Table 2 and Figure 7 that the specifications are violated

mostly at the last few locations. If the specification limits at these locations can be widened,

the conformance probability evidently will improve.
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Figure 6: MCMC convergence plots, electric alternator example. From top to bottom: posterior densities, trace
plots, autocorrelation functions (ACF), expected value plots, MCMC standard error plots and variance plots of
the generated covariance parameters (ϕx, ψx/κ, ϕx) (one column of plots per parameter).

3. Model Robustness and Validation

In this section, we discuss the robustness of the proposed methodology with respect to the

covariance separability assumption, followed by a discussion on how to choose the mean

structure.

11



xopt
x1 x2 x3 x4 x5 x6 x7 x8

0.198 -0.279 0.997 0.071 0.859 0.983 0.839 0.899
xopt rounded 0 0 1 0 1 1 1 1
p(L < y < U) 0.34

p(Li < yi < Ui)
y1 y2 y3 y4 y5 y6 y7

0.90 0.92 0.85 0.76 0.75 0.62 0.56

Table 2: Optimization results for the electric alternator example.
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Figure 7: Predicted profiles at the optimal controllable factor settings for the electric alternator example. The
mean of the posterior predictive density is shown in solid thick line. The other two solid lines are the 10th and
the 90th percentiles of the posterior predictive distribution. The upper and lower specification limits are shown
as dashed lines.

3.1. Robustness with Respect to Covariance Separability and Mean

Structure Misspecification

Since in the proposed methodology the fitted model is used for process optimization, the

reliability of the estimated optimal solutions is important. In this section, we test the robustness

of the proposed modeling and optimization approach with respect to

1. misspecification of the model mean structure, and

2. a non-separable covariance structure.

For the simulations in this section, we assume there are two factors x1 and x2, each at five levels

{1, 2, 3, 4, 5}, and we assume each profile is measured at 50 locations s = {1, 2, · · · , 50}. Three

models for the mean structure were assumed. The first one is an intercept only model, i.e.,

µ(xi, sj) = β0. The second mean model is additive in the main effects of factors and locations,

that is µ(xi, sj) = β0 +β1xi1 +β2xi2 +β3sj. The third mean model has in addition interactions

between the x-space and the s-space, i.e., µ(xi, sj) = β0 +β1xi1 +β2xi2 +β3sj+β4xi1sj+β4xi2 +

β5xi2sj.

12



For data generation, we simulated profiles using the model Y = Fβ + ϵ, ϵ ∼ NNJ(0,Σ)

where F is defined as in (3) and the ijth element of Σ has the following structure:

Σij =
σ2

(a(ds)2α + 1)δ+γd/2
exp

(
− cdx

(a(ds)2α + 1)γ/2

)
(13)

In this covariance model, proposed by Genton (2007), dx is the distance in the x-space between

the factor settings at which the ith and jth elements of vec(Y ′) are observed, ds is the distance

in the s-space between the locations at which the ith and jth elements of vec(Y ′) are observed,

d is the dimension of the x−space, and a, c and α are constants that define the smoothness

of the covariance function. Notice that Σ is the multiplication of two terms. The first is

σ2/(a(ds)
2α + 1)δ+γd/2 which is a function of ds only. The second is exp

(
−c dx/(a(ds)2α + 1)γ/2

)
which is a function of both ds and dx. If γ = 0, the second term reduces to exp(−c dx) which

depends on dx only, and hence Σ will have a separable structure. Otherwise (γ > 0), Σ has a

non-separable structure. The covariance parameters in (13) were set to σ2 = 0.2, a = 1, c = 1,

d = 2, δ = 1 and α = 1 in our simulations. Four values for the constant γ were assumed:

{0, 0.1, 0.5, 1}. The fitted and actual models were then used to find the factor settings that

maximize the probability of conformance to the specification limits. The specification limits

were fixed at ±1.5 of the true mean profile evaluated when x1 = 2, x2 = 2.5 and ϵ ∼ N(0, 0.2I)

for all simulations performed.

Table 3 shows the estimated optimal solutions for the 36 combinations tried (3 true mean

models, 3 assumed mean models and the 4 values for the non-separability parameter γ) along

with the true optimal solution for each case.

As can be seen, when the correct mean structure model is fit (i.e., only the covariance

structure separability is assumed and no mean structure misspecification is present), the relative

error is smallest. An intercept only model provide acceptable results when the true mean has an

intercept only, otherwise, the non-stationarity of the data will not be accounted which results

in a poor model performance. If a higher order model than the true one is used for the mean

structure, the relative error is higher. This is a similar phenomenon as to that of overfitting in

linear regression.

3.2. Selection of the structure of the mean model

The chosen mean structure defines the model residuals, and hence affects the performance of

the assumed separable covariance structure model. If the stochastic process that generates

the observed profile data is separable (i.e., no significant spatial-temporal interaction), then

the covariance structure of that process is separable (Genton, 2007). A separable process
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True Mean γ
True optimal solution

Fitted Mean
Estimated optimal solution

exx∗1 x∗2 bp x∗1 x∗2 bp

Intercept

0 2.103 2.622 0.972
Intercept 2.104 2.534 0.99 0.001
Additive 2.211 2.631 0.99 0.001

Interaction 2.224 2.862 0.98 0.006

0.1 3.213 1.250 0.974
Intercept 3.201 1.368 0.99 0.001
Additive 3.263 1.333 0.99 0.001

Interaction 3.201 1.458 0.98 0.004

0.5 2.310 1.473 0.975
Intercept 2.904 1.458 0.98 0.047
Additive 2.904 1.458 0.98 0.047

Interaction 2.904 1.458 0.98 0.047

1 1.722 2.529 0.975
Intercept 2.728 1.893 0.97 0.151
Additive 1.310 2.868 0.98 0.030

Interaction 2.201 2.868 0.98 0.037

Additive

0 2.155 2.835 0.971
Intercept 1.977 3.297 0.03 0.019
Additive 2.098 2.757 0.96 0.001

Interaction 2.122 2.725 0.95 0.001

0.1 1.187 2.825 0.971
Intercept 2.967 4.333 0.03 0.058
Additive 1.405 2.757 0.96 0.006

Interaction 1.422 2.725 0.95 0.007

0.5 1.155 2.837 0.964
Intercept 1.155 2.457 0.01 0.015
Additive 1.422 2.725 0.96 0.009

Interaction 1.409 2.749 0.96 0.008

1 1.155 2.873 0.963
Intercept 3.728 1.941 0.02 0.971
Additive 1.438 2.725 0.96 0.010

Interaction 1.422 2.725 0.96 0.009

Interaction

0 2.032 2.839 0.959
Intercept 1.832 3.335 0.03 0.023
Additive 1.739 2.657 0.04 0.010

Interaction 2.106 2.997 0.97 0.003

0.1 1.163 2.839 0.961
Intercept 4.637 1.454 0.03 1.486
Additive 2.132 2.808 0.05 0.100

Interaction 1.218 2.757 0.97 0.001

0.5 1.155 2.843 0.965
Intercept 4.477 1.516 0.01 1.359
Additive 2.405 3.457 0.02 0.206

Interaction 1.255 2.757 0.96 0.002

1 1.163 2.839 0.969
Intercept 4.477 1.516 0.01 1.353
Additive 3.666 1.941 0.01 0.751

Interaction 2.155 2.108 0.97 0.161

Table 3: True vs. estimated optimal solutions for the 9 model combinations each at 4 levels of the non-
separability parameter γ. The relative error is calculated as ex = ∥x∗

true − x∗
estimated∥F /∥x∗

true∥F . In case the
optimizer returns multiple optimal solutions, only one of them is listed.
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can be written as the product of two independent processes, one purely spatial and a second

purely temporal. Let Y ∗ be the detrended observed data matrix. Then using singular value

decomposition (SVD), Y ∗ can be written as

Y ∗ = U∆V ′ =

min(N,J)∑
i=1

δiuiv
′
i

where δiuiv
′
i is called the ith Empirical Orthogonal Function (EOF) (see e.g., Banerjee et al.,

2004, section 8.1.1). If Y ∗ can be approximated by its first EOF, δ1u1v
′
1, and u1 and v1

are independent, then Y ∗ is separable (see e.g., Banerjee et al., 2004; Mardia and Goodall,

1993). Therefore, the following three step procedure provides an easy and fast way to check

how reasonable the separability assumption is for the observed data:

1. Assume a mean function form and use Least Squares to detrend the data such that

vec(Y ∗) = vec(Y )−F β̂. The mean structure might include an intercept, main effects of

design factors and locations, interactions, etc.

2. Construct the singular value decomposition of Y ∗ and its approximation Y ∗
approx = δ1u1v

′
1

where δ1 is the largest eigenvalue, and u1 and v1 are the left and right singular vectors,

respectively, corresponding to the largest eigenvalue.

3. Graph both Y ∗ and Y ∗
approx vs. s. If the two plots look similar, then separability is a

reasonable assumption . A more precise metric is the relative approximation error defined

as eapprox = ∥Y ∗ − δ1u1v
′
1∥F/∥Y ∗∥F where ∥ · ∥ is the Frobenius norm.

This procedure can be repeated for different mean models, and the eapprox statistic can be

used to select a mean model that is most compatible with the covariance separability model.

To assess the mean model structure, we use cross validation techniques (Hastie et al., 2009).

Two different cross validations are shown in what follows, one based on leave-one-out predictions

and a second one based on leave-10%-out predictions. In leave-one-out predictions, one of the

observed profiles is left out for testing and the remaining N − 1 profiles are used for model

fitting. The fitted model is then used to predict the left out profile. In leave-10%-out, we

instead leave 10% of the observed profiles out and use the remaining 90% for model fitting.

Then the fitted model is used to predict the 10% profiles left out. If the fitted model provides

acceptable predictions for testing profiles, then it would provide acceptable predictions at other

locations in the x-space.
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Example 1 (cont.). In the injection moulding example, to check the observed elastic

modulus data for separability we fit the same three models as before (intercept only, additive

and with interactions). The relative error statistics were 0.48887 for the intercept model,

0.28234 for the additive model and 0.28187 for the interaction model. Looking at the relative

error values, it can be seen that an additive mean structure is acceptable, since it provides a

simple model with a relative error almost equal to the more complicated interaction model.

However, using either model would be adequate in this example, and for the purposes of RPD

optimization, if noise factors are present an interaction model that contains the important

control × noise interactions should be preferred.

The additive model fitted for this data was further checked by leave-one-out and leave-10%-

out cross validations. Cross validation results are shown in Figures 8 and 9. Based on these

figures it can be seen that the model provides acceptable predictions. Hence, the fitted model

can be used for process optimization.
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Figure 8: Leave-one-out cross validation results for the testing profiles in the metal injection example. Solid
lines are the observed profiles used for testing. The mean, 10th and 90th percentiles of the posterior predictive
density are shown in dashed lines. Only 12 of the 24 observed profiles are shown.

Example 2 (cont.). In the alternator design problem of Section 2, we check the observed

data of the electric current for separability by fitting again the same three models for the mean

profile. The relative error statistics were 0.85403 for the intercept only model, 0.64357 for the

additive model (including all two factor control × noise interactions in the x-space, crucial

in RPD optimization) and 0.63703 for the interaction model (including interactions between

the x-space and the s-space in addition to all two factor control × noise interactions). Since

the additive model provides a compromised eapprox value, then it is the mean structure that is

preferred. Cross validation results for the interaction model are shown in Figures 10 and 11.
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Figure 9: Leave-10%-out cross validation results for the testing profiles in the metal injection example. Solid
lines are the observed profiles used for testing. The mean, 10th and 90th percentiles of the posterior predictive
density are shown in dashed lines.

Based on cross validation results it can be seen that the model provides acceptable predictions

but with high posterior variance due to the large eapprox value. The performance of the model

can be enhanced by employing a non-separable covariance structure. For illustration purposes,

we proceed with the optimization step.
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Figure 10: Leave-one-out cross validation results for the testing profiles in the electric alternator example. Solid
lines are the observed profiles used for testing. The mean, 10th and 90th percentiles of the posterior predictive
density are shown in dashed lines.

4. Conclusions and Future Work

This paper introduces a new approach to solve the RPD problem of profile response systems

based on a spatio-temporal Gaussian Random Function. The ’spatial’ and ’temporal’ spaces

correspond to the design factor space and the location measurement space, respectively. In

this approach, the observed data is assumed to have a multivariate normal distribution with
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Figure 11: Leave-10%-out cross validation results for the testing profiles in the electric alternator example. Solid
lines are the observed profiles used for testing. The mean, 10th and 90th percentiles of the posterior predictive
density are shown in dashed lines.

mean structure µ(x, s) and covariance structure Σ. The covariance structure is assumed to

be the Kronecker product of the between-profiles and the within-profile covariance structures

(i.e., we assume covariance separability). As usually done in Spatial Statistics, a parametric

model is assumed for both covariance structures, resulting in a notable reduction in the number

of covariance parameters to estimate. Like in Universal Kriging practice, the main purpose

of the mean structure is to detrend the data and obtain zero mean stationary residuals.

In case noise factors are present in the experiment (RPD case), we suggest to include all

control × noise interaction terms (judged important by the experiment) in the mean structure

model. The proposed model is flexible enough to provide a good fit even under a specific

type of non-separable covariance structure proposed in the literature Genton (2007). Non-

separable covariance structures can have many forms, and hence it is impossible to study model

performance for general covariance forms. Instead, we propose a methodology to choose the

mean structure and then to use cross validations to assess the model performance regardless of

the assumed separable covariance structure.

The gaussian random function model allows the experimenter to consider the covariance

between profiles. The spatial covariance model modifies the predictions given by the mean

model and provides in this way a more flexible approach than the recently proposed mixed-

effects model of Del Castillo et al. (2012) which requires in comparison a very good fit for the

mean profile.

The assumed separable spatio-temporal covariance might not hold for some profile response

data. Hence, using instead a non-separable covariance structure is an area where future research
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is needed. In the present model, if a significant interaction between the x-space and the s-

space is anticipated (non-separability), this interaction could be included in the mean structure

µ(x, s) to ameliorate the effects of the otherwise inadequate separable covariance model we

assume.
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Appendices

A. Adaptive MCMC Sampling Algorithm

The joint posterior distribution for the parameters in model (4-8) is:

π(ϕs, ψx, ϕx, κ,β | Y ,F ) ∝ π(ϕs)π(ψx)π(ϕx)π(κ)π(β)|Σx ⊗ Σs|−
1
2

exp{−1

2
(vec(Y ′) − Fβ)′(Σx ⊗ Σs)

−1(vec(Y ′) − Fβ)}

Assume the following noninformative priors for model parameters:

π(β) ∼ constant (flat prior) (14)

π(ψx) ∼ logN(µ = 7, σ2 = 1) (15)

π(ϕs) ∼ logN(µ = 7, σ2 = 1) (16)

π(ϕx) ∼ logN(µ = 7, σ2 = 1) (17)

π(κ) ∼∼ logN(µ = 7, σ2 = 1) (18)

and the following proposal distributions

q(ψnewx ) ∼ truncated N(µ = ψcurrentx , σ2
ψx , 0, inf)

q(ϕnews ) ∼ truncated N(µ = ϕcurrents , σ2
ϕs , 0, inf)

q(ϕnewx ) ∼ truncated N(µ = ϕcurrentx , σ2
ϕx , 0, inf)

q(κnew) ∼ truncated N(µ = κcurrent, σ2
κ, 0, inf)
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The following function, suggested by (see Haario et al., 2001), is used to adaptively update the

proposal distribution variances, {σ2
ψx
, σ2

ϕs
, σ2

ϕx
, σ2

κ}:

σ2 =

{
σ2

0, k ≤ k0;

sd var(s
0, s1, · · · , sk−1) + sdϵ, k > k0.

(19)

where sk is the kth sample of that parameter and σ2
0,κ0, sd (the variance multiplier) and ϵ are

constants.

Let (ϕks , ψ
k
x, ϕ

k
x, κ

k,βk) be the kth sample from the posterior distribution. To get the k + 1

sample follow the steps:

1. Using the kth sample, calculate Σk
x and Σk

s such that

Σk
s = exp{−Ds/ϕ

k
s}

Σk
x = κ exp{−Dx/ϕ

k
x} + ψkxI

2. Update ϕs: a. Evaluate the conditional distribution of ϕs, f
k
ϕs

, where

fkϕs = π(ϕks)|Σk
x ⊗ Σk

s |−
1
2

exp{−1

2
(vec(Y ′) − Fβ)′(Σk

x ⊗ Σk
s)

−1(vec(Y ′) − Fβ)}

b. Update σ2
ϕs

using (19), propose ϕnews from its proposal distribution, and then update

Σs such that

Σnew
s = exp{−Ds/ϕ

new
s }

c. Evaluate fnewϕs
where

fnewϕs = π(ϕnews )|Σk
x ⊗ Σnew

s |−
1
2

exp{−1

2
(vec(Y ′) − Fβ)′(Σk

x ⊗ Σnew
s )−1(vec(Y ′) − Fβ)}

d. If u ∼ uniform(0,1) ≤ fnewϕs
q(ϕks ,ϕ

new
s )

fkϕsq(ϕ
new
s ,ϕks )

, then ϕk+1
s = ϕnews and Σk+1

s = Σnew
s otherwise

ϕk+1
s = ϕks and Σk+1

s = Σk
s .
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3. Update ψx: a. Evaluate the conditional distribution of ψx, f
k
ψx

, where

fkψx = π(ψkx)|Σk
x ⊗ Σk+1

s |−
1
2

exp{−1

2
(vec(Y ′) − Fβ)′(Σk

x ⊗ Σk+1
s )−1(vec(Y ′) − Fβ)}

b. Update σ2
ψx

using (19), propose ψnewx from its proposal distribution, and then update

Σx such that

Σnew
x = κk exp{−Dx/ϕ

k
x} + ψnewx I

c. Evaluate fnewψx
where

fnewψx = π(ψnewx )|Σnew
x ⊗ Σk+1

s |−
1
2

exp{−1

2
(vec(Y ′) − Fβ)′(Σnew

x ⊗ Σk+1
s )−1(vec(Y ′) − Fβ)}

d. If u ∼ uniform(0,1) ≤ fnewψx
q(ψkx,ψ

new
x )

fkψxq(ψ
new
x ,ψkx)

, then ψk+1
x = ψnewx and Σk

x = Σnew
x otherwise

ψk+1
x = ψkx.

4. Update ϕx: a. Evaluate the conditional distribution of ϕx, f
k
ϕx

, where

fkϕx = π(ϕkx)|Σk
x ⊗ Σk+1

s |−
1
2

exp{−1

2
(vec(Y ′) − Fβ)′(Σk

x ⊗ Σk+1
s )−1(vec(Y ′) − Fβ)}

b. Update σ2
ϕx

using (19), propose ϕnewx from its proposal distribution, and then update

Σx such that

Σnew
x = κk exp{−Dx/ϕ

new
x } + ψk+1

x I

c. Evaluate fnewϕx
where

fnewϕx = π(ϕnewx )|Σnew
x ⊗ Σk+1

s |−
1
2

exp{−1

2
(vec(Y ′) − Fβ)′(Σnew

x ⊗ Σk+1
s )−1(vec(Y ′) − Fβ)}

d. If u ∼ uniform(0,1) ≤ fnewϕx
q(ϕkx,ϕ

new
x )

fkϕxq(ϕ
new
x ,ϕkx)

, then ϕk+1
x = ϕnewx and Σk

x = Σnew
x otherwise

ϕk+1
x = ϕkx.
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5. Update κ: a. Evaluate the conditional distribution of κ, fkκ , where

fkκ = π(κk)|Σk
x ⊗ Σk+1

s |−
1
2

exp{−1

2
(vec(Y ′) − Fβ)′(Σk

x ⊗ Σk+1
s )−1(vec(Y ′) − Fβ)}

b. Update σ2
κ using (19), propose κnew from its proposal distribution, and then update

Σx such that

Σnew
x = κnew exp{−Dx/ϕ

k+1
x } + ψk+1

x I

c. Evaluate fnewκ where

fnewκ = π(κnew)|Σnew
x ⊗ Σk+1

s |−
1
2

exp{−1

2
(vec(Y ′) − Fβ)′(Σnew

x ⊗ Σk+1
s )−1(vec(Y ′) − Fβ)}

d. If u ∼ uniform(0,1) ≤ fnewκ q(κk,κnew)
fkκq(κ

new,κk)
, then κk+1 = κnew and Σk+1

x = Σnew
x otherwise

κk+1 = κk and Σk+1
x = Σk

x.

6. Update β: Given Σk+1
x and Σk+1

s then

Σk+1 = Σk+1
x ⊗ Σk+1

s

Sample βk+1 from π(β | Σk+1,Y ,F ), where the full conditional of β is

π(β | Σk+1,Y ,F ) ∼ N
(
(F ′(Σk+1)−1F )−1F ′(Σk+1)−1vec(Y ′), (F ′(Σk+1)−1F )−1

)
B. Software implementation

All computations reported in this paper were implemented in MATLAB (version 2010a). A

graphical user interface has been developed for model building and optimization. The program

requires the Statistics and Global Optimization toolboxes.
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