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Abstract

Industrial Statisticians frequently face problems in their practice where adjustment
of a manufacturing process is necessary. In this paper, a view of the origins and recent
work in the area of Statistical Process Adjustment (SPA) is provided. A discussion of
some topics open for further research is also given including new problems in semicon-
ductor manufacturing process control. The goal of the paper is to help display the SPA
field as a research area with its own identity and content and promote further interest
in its development and application in industry.
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1 Introduction

Located at the intersection of Control Theory, Time Series Analysis, and Statistical Process
Control, the Statistical Process Adjustment (SPA) field is a set of Statistical Techniques
aimed at modelling, and hence, forecasting and controlling a dynamic process. Two distinc-
tive characteristics of SPA are a) that the process responses relate to quality characteristics
of a product (or of a process producing it), and b) the implementation of the adjustments
is not fully automatic since SPA corresponds to a higher-level supervisory controller, i.e., a
controller of lower-level controllers which in turn operate on a production process. Property
a) differs from many control theory applications where some physical variable is of interest,
but the aim is not necessarily quality control, and b) emphasizes the hierarchical nature with
which the adjustments are implemented, on whole complex processes or machines made of
several different components, but modeled as a single processing stage. Given the complexity
of the machine or process, only a statistical, i.e., data-based modeling is feasible. This is in
contrast to first principles models frequently used in control theory.

A key question we would like to address in this paper is: is SPA an area with enough
intellectual content and practical relevance to justify its study within Statistical methodol-
ogy? We pose this question because two widespread conceptions found among Statisticians
and Engineers:

1. process adjustments are, for the most part, unnecessary in practice. This believe is
based mainly on statements in Deming’s writings and in particular in relation to his
“funnel experiment”;

2. process adjustments are of course necessary, but practically all the relevant problems
have been solved by control theorists. While control theory is a fertile and active area
of research, all the problems in SPA have by now been solved. Most of the work on
SPA is simply a repetition of previous control theory work.

Believe 1 is found mainly among Statisticians and has been discussed in the literature at
length based on the funnel experiment (e.g., MacGregor 1990); believe 2 is found among
Engineers, and has not been discussed much, if at all, in the literature. It is the purpose of
this paper to show that both viewpoints are misconceptions, but we will place more emphasis
on arguing against the second viewpoint. In order to do this, we will review how the SPA
field originated, what were the main initial problems, how it has evolved in general terms,
and perhaps more importantly, what recent work relevant in industrial practice has been
conducted. No effort to provide a complete literature review was made. For bibliographic
references up to 2001 see Del Castillo (2002a).

It is hoped that the problems described here will provide renewed impetus to the area.
The paper closes with a discussion of relevant, practically-important problems which are still
open for solution. The objective is to provide, by example, enough evidence for an unqualified
“yes” answer to the key question posed above, and provide some hints for further research.
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2 Origins of SPA

Since its origins in the early 60’s, work in what we now can consider the SPA field was de-
veloped by both Control Engineers (working in quality control applications) and by Statisti-
cians, who, for the most part, had a background in Chemical Engineering. This is more than
a simple anecdote, since it determined what type of processes and corresponding problems
were initially studied in this field. SPA originated from work apparently done independently
by Box and Jenkins (1962, 1963) on adaptive optimization and control and minimum mean
square error (MMSE) control, and by Åström (1963) on “minimum variance” (equivalent
to MMSE) control (Åström was interested in implementing Kalman’s ideas on Adaptive
Control based on operating data). While there were some interesting papers on process con-
trol (as opposed to control charting) written by Statisticians in the late 50’s and early 60’s
(e.g. Barnard, 1959), the work by Box and Jenkins was the most influential in the Statistics
literature.

The MMSE control problem relates to finding a rule (a “controller”) that tells us how to
vary a controllable factor xt such that the MSE of a dynamic response yt (which we assume
to be deviations from target) is minimized in the following transfer function model:

yt =
B′(B)

A′(B)
xt−k +

C ′(B)

D′(B)
εt, εt

iid∼ (0, σ2). (1)

Here, B′, A′, C ′ and D′ are polynomials in the backshift operator B (all polynomials start
with a one except B′ which starts with some arbitrary constant b0) and k is the delay, i.e.,
the number of whole discrete time periods between the controllable factor is changed and its
effect on the response appears to be observed for the first time. It is assumed all time series
have equidistant observations in time. Even control engineers to this day call this model the
Box-Jenkins model. Contrary to other different ways of writing a transfer function model,
(1) has a natural “signal plus noise” interpretation, since if xt = 0 for all t, then yt = C′

D′ εt

is an ARIMA model that represents the uncontrolled output (here polynomial D′ may have
one or more roots on the unit circle, allowing to model homogeneous non-stationarity, see
Box, Jenkins and Reinsel, 1994). This also occurs if xt =constant since then the first term
on the right is simply a constant. Model (1) also has the advantage of avoiding multiple
common terms when fitting (Box et al., 1994).

Despite the nice interpretation and model-fitting advantages, it is perhaps easier to de-
rive an MMSE controller with fewer polynomials around. The ARMAX form of a transfer
function model, used by Åström, is

A(B)yt = B(B)xt−k + C(B)εt, εt
iid∼ (0, σ2) (2)

with the obvious relations between the two models being A = A′D′, B = B′D′, and C =
C ′A′. Let n be the maximum order of the polynomials A, B and C. The optimal MMSE
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feedback controller, found by both Åström and Box and Jenkins is:

xt = − G(B)

B(B)F (B)
yt (3)

where the G and F polynomials are of orders n− 1 and k− 1, respectively, and are obtained
by equating coefficients of like powers of B in C = AF + BkG (here, G starts with a
constant but F starts with a one). The adjustments are then given by xt − xt−1, a quantity
usually denoted in the time series literature by ∇xt. Under the actions of this controller,
the controlled output then obeys the model

yt = F (B)εt, (4)

which, as it can be seen, is a moving average process of order k − 1. Thus, controlled pro-
cesses will not always be uncorrelated, even when controlled via a MMSE controller.

It was immediately obvious to both Åström and Box and Jenkins that (3) may be a very
expensive control rule since it calls for considerable manipulation of xt; if there is a cost
associated with the adjustments this rule cannot be optimal. Noticing this, Box and Jenkins
further studied two related problems:

1. the case when the adjustment cost is fixed, thus the objective is to minimize

J1 = E

[ ∞∑
i=1

y2
i + cδ(xt−1)

]

where δ(x) = 1 if x 6= 0 and δ(x) = 0 otherwise. This gave birth to the so-called
deadband adjustment policies (Box and Jenkins, 1963), which we discuss in Section 4
below;

2. the case when the variance of the input (xt) is constrained. Thus, we min E[
∑∞

i=1 y2
i ]

subject to Var(xt) ≤ c. The Box-Jenkins constrained variance controllers are relatively
complicated to obtain and result in complex controllers. Constraining the variance
is equivalent to assuming a quadratic cost in the control factor itself, thus we could
minimize

J2 = E

[ ∞∑
i=1

y2
i + cx2

t

]

(alternatively, the adjustments∇xt may be used instead). If the errors are normally dis-
tributed, this is a well-known problem which is solved with Linear-Quadratic-Gaussian
(LQG) control theory, see Åström (1970).
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From this initial work, an explosion of related work took off. Åström and his colleagues
and students (notably L. Ljung) went ahead and founded the Swedish school of Adaptive
Control. Adaptive Control is by now a mature discipline within Control Theory (Åström and
Wittenmark, 1989). Adaptive controllers continuously re-estimate the parameters of a given
model, thus their properties are difficult to analyze. Although such recursive estimators are
known to burst if the inputs (the x’s) do not vary enough, in practice several safeguards
that monitor the “health” of the estimator (not unlike SPC schemes) are applied to provide
persistent excitation without bursting (see Ljung, 1999) (the regression equivalent of the lack
of excitation problem is an X ′X matrix very ill-conditioned due to similar rows in X).

For their part, Box and Jenkins and their students (notably J. MacGregor) continue to
develop SPA in the 70’s and beyond by studying problems with a clear Statistical content.
We will review some of this work. But first it is pertinent to address a not so-well-known
misconception created by Deming’s funnel experiment.

3 When are process adjustments necessary?

There is a considerable good understanding of when adjustments are necessary and why, see
e.g., MacGregor (1988) and Del Castillo (2002a, chapter 1), who discuss this issue based on
Deming’s funnel experiment. We would like to point out a common misconception made by
some authors who prefer not to contradict directly Deming’s remarks, as expressed, e.g., in
his Out of the Crisis book (Deming, 1982). It is sometimes argued that Deming’s remarks
about not to adjust are actually correct provided the process mean is not moving. It is argued
that if the process mean changes with time, then adjustments are needed, otherwise, they
are not. This is incorrect. A moving mean is neither a necessary nor a sufficient condition
for adjustments to be required. To show why, consider the funnel experiment in which, the
analogous univariate process would obey Shewhart’s model (the marbles evidently obey a
bivariate process):

yt = µ + εt, εt
iid∼ N(0, σ2), t = 1, 2, ...

where yt is the observed deviation from target and µ is the mean deviation from target.
Deming assumes the funnel to be on target, i.e., µ = 0. There are two important aspects to
notice: first, the process starts on target and remains there unless an adjustment is made.
Second, the observations {yt}∞t=1 form an i.i.d. (normal if the εt’s are normal) sequence.

In a very important but somewhat neglected paper (despite being reprinted in 1983),
F. Grubbs (1954) assumed the second condition above but assumed that, at startup of the
process, |µ| = d 6= 0, where d is a setup error. If the only cost of interest is the cost incurred
when running the process off-target, then it is evident that corrective action is necessary.
How to do this in such a way that E[

∑N
t=1 y2

t ] is minimized is called the Setup Adjustment
Problem, with many variants that have been studied considerably in the last 7 years (Del
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Castillo, 1998, Trietsch, 1998, 2000, Pan and Del Castillo, 2003, 2004, Colosimo et al., 2004,
Lian et al., 2005).

Note how the process mean is constant, there is no autocorrelation, and still process
adjustments are needed. This shows by counterexample that it is not necessary that the
process mean moves for adjustments to be required. A moving mean is neither a sufficient
condition for adjustments to be required: as a counterexample consider the case of a process
with a moderate drift in the mean such that all product will be within specifications (or not
too far from target to cause a substantial cost) for the duration of the production run, and
suppose the cost of adjustments is relatively very large. Then, it follows that adjustments
are not justified.

In conclusion, the need for process adjustments depends on the process model and the
cost structure. Evidently, if all conditions behind Deming’s funnel experiment hold, then
simple process monitoring is optimal from a MMSE point of view.

4 Some recent work in SPA

In this section we highlight some recently studied problems that illustrate the SPA field.

4.1 The Setup Adjustment Problem

Solutions to the setup adjustment problem and to many of its variants, some to be described
shortly, are very important for the control of discrete part manufacturing processes. In this
type of processes, the operation of setting up a machine for production of a new lot may
induce offsets or shifts in the values of the quality characteristics of the parts relative to
their targets. No disturbance other than the setup offset and white noise are assumed. If
the unknown offset is a constant d, the deviation from target at time t can be expressed as
(Del Castillo et al., 2003):

yt = µt + vt, vt
iid∼ (0, σ2

v) (5)

µt = µt−1 +∇xt−1, t = 2, 3, ... (6)

µ1 = d + x0 (7)

For this simple but practical model, Grubbs (1954) solved the problem

min Var(µn+1) s.t. E[µn+1] = 0.

The solution is given by the “harmonic” rule (so called given the series {1/t}, see Trietsch,
1998):

∇xt = −1

t
yt (8)
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for all t. If several lots are produced, the setup error can be considered random over lots.

Grubbs then proposed to model the offset as d
iid∼ N(0, σ2

d), in conjunction with (5-7). Thus
σ2

d is the between batch variance and σ2
v is the within batch variance. The objective now is

to

min E

[
n∑

i=1

µ2
t

]
.

The solution is given by Grubbs’ “extended” rule:

∇xt = − 1

t + σ2
v

σ2
d

yt. (9)

Del Castillo et al. (2003) show how (9) results from using a simple Kalman filter to esti-
mate the “state” µt and adjusting by ∇xt = −µ̂t. This formulation allows to apply Linear
Quadratic Gaussian theory to extend the basic setup adjustment problem to multiple input-
multiple output (MIMO) problems, problems with errors in the adjustments, and problems
with quadratic adjustment costs. It also allows to make interesting connections between the
setup adjustment problem and other Statistical techniques such as Stochastic Approxima-
tion and Recursive Least Squares. These extensions and connections were not possible using
Grubbs’ more complex approach to the problem.

While the basic setup adjustment problem can be solved with well-established control
theory techniques, many more important variations are problems that cannot be solved
making use of existing control techniques and require new methodology.

From a Statistical perspective, the most interesting and practical variation of this problem
is when the process parameters µd, σ2

d, and σ2
v are unknown. Then the problem is an Adaptive

Control problem, as it involves controlling a process with unknown parameters. The structure
of the problem, however, has not been addressed by Control theorists, as far as we know,
since here the variances need to be estimated on -line.

Recent work in setup adjustment under unknown paraments is Bayesian and based on
Markov Chain Monte Carlo (MCMC) and Sequential Monte Carlo (SMC) techniques. In
Colosimo et al. (2004), the assumed model is analogous to (5-7):

yij = θij + vij (10)

θij = θi(j−1) +∇xi(j−1) (11)

θi0 ∼ (µ, σ2
θ), vij

iid∼ (0, σ2
v) (12)

where i = 1, ...I denotes lots and j = 1, ..., J denotes parts within a lot. The objective is

to minimize E
[∑I

i=1

∑J
j=1 y2

ij

]
. The resulting MCMC controller adjusts between lots and

within lots. The between lot adjustments are

∇xi0 = xi0 − xi(−1) = xi0 =

{ −µ̂|D(i−1)J , i ≥ 3
0, i = 1, 2

(13)
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where µ̂|D(i−1)J is the mean of the posterior distribution p(µ|D(i−1)J) and D(i−1)J = {y11 −
x10, y12 − x11, ..., y(i−1)J − x(i−1)(J−1)} is all data observed before lot i starts (note how the
model can be written as yij − xi(j−1) = θi0 + vij). Adjustments within lots are

∇xij = −θ̂ij|Dij, j = 1, 2, ..., J − 1

The Bayesian MCMC controller learns how to “anticipate” the offsets, providing a perfor-
mance that eventually mimics a feedforward controller. Unnecessary adjustments that may
inflate the overall process variance are reduced via a conditional first adjustment rule, in
which (13) is implemented only when a credibility interval for µ excludes zero. See Lian et
al. (2005b) for details.

Recent work on setup adjustment includes the case when parameters are known with
sufficient accuracy. If this is the case, then the sum of the total cost of running the process
off target and of adjusting can be minimized by defining a schedule of adjustments, much
in the sense of a maintenance plan. See Trietsch (2000) and Pan and Del Castillo (2004).
Other recent work includes the case of an asymmetric off-target cost, a common situation in
discrete part manufacturing. One approach is to let the process converge to target from the
side of least cost. Stochastic approximation techniques can then be used for this purpose.
See Colosimo et al. (2005) for more details.

Other relevant variations of the setup adjustment problem, in particular, integration with
process monitoring, the case when there a re fixed adjustment costs –resulting in “deadband”
policies– and the use of SMC techniques are described in the next sections.

4.2 “Deadband” adjustment policies

As mentioned before, Box and Jenkins showed that a fixed adjustment cost implies a “dead-
band” controller. They consider a process with a pure delay function and IMA(1,1) noise,
namely,

yt = gxt−1 +
1− θB
1− B εt. (14)

In this “machine tool” problem, as called by Box and Jenkins, the objective is to minimize
J1 (using ∇xt−1 instead of xt−1). The problem leads to a dynamic programming formulation,
although Box and Jenkins instead minimized the long-run average cost per time unit. The
solution is

∇xt = −1

g
ŷt+1|t, ŷt+1|t = (1− θ)yt + θŷt|t−1 (15)

which is applied whenever the one-step ahead predictor falls outside of a “deadband”, i.e.,
whenever ŷt+1|t /∈ (−L,L). The predictor is an exponentially weighted moving average
(EWMA) of the observations. The deadband limit L is a function of c, σ2

ε , and θ. Tables
for L are in Box and Luceño (1997). More discussion on the long-run average cost approach
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to solving deadband adjustment problems can be found in Luceño and Gonzalez (1999) and
Luceño (2003).

Crowder (1992) solves the machine tool problem for a finite horizon, namely

J3 = E

[
n∑

i=1

y2
i + cδ(∇xi−1)

]
.

The dynamic programming problem, solved by Crowder, yields a deadband solution analo-
gous to the infinite-horizon solution but with deadband limits Lt that “funnel out” as the
end of the production run approaches. The implication is that if the process will end soon,
an adjustment at that point brings less future benefits than an adjustment early in the pro-
duction of the lot. Jensen and Vardeman (1993) consider the same finite-horizon problem
as in Crowder (1992), but studied the case when adjustment errors can occur randomly.
They show that even if no fixed adjustment cost exists, adjustment errors imply a deadband
policy.

The work on deadband adjustment thus far summarized is based on knowing all process
parameters. For the model assumed by Crowder (equivalent to that used by Box and Jenkins,
equation 14):

yi = θi + εi, εi
iid∼ N(0, σ2

ε)

θi = θi−1 +∇xi−1 + vi, vi
iid∼ N(0, σ2

v)

the parameters σ2
v and σ2

ε are assumed known by these authors, thus a Kalman filter (essen-
tially the EWMA used in equation 15) can be used to estimate the state θi.

Recent work by Lian and Del Castillo (2005) considers the machine tool problem when
the process variances are unknown. A Bayesian approach based on Sequential Monte Carlo
methods (see Section 5) was implemented to solve this problem. The procedure updates the
posterior of θi, σ2

v , and σ2
ε at each point in time i, from which the adjustment

∇xi = −E[θi|data up to i] = θ̂i

is implemented provided |θi| > Li, where Li changes dynamically based on the posterior
distribution of the parameters. Interestingly, at the beginning of a lot the deadband limits
are wide due to the uncertainty in the parameters, then they narrow as more data is collected
and finally they funnel out towards the end of the lot due to the end of horizon effect.

Recently, Crowder and Eshleman (2001) propose an alternative to the Bayesian SMC
approach just described based on using Maximum Likelihood Estimation for the variances
from a set of n open loop runs (i.e., data obtained when the controller is disconnected),
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and then plug-in those estimates in the usual Kalman filter estimate of the state. They
reported small sample properties of the estimators, concluding that at least between 25 to
50 observations are necessary to obtain reliable estimates. It would be interesting to see how
can the MLE method be modified for closed-loop data, and how it behaves compared to the
Bayesian approach. It seems likely that for non-informative priors, the performance should
be quite close, with the advantage of the Bayesian method of being able to incorporate prior
information about the parameters in case it exists, which would improve convergence of the
estimation process.

It is important at this point to emphasize that these and other variations of deadband
control are not considered in the control theory literature.

4.3 PI and EWMA control

A discrete-time proportional integral derivative (PID) controller has the form

xt = KP yt + KI

t∑
i=1

yi + KD∇Yt

or, in the more common incremental form:

∇xt = Kp∇Yt + KIYt + KD∇2Yt.

The last term, with action proportional to the difference of the response, is frequently not
used in practice (Del Castillo, 2002a, Chapter 6). This results in PI controllers, which have
received considerable attention in the Statistics community due to the work by Box and
Luceño (1997). These authors show how to implement a PI controller graphically (an idea
first shown by Box and Jenkins, 1963), and show how PI controllers are quite robust with
respect to variations in the assumed process model. They convincingly show that the infla-
tion in variance due to adjusting with a PI controller a process that requires no adjustment,
–like Deming’s funnel– is quite moderate.

The robustness of PI controllers is widely acknowledged and known by process engineers
in practice. Process engineers working in industry know well the adagio that says that all it
takes most of the times is a good integral controller.

The robustness of PI controllers comes from its integral action, KI

∑t
i=1 yi. A “P” con-

troller, one in which the controller linearly tracks the response, is a quite poor controller
in general, since, for example, it does not provide offset-free control. In contrast, and this
should be of interest to persons familiar with Statistical Process Control (SPC) charts, an
integral controller will compensate against shifts in the mean of a stationary process. This
will make detection of a shift in a PI-controlled process difficult (see Jiang and Tsui, 2002,
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and the discussion below on SPC-EPC integration). The time to recover of the process will
be a function of the shift magnitude and of the integral parameter KI . In principle, if the
adjustments are unconstrained in size, and integral controller will eventually compensate
against shifts of any size. The design of a PI controller consists in selecting KP and KI (see
Box and Luceño, 1997, Tsung et al., 1998). Constrained input variance PI controllers are
discussed by Box and Luceño, 1997. An input variance constrained PI controller that tunes
KP and KI on-line (i.e., it is self-tuning) was developed by Del Castillo (2000). The approach
solves for the Lagrange multiplier of the constraint Var(∇xt) = c, and uses this multiplier
in the Clarke et al. (1975) controller, which utilizes it to constrain the input variance (see
Del Castillo, 2002a). Since it is not based on a recursive estimator and utilizes Box and
Luceño suggested settings for the parameters as initial values, the bursting behavior typical
of adaptive controllers is avoided.

A particular type of integral controller, very popular in semiconductor manufacturing
where it is described in “run to run” control applications (Moyne et al. 2000), is the so-
called EWMA controller. It is easy to show that for a process like

yt = gxt−1 + Nt (16)

and integral controller is equivalent to setting

xt = −1

ĝ
N̂t+1|t

where N̂t+1|t is an EWMA predictor of the disturbance Nt (following semiconductor manu-
facturing literature, we show ĝ, an off-line estimate of the process gain, as g will be unknown
in practice). Being an integral controller, an EWMA controller will compensate for shifts,
but it will not compensate for drift, which will result in an offset in the quality characteristic
(this is a well-known result in the Forecasting literature related to exponential smoothing).
Since some real semiconductor manufacturing processes exhibit severe drift due to wear-out
phenomena, a double EWMA controller (similar to double exponential smoothing) has been
proposed (Butler and Stefani, 1994):

xt = −at + bt

ĝ

where

at = λ1(yt − ĝxt−1) + (1− λ1)at−1

bt = λ2(yt − ĝxt−1 − at−1) + (1− λ2)bt−1

are two linked EWMA equations such that at + bt = N̂t+1|t.
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A minimal condition for a good controller is that it must be stable. Stability has not
always been considered in the SPA literature, as some of the discussants of the Box and
Jenkins (1962) paper pointed out. Stability conditions of EWMA and DEWMA controllers
has been a matter of study in the last 10 years (see, e.g., Ingolfsson and Sachs, 1993, Guo
et al., 2000, Del Castillo, 1999). For a large variety of disturbances, an EWMA controller
is stable if and only if |1 − λξ| < 1, where ξ = g/ĝ. Stability conditions for DEWMA con-
trollers with unit delay were derived by Del Castillo (1999) and later simplified by Tseng et
al. (2002). They show how if Nt is an ARIMA(p,d,q) with drift model (d ≤ 2), a sufficient
condition for asymptotic stability is that g/ĝ < 3/4. MIMO double EWMA controllers have
been studied by Del Castillo and Rajagopal (2002).

The work thus far described on PI and EWMA control is just an application of existing
methodology in Control Theory. To the eyes of control theorists, this work looks as straight-
forward approaches, compared to the complexities of current control theory research. Let
us now turn to some new methodological developments that built on the previously cited
work. In the last section of this paper we will also delineate some further problems related
to EWMA control that arise in practice and require new methodologies.

Some interesting recent work by Hamby et al. (1998) introduces the concept of “prob-
ability of stability” and “probability of performance” in the design and analysis of EWMA
controllers. These authors noted how in run to run applications, the gain g is usually fitted
off-line based on designed experiments. In their paper, the gain is actually a vector θ, as
they analyzed the multiple input, single output case (MISO) model:

yt = θ0 + θ′xt−k + Nt.

Using the variance of the gain estimate they propose to evaluate

P (S) =

∫

S
p(θ|data)dθ

where S = {θ : system is stable} is the set of parameter values that make the process stable
given the off-line estimate, and “data” is all available data obtained off-line. Thus, for a
single EWMA controller, S = {g : |1− λg/ĝ| < 1}. They also introduced the closely related
concept of “probability of performance”, defined as

P (P) =

∫

P
p(θ|data)dθ

where P = {θ : J(θ) < γ} is the set of parameter values such that a performance index
J is less than some given value γ. The authors give a formulation to compute P (P) for
the case J is the mean squared deviation (MSD) of the controlled output assuming some
given model, for which there are expressions available (Del Castillo, 2001). By maximizing
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either P (S) or P (P) with respect to the EWMA weight λ, Hamby et al. (1998) provide a
way to obtain controller settings that maximize either the probability of a stable system
or the probability of having an MSD less than γ. Tseng et al. (2005) consider computing
the sample size required in an off-line DOE that will guarantee some given probability of
stability in a double EWMA controller, i.e., they suggest to compute the sample size n such
that

P

(
g

ĝ
<

3

4

)
≥ γ

holds. A recent and related paper is by Apley and Kim (2004) who also consider the MISO
system as in Hamby et al. (1998). They suggested to compute the probability distribution
of the inflation in variance that is, the distribution of (σ2

y−σ2
ε)/σ

2
ε , where σ2

y depends on the
true process parameters and controller parameters and σ2

ε is the uncontrollable variation.
The distribution is taken with respect to the posterior distribution of the parameters, using
a Bayesian approach. Apley and Kim (2004) went on to propose a cautious controller,
which instead of minimizing the unconditional MSE, J4 = E[y2

t ], minimizes the conditional
expectation:

J5 = E[y2
t |off-line data].

The conditioning is only on the data from an off-line experiment used to determine the
gains and the expectation is with respect to the joint posterior of the gains and disturbance
parameter estimates (an IMA(1,1) was assumed, so it has one other parameter, θ) and with
respect to the variance of the errors (Apley (2005) extends these results to a general ARIMA
disturbance).

Apley and Kim (2004) show that P (S) for the rule that results from minimizing J5 is al-
ways higher than P (S) obtained using an MMSE controller, assuming the disturbance follows
an invertible IMA(1,1) model. The resulting controller is “cautious” because it considers the
uncertainty of the parameters, but is not adaptive as no updating of the parameter estimates
is proposed (i.e., model fitting is done only once, off-line). This avoids the complexities of the
analysis of adaptive control schemes, in particular with respect to stability analysis (Åström
and Wittenmark, 1995). It does not imply, however, that adaptive controllers are not advan-
tageous in practice, since they have considerable value –although are not a panacea– mainly
for short-run processes where little is known a priori. As mentioned earlier, bursting be-
havior can be monitored and controlled by a variety of schemes that safeguard the adaptive
controller. Although simple applications of Adaptive Control procedures for Quality Control
may not be academically challenging, it seems strange to object to their use in practice on
the grounds that it is too easy to do so. Interestingly, the early papers on SPA promoted
the idea of adaptation for control (Box and Jenkins, 1962), and that work actually predates
the development of that field of control theory.

A last comment in this section relates to the idea of robustness used in the SPA literature
and that in the highly technical Robust Control literature (see, e.g., Morari and Zafirou,
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1989). The aim is the same, to develop controllers that are insensitive to uncertainties in the
assumed model. As mentioned by Apley and Kim (2004), Robust Control, and in particular,
H∞ optimization is a mature field that has dominated most of Control Theory research in
the last couple of decades. Its central precept is that if one can place deterministic bounds on
the unknown parameters of a process, then a worst case performance index which considers
variations of the parameters within such bounds can be optimized and a robust controller
design obtained.

In the type of manufacturing quality control applications where SPA has evolved, such
view of robustness is not satisfactory since parameters are usually estimated from production
data of complex industrial processes (this is echoed by Åström and Wittenmark, 1989, when
proposing Adaptive Control techniques). In such environment, it will be hard or impossible to
place definite bounds on the variation of the parameters. These noisy, data rich environments
imply that a probabilistic measure of uncertainty will generally be possible and preferable.
The means by which probabilistic measures can be developed, as in the last two paragraphs
above, is Bayesian inference, to which we return in Section 5.

4.4 “SPC-EPC” integration

Called “Fault Detection” and “Advanced Process Control” in semiconductor manufacturing
circles, the integration of SPC tools and “Engineering Process Control” methods to operate
on the same process is a problem that naturally falls within the SPA field. There have been
two fundamentally different approaches for doing this integration of techniques:

1. The SPC mechanism acts in conjunction with an MMSE, PI, or other known controller
which is active all the time. This approach was stated conceptually by Vander Weil et
al. (1992), Faltin et al. (1993) and Tucker et al. (1993) who coined the term “Algo-
rithmic Statistical Process Control”. In this case, monitoring is typically conducted on
the output of a controlled process, although approaches have been proposed to monitor
both xt and yt jointly (Tsung and Shi, 1999). Note how the cause of a SPC signal can
be assignable to a faulty feedback controller. In this way, the SPC scheme helps to
monitor both the health of the process and of the EPC scheme. This has connections
with the considerable body of work on SPC for autocorrelated data (literature too
numerous to cite here), since the output of a controlled process is typically correlated
in time (e.g., consider the closed-loop equation 4). This, in turn, relates to the analysis
of the response patterns or “signatures” of a dynamic system to specific upsets (see,
e.g., Yang and Makis (2000), Tsung and Tsui, 2003).

2. The SPC mechanism acts as a trigger of the EPC mechanism. This is the approach
of authors such as Sachs and Ingolfsson (1995) and of Guo et al. (2000) in the area of
“run to run” control (an early reference of this approach is Bishop, 1965). Usually, a
step-like disturbance is assumed to occur with some probability. An SPC-like scheme is
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used to detect the shift, but then an EPC scheme is used to correct for it. This typically
makes sense in discrete-part manufacturing in which easy to vary controllable factors
exist to compensate for such disturbance. The typically investigation and removal of
the underlying cause of the shift can still be carried on in the usual SPC manner,
as a record of such event is logged by the SPC scheme. To illustrate the decisions
this problem entails, suppose again we assume the process is described by the model
yt = µt + εt, where:

µt =

{
µt−1 with probability p

∼ (0, τ 2) with probability 1− p
(17)

so now the process can shift to a new random level (mean) at any time period t with
some probability p, which we assume to be low (in accordance to what one would
expect in a discrete manufacturing process). Let t0 be an actual shift time. Then this
SPC-EPC integration approach involves solving three problems:

(a) detection of the occurrence of the shift, i.e., estimate t0.;

(b) estimation of the new process level µt0 ;

(c) given µ̂t0 , adjust the process to return to in-control level (0), i.e., find xt0 , xt0+1, xt0+2, ....

Note how this links together three large fields within Industrial Statistics: Changepoint
detection, Statistical Inference, and Process Control.

An instance of recent work along the first line of reasoning described above is by Jiang
and Tsui (2002), who studied the Average Run Length properties of SPC charts designed
to monitor the type of autocorrelated processes which result from adjusting a process with
a MMSE or PI controller. The case of an MMSE controller is particularly tractable, given
the closed-loop equation (4), thus essentially the problem is one of monitoring a MA(k − 1)
process. They concluded that for PI-controlled process, detecting the presence of a shift is
difficult by monitoring the output yt. They suggested instead to monitor the level of the
controllable factor (xt). This can actually be generalized to any controller that has integral
action: the integral action will compensate for the shift disturbance, thus only a transient
“spike” in yt will appear. The more aggressive the integral action is, i.e., the larger KI is,
the shorter this window of opportunity to detect will be. In some industrial processes, e.g.,
semiconductor manufacturing, aggressive I control is common, so this is a relevant problem
in practice. Because of this “masking” of the assignable causes that impede their removal
through the usual –but not modelled– process improvement steps that SPC recommends
(called “technical feedback” by Box and Jenkins, 1962), some authors have argued against
process adjustments. This is typically not an option, particularly if the process drifts, i.e.,
if it is open-loop unstable.
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One way around this situation is precisely the second approach to SPC-EPC integration
delineated above. Pan and Del Castillo (2003) studied the SPC-EPC integration problem for
a process described by (17). These authors evaluated several combinations of SPC detection,
estimation, and adjustment mechanisms. From extensive simulation studies, it was concluded
that the best of the integrated approaches tried from a mean squared deviation point of
view was a an integrated CUSUM/harmonic adjustment approach. This works by using
a CUSUM to detect a shift and to estimate its magnitude. Once the CUSUM signals, a
harmonic controller (8) starts to operate from that point on, i.e.,

xt =





0 for t < t0 and t > t0 + 5;
−µ̂t0 for t0;

xt−1 − 1
t−t0

Yt for t = t0 + 1, t0 + 2, ..., t0 + 5

For a process like Shewhart’s, more than five sequential adjustments were observed to be
unnecessary. The mean squared deviation from target is minimum with this combined ap-
proach.

Despite the simplicity and excellent performance of this approach under the stated as-
sumptions, which happen to be true in many real discrete-manufacturing processes, it is a
method not known in the Industrial Statistics community. We therefore elaborate on its
use in what follows. Figure 1 illustrates the CUSUM-harmonic rule integrated approach.
A shift of magnitude d = 2 was simulated at time t = 7. In the example data shown,
the CUSUM chart detects the shift at time t0 = 10 and triggers the harmonic rule, setting
xt0 = −µ̂t0 = −11.84 and ∇xt = −1/(t − t0) for t > t0. Note how the process returns to
target, and how xt → −d, providing an estimate of the shift, which is a Stochastic Approxi-
mation estimate of it (see Pan and Del Castillo (2003) for more details).

Thus, in this alternate SPC/EPC integration approach, an EPC mechanism is invoked
only when it is necessary. This alternative resembles a deadband controller and the “machine
tool” problem, but the assumed disturbances and motivations are different. The machine tool
problem assumes an IMA(1,1) disturbance, which is well-known to be optimally forecasted
through the EWMA in eq. (15). There, the fixed cost of adjusting implies the deadband
structure of the solution; in the integrated SPC-EPC approaches the SPC acts as a deadband
since no other disturbance is supposed to exist between shift detection times. Interestingly,
as p, the probability of a shift in any time point, increases, then the corresponding stochastic
process for yt increasingly resembles an IMA(1,1) process (which in itself can be thought of
as a random walk observed with error). This implies that when p is large, simply using an
EWMA controller based on (15) without a deadband will work better from a mean squared
deviation point of view than the type of integrated CUSUM/harmonic rule described here.
This was also noted by Chen and Elsayed (2002), who studied how to tune an EWMA
controller xt = −at/g where at is an EWMA of the yt’s, when the disturbances follow the
step-like process described by (17). From our description above, the IMA(1,1) will be an
increasingly better model and a controller based on it will be increasingly closer to optimal
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Figure 1: CUSUM-harmonic rule integrated approach. Left: CUSUM chart; right: observed
and mean quality characteristic (top) and controllable factor values (bottom).

from a MSE point of view as p increases. Box and Luceño (1997, Chapter 5), showed that
the IMA(1,1) model is in fact a good approximation to the random jump model even for
relative low values of p. Despite this fact, if one always uses an EWMA controller based on
an IMA(1,1) model, monitoring for the eventual elimination of assignable causes will be a
task harder to accomplish.

Note how the “machine tool” deadband does not include a monitoring scheme, thus
assignable casue removal is not possible using a deadband scheme (despite its resemblance
of an SPC chart).

4.5 Closed loop identification

In control theory, identification is the combined efforts of finding the structure of a model
and of the parameters of a given structure based on input-output data. For a comprehensive
presentation of systems ID from a Control Theoretic point of view, see Ljung (1999). Here
we wish to mention one important problem that arises frequently in quality control practice.

Classical methods for identification in single input, single output (SISO) processes are
presented by Box et al. (1994). These methods are based on the cross-correlation between
the {xt} and the {yt} series (perhaps after “prewhitening” them). This is because if the
input series {xt} is uncorrelated with the noise series {εt}, the x − y crosscorrelations are
proportional to the impulse response weights wj in

yt = w0xt + w1xt−1 + w2xt−2 + ....
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This allows to identify the true structure of a Box-Jenkins transfer function model, from
which various numerical methods based on ML estimation can be applied to find the param-
eter estimates in (1). If the process was controlled while the time series data were collected
– i.e., if the feedback loop was closed– then {xt} and {εt} will be correlated, the cross-
correlation may not contain useful information and no identification (ID) can take place.
Identification means to arrive at a model structure which is equivalent to the true model
structure, with parameter estimates that converge to the true parameters asymptotically.
Knowing under which conditions identifiability problems occur and how to avoid them is
called the closed loop ID problem.

Closed loop ID is important in practice since many processes are open-loop unstable,
hence there is an incentive to control and identify at the same time, rather than running
open loop experiments which may be very expensive, typically with the ultimate goal of
improving the controller used while the data was collected.

Akaike (1967) was one of the first to look at this problem. He shows that if the process
model is yt = G(B)xt + H(B)εt and the controller is xt = C(B)yt, then identification based
on the cross-spectrum (and hence, on the cross-correlation of the input and output) will

yield the inverse of the controller, i.e., Ĝ = 1/C. He suggests (see also Box and MacGregor
(1974,1976) and MacGgregor and Fogal (1995)) to add an external dither signal that breaks
the linear relation between the {xt} series and the {εt} series, i.e.:

xt = C(B)yt + dt.

Akaike shows that the estimated transfer function will then be a weighted average of the true
transfer function and the transfer function of the inverse of the controller, with the weight
given to the former being proportional to the signal to noise ratio σ2

d/σ
2
N (σ2

N = Var(H(B)εt)).
The disadvantage of the dither approach is clear. As σ2

d/σ
2
N increases, the process becomes

easier to identify, but it becomes less controlled. Many authors have searched for alternative
approaches. Söderström et al. (1976) derive identifiability conditions when r(> 1) feedback
controllers operate in parallel, and the control action alternates between each of the con-
trollers after some runs. The resulting controller is non-linear, and the linear dependency
of the input on the noise series is broken. This explains indirectly why adaptive controllers
can often avoid identifiability problems, since in them the parameter estimates change con-
tinuously, so they are non-linear controllers.

Söderstrom et al. (1975) derive necessary and sufficient conditions for system identifia-
bility for an ARMAX model of the form:

A(B)yt = B(B)xt−k + C(B)εt

controlled with F (B)xt = G(B)yt. The necessary and sufficient conditions, under the as-
sumption that the fitted model contains the true system structure as a particular case, are
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that
max(nF + nA, k + nG + nB)− nP ≥ nA + nB (18)

where P (B) is the factor common to the C and AF − BGBk polynomials, and nM denotes
the order of polynomial M(B). This expression says that the number of linearly indepen-
dent equations, after cancelling any common terms, must be at least equal to the number of
unknowns. Box and MacGregor (1976) applied this result to Box-Jenkins models controlled
with a MMSE controller. It is interesting to note that the SI condition (18) will tend to hold
as the order of the controller increases. This gives evidence against using simple controllers
when collecting data for closed loop ID. It will also tend to hold for processes with large
input-output delay, but such processes are inherently harder to control. In addition, the
results obtained by Box MacGregor (1976) indicates that MMSE-controlled processes will
be harder to identify than non-MMSE controlled processes, and in some cases, the former
will be completely not identifiable.

Since identifiability in this context is not well-known among Statisticians, we now illus-
trate what does lack of identifiability entails in practice. Consider a process described by
the model:

Yt = 20 +
15B2

1− 0.8Bxt +
5.0

1− B +
1− 0.3B
1− B εt (19)

which has 1st order dynamics, 2 unit time delay, and an IMA(1,1) with drift noise disturbance.
This is the true description of the process. If a PI controller with parameters KP = −0.01
and KI = 0.015 is applied to this process, the closed-loop equation is:

(1− 1.8B + 0.725B2 + 0.15B3)Yt = 1.0 + (1− 1.1B + 0.24B2)εt (20)

which is an ARMA(3,2) process. This is the closed loop equation of the true process de-
scription. Let us assume this is the model we actually fit, so in this analysis we neglect
sampling variability. This will show that the identifiability conditions are mathematical,
not statistical, i.e., they do not depend on the data. Suppose we are unaware of the true
process model, so we fit a Box-Jenkins model (1) with orders nA′ = 2, n′B = 5, and a noise
disturbance (second term in equation (1)) equal to an ARIMA(2,d,2) with drift model, i.e.:

Nt =
C ′(B)

(1− B)dφ(B)
εt +

δ

1− B .

If a PI controller of the form

xt =
c1 − c2B
1− B yt

(where c1 = KP + KI and c2 = −KP in this alternative parametrization) is applied, the
closed loop equation is:

φ(B)[A′(B)(1− B)−B′(B)(c1B + c2)]yt = (1− B)1−dφ(B)A′(B)δ + (1− B)1−dC ′(B)A′(B)εt.
(21)
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Sol a1 a2 b1 b2 b3 b4 b5 φ1 φ2 θ1 θ2 δ Obj
1 0.80 0.00 0.07 -14.87 -0.05 -0.01 0.00 0.00 0.00 0.30 0.00 5.00 3.76E-12
2 1.10 -0.24 7.36 -0.25 -3.82 0.52 -0.05 -0.34 -0.03 0.00 0.00 5.22 2.83E-10
3 0.80 0.00 -0.40 -15.73 0.30 0.06 0.00 0.00 0.00 0.30 0.00 4.99 1.72E-09
4 0.81 -0.01 3.42 -8.73 -2.67 -0.20 -0.08 -0.03 0.03 0.29 0.00 5.09 2.36E-09
5 0.81 -0.01 2.61 -10.20 -1.96 -0.20 -0.04 -0.03 0.03 0.29 0.00 5.07 1.83E-08

Table 1: Five best solutions obtained from minimizing the sum of squared errors of the
system of equations obtained from (20) and (21). Note that the true system (bold) does not
correspond to the lowest objective function value, a consequence of lack of identifiability.

To see if the process is identifiable under the actions of the PI controller, we can solve the
system of equations that result from equating coefficients of like terms in the polynomials of
B found in (21) and (20). One way to do this is to minimize the sum of squared errors with
respect to the parameters b1, ..., b5, a1, a2, φ1, φ2, and θ1, θ2 (d can be inferred by looking at
the unit roots of the MA polynomial; in this case there is no unit root in (20) so we set d = 1
in comparison to (21)). If for the global optimum of the sum of squared errors function the
values of these parameters equal the true values in (19), we will have system identifiability.

Table 1 shows the five best solutions obtained from minimizing the sum of squared error
function from a set of 2000 random starting solutions. As it can be seen, the true solution
(in bold) does not correspond to the best objective function value found. Thus, when iden-
tifiability conditions (18) do not hold, this implies that the global minimum of the sum of
squared errors function will not coincide with the true description of the system. This be-
havior can only get worse if the model is fit from noisy data, so evidently this result applies
in general.

It is important to note that even though the SI conditions may be satisfied in practice,
the precision of the parameter estimates based on finite samples may be very poor. The
addition of a dither signal will improve the precisions (MacGregor and Fogal, 1995). Other
approaches that incorporate additional information are possible. For example, stationarity
and invertibility conditions can be added to enhance the identifiability properties (Pan and
Del Castillo, 2001, Del Castillo, 2002b).

5 Some areas for further research

This section provides a discussion of two SPA areas where further work would be of benefit:
Bayesian process adjustment methods using SMC techniques and context-based EWMA
control for application in semiconductor manufacturing.
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5.1 Bayesian methods in process adjustment

We have already referred to recent SPA methods that are Bayesian, such as setup adjustment
using MCMC techniques (Colosimo et al., 2004), deadband schemes for process adjustments
(Lian and Del Castillo, 2005), and cautious control (Apley and Kim, 2004). In this section
we further comment on the potential of modern Bayesian statistical techniques in SPA and
some areas open for research. Well-known control theory techniques have connections with
Bayesian techniques or can be interpreted in a Bayesian way, two examples being Kalman
filtering for state estimation (with known parameters) and Adaptive Control. The main
potential for new Bayesian SPA methods, much along the type of problems discussed earlier,
is on the adjustment of short-run processes with unknown parameters.

Breakthroughs in numerical integration developed over the last 15 years can now be
routinely utilized for posterior inference when non-conjugate priors are desired. In particular,
MCMC methods (Gelman et al., 2003) have been developed intensively and proved to provide
solutions to previously untractable problems.

For a problem in which data arrives sequentially in time, however, MCMC methods may
not be the best choice. In MCMC, Markov Chains iterations yielding the target posterior
distribution are repeated from scratch every time a single new observation yt+1 is obtained,
without reusing the posterior distribution previously obtained a period before, i.e., at period
t. An alternative to MCMC is Sequential Monte Carlo (SMC) methods (see Figure 2).
SMC methods also rely on Monte Carlo algorithms for the solution of Bayesian inference
problems. In SMC, posterior distributions of “particles” θ(i) (values of the parameter) are
created numerically from calculating associated weights wi. These weights are recomputed
after each observation is obtained based on the likelihood of the corresponding particle given
the new datum and the previous set of weights, keeping in this way information from the
previous step. The weights are then used to provide posterior estimates of any function
of the parameter of interest at time t + 1. A major advantage of SMC techniques is that
they are considerably faster than MCMC, allowing for on-line control. A brief sketch of
the computations required to approximate the expectation of some function of an unknown
parameter θ at step i is as follows:

1. Draw θ(j) ∼ π(θ), j = 1, 2, ...,M, and set wj = 1/M ;

2. At each step i we do the following:

(a) Update wj ← wi × L(θ(j)|yi); normalize weights such that
∑

wj = 1;

(b) If sample degenerates, perform a “rejuvenation” step and resample θ(j), j =
1, ...,M using importance sampling based on the wj’s;

3. Compute E[f(θ)] ≈ ∑M
i=1 wi × f(θ(i)), increase i and goto 2 unless end of data.
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Figure 2: The update of a posterior distribution in MCMC and SMC.

Here L(θ(j)|yi) is the likelihood function of the jth particle given the latest observation. If,
e.g., interest is in the sample mean, then f ≡ 1. The rejuvenation step is executed if the sam-
ple of particles is too poor. This will tend to happen when π(θ) is a non-informative prior.
In such case, many particles will be unlikely given the data, so their weights wi will be zero
after a few iterations. The distribution of the wi’s will contain only a few non-zero weights,
and will provide biased estimates. A rejuvenation step (Balakrishnan and Madigan, 2004)
smooths the posterior distribution of the particles. Then, importance resampling of the pa-
rameters θ is performed using the updated weights. See Doucet et al. (2001) for more details.

Lian et al. (2005) apply the SMC method to the setup adjustment problem for un-
known parameters. They show how SMC gives results equivalent to MCMC but a fraction
of the computing time. The bayesian deadband adjustment scheme mentioned earlier (Lian
and Del Castillo, 2005) also utilizes SMC. There is a wide range of other relevant control
problems with unknown parameters that could be approached with SMC techniques. This
includes adaptive filtering problems and, in general, State-Space models. The SMC proce-
dure provides posterior parameter distributions of any relevant parameters which in turn
can be used to minimize a variety of cost functions. The solutions so obtained will in general
be suboptimal since the certainty equivalence principle (which indicates when using plug-in
estimates leads to optimal solutions, see Del Castillo, 2002a, Appendix 8B) applies only in
restrictive cases. Nevertheless, the solutions obtained may still have excellent performance
considering that a “dual control” optimal solution is computational prohibitive in most cases
(see Åström and Wittenmark, 1989). In a given application of SMC to process adjustment,
additional work is needed to quantify its performance over some known lower bound or ref-
erence point of performance.
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A second area we would like to highlight where Bayesian inference can play an important
role is in Closed-loop identification. If lack of identifiability is a problem due to not having
enough information about the process parameters, it seem natural to use a Bayesian approach
in which any prior information available can be incorporated. How to determine such prior(s)
and what type of additional pieces of information one should be able to model with the
priors are questions open for future research. MCMC methods used for open and closed loop
identification have recently been mentioned by Ninness et al. (2002) and Thil and Gilson
(2004), respectively.

5.2 Context-based EWMA control

EWMA (and PI) controllers have been studied extensively from a statistical point of view
in the last decade. This body of work concerns mostly the application of a single EWMA
controller to one manufacturing process, usually in a run-to-run control setting (i.e., the
within-run variation is not modelled). In this section we would like to point out some com-
plexities of realistic EWMA control as used for run to run control in the semiconductor
industry, created by the complexity of the operation, but approachable due to the data-rich
environment in which they are applied.

As pointed out by Braun et al. (2003), run to run control should deal with the context
information associated with each run. Thus, for example, we may know that a particular
run at time t will start in tool i by operator j in order to perform task k. The usual model
in EWMA control simply considers offsets (or “biases”) bt(= Nt in (16)), that is:

yt = gxt−1 + bt. (22)

The availability of context information implies the quality characteristic can be modelled
instead as

yijk,t = gijkxijk,t−1 + bijk,t. (23)

In equation (22), the estimate of the offset (the predictor of the disturbance) is simply

b̂t+1|t = λ(yt − ĝxt−1) + (1− λ)̂bt−1

where ĝ is an off-line gain estimate. The controller is simply xt = −b̂t/ĝ, assuming y denotes
deviations from target.

With the context information, managing all the EWMA controllers poses an interesting
challenge. At one extreme of simplicity, one could have complete segregation of controllers
(Braun et al. 2003). Thus,

b̂ijk,t+1|t = λijk(yijk,t − ĝijkxijk,t−1) + (1− λijk )̂bijk,t|t−1.
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Evidently, if there are I tools, J operators, and K different tasks, this will imply managing
up to IJK EWMA predictors, each with its corresponding weight parameter λijk.

Another possibility is to assume that there are different offset effects due to tool, opera-
tion, and tasks that act additively:

b̂ijk,t+1|t = α̂i,t+1|t + β̂j,t+1|t + γ̂k,t+1|t (24)

where α is the tool offset effect, β is the operator offset effect, and γ is the task offset effect.
This case will require I+J +K EWMA predictors to handle, typically with different weights.
For example, a tool may drift, while operator and task effects will probably remain stable
over time. This would suggest that λi > max(λj, λk) is indicated. Braun et al. (2003)
suggest to use

α̂i,t+1|t = λi(yijk,t − ĝijkxijk,t−1 − β̂j,t−1 − γ̂k,t−1) + (1− λi)α̂i,t−1 (25)

and similarly for β̂j,t+1|t and γ̂k,t+1|t. Models with non-linear effects (interactions) are also
possible, in which, for example:

b̂ijk,t+1|t = α̂i,t+1|t + β̂j,t+1|t + γ̂k,t+1|t + (̂βγ)jk,t+1|t (26)

where

(β̂γ)jk,t+1|t = λjk(yijk,t − ĝijkxijk,t−1 − α̂i,t|t−1 − β̂j,t|t−1 − γ̂k,t|t−1) + (1− λjk)(̂βγ)jk,t|t−1

and so on.
The similarities between (24) or (26) and an effects model used in ANOVA are obvious.

Complete segregation corresponds to an analysis in which the effect of each cell ijk is tracked
individually with an EWMA. If considerable historical information is available in each cell,
then this may work well, although there is the problem of handling that many EWMA pre-
dictors. We see that (24) and (26) correspond to effects models in which the effects are com-
puted in a non-standard way via ad-hoc expressions such as (25), using EWMA’s (to allow
for more rapid response instead of using non-weighted averages), assuming no constant term,
and without the usual restrictions

∑
αi = 0,

∑
βj = 0,

∑
γk = 0, etc., added in ANOVA to

obtain estimable effects (Milliken and Johnson, 1984). Broun et al. also tried recursive least
squares to estimate all the offset effects. Different initial values of the parameter vector and
the covariance matrix will lead to different solutions of the system of equations. It is not clear
how to choose these initial values to achieve best control, apart from simulation experiments.

An open question in this context-dependent control scenario is how to select all the
EWMA weights. This depends on the particular model assumed (either complete segrega-
tion, additive, or non-linear effects) and implies there is a combinatorial problem (finding
the best effects model) coupled with a continuous optimization problem (finding the λ’s).

24



The objective of this mixed discrete-continuous problem is to minimize the mean square
deviations of all quality characteristics involved.

Related to this problem is to find overall system stationarity conditions for a set of
controlled processes, given context information. This will involve both the EWMA weights
and the gains and their estimates.

Another challenge refers to measurement delays. Usually, the order in which runs are
measured is not the same as the order in which they were produced, implying that variable
measurement delays are present. Developing tuning methods for EWMA controllers in the
presence of uncertainty in the input-output delay is an open problem for further work.

6 Conclusion

In this paper, a view of the origins, present status, and a discussion of some areas for further
research on Statistical Process Adjustment methods was given. The goal was to provide
convincing examples that would demonstrate the intellectual and practical value of this field
of Industrial Statistics, and to promote interest for further research.

Acknowledgements. While writing this paper the author benefitted from discussions
with Drs. Mani Janakiram and Ramkumar Rajagopal (Intel Corporation), who he thanks.
Thanks also to O. Arda Vanli (Penn State) for Table 1 and to Zilong Lian (Penn State) for
Figure 2.

7 Bibliography

Akaike, H., (1967). “Some Problems in the Application of the Cross-Spectral Method” in
Advanced Seminar on Spectral Analysis of Time Series, Harris, New York: Wiley.

Apley, D.W. (2004). “A cautious minimum variance controller with ARIMA distrubances”.
IIE Transactions, 36, pp. 417-432.

Apley, D.W., and Kim, J. (2004). “Cautious control of Industrial Process Variability With
Uncertain Input and Disturbance Model Parameters”, Technometrics, 46(2), pp. 188-199.
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